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The extracellular signal–regulated kinase (ERK) controls
multiple critical processes in the cell and is deregulated in
human cancers, congenital abnormalities, immune diseases,
and neurodevelopmental syndromes. Catalytic activity of ERK
requires dual phosphorylation by an upstream kinase, in a
mechanism that can be described by two sequential Michaelis-
Menten steps. The estimation of individual reaction rate con-
stants from kinetic data in the full mechanism has proved
challenging. Here, we present an analytically tractable
approach to parameter estimation that is based on the phase
plane representation of ERK activation and yields two combi-
nations of six reaction rate constants in the detailed mecha-
nism. These combinations correspond to the ratio of the
specificities of two consecutive phosphorylations and the
probability that monophosphorylated substrate does not
dissociate from the enzyme before the second phosphorylation.
The presented approach offers a language for comparing the
effects of mutations that disrupt ERK activation and function
in vivo. As an illustration, we use phase plane representation to
analyze dual phosphorylation under heterozygous conditions,
when two enzyme variants compete for the same substrate.

Several essential processes in the cell, including protein
synthesis, gene regulation, and energy metabolism, require
activity of the extracellular signal–regulated kinase (ERK)
(1, 2). This highly conserved enzyme is activated by cell surface
receptors, such as receptor tyrosine kinases, which trigger
activation of a dual specificity kinase, mitogen-activated ERK
kinase (MEK), which has ERK as its only substrate (3–5). MEK
phosphorylates, in strict order, tyrosine and threonine residues
in the TEY sequence within the activation loop of ERK. These
phosphorylations induce a conformational change which ac-
tivates ERK and cause dissociation of the ERK/MEK complex,
enabling ERK to phosphorylate a broad spectrum of substrates
(Fig. 1A) (6). Given its critical roles in cell regulation, it is
unsurprising that mutations affecting either MEK or ERK can
lead to diseases. Indeed, dozens of MEK and ERK variants have
been documented in human cancers, congenital abnormalities,
immune diseases, and neurodevelopmental syndromes (7–11).
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Most pathogenic variants of MEK and ERK have amino acid
substitutions in different parts of these proteins. Investigating
the effects of these sequence changes leads to questions at
multiple levels of biological organization (7, 12–15): What
happens to the structure and dynamics of the molecule
harboring a substitution? What are the effects of these changes
on the mechanisms and rates of reactions in which this
molecule participates? How do these changes affect the dy-
namics of biochemical networks constructed from these re-
actions? What are the effects of network-level changes on
cellular processes, such as cell differentiation and growth?
Going further, what are the effects of cellular level changes on
tissues and organs?

The dynamics of ERK phosphorylation follow a simplified
mechanism with two sequential Michaelis-Menten steps
(Fig. 1, B and C) (4). The simplifications include a coarse-
grained description of the ERK/MEK association and ATP/
ADP exchange. Even with these simplifications, there are six
rate constants that prove hard to estimate with high confi-
dence based on the measured time courses (16). This difficulty
in solving the inverse kinetics problem is a generic feature of
multiparameter dynamic models (17). Here, we offer a
parameter estimation approach that addresses some of these
challenges, focusing on studies that reconstitute ERK regula-
tion in vitro (18). We focus on experiments in which pre-
activated MEK, either wildtype or containing a pathogenic
substitution, is added to a mixture of unphosphorylated ERK
with excess ATP, initiating gradual conversion of ERK to the
dually phosphorylated state (Fig. 1D) (19).

In contrast to most parameter estimation studies, which
fit the time series data, we use the phase plane representa-
tion of dynamics. The term phase plane is from classical
mechanics, where the state of a system with N particles is
fully described by a point in 6N-dimensional phase space,
where coordinates correspond to particles’ positions and
velocities. For a single particle moving in one dimension, the
phase space becomes a phase plane. To make things con-
crete, consider a ball that moves under the action of gravity
after being thrown upwards from height y0 with initial ve-
locity v0. The time-dependent trajectory of this ball traces
out the following curve in the phase plane:
yðvÞ ¼ y0þv02 =2g − v2 =2g, which is of course a locus of
constant energy and can be derived without having explicit
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Figure 1. Kinetic mechanism of dual phosphorylation of ERK by active MEK. A, MEK activates ERK by ordered dual phosphorylation of tyrosine and
threonine amino acids within the activation loop of ERK. B, mechanism of ERK activation by MEK can be modeled by two sequential Michaelis-Menten steps.
C, schematic representation of processive and distributive dual phosphorylation channels. D, time courses showing the concentrations of unphosphorylated
(S0), monophosphorylated (S1), and dually phosphorylated ERK (S2) generated by a mixture of 0.67 μM of activated MEK, 0.67 μM total ERK, and 5 mM ATP.
S0, S1, and S2 concentrations were monitored using phos-tag gel electrophoresis, as described in Yeung et al. (19). The error bars indicate the standard
deviation of 12 replicates. Data are from Yeung et al. (19). ERK, extracellular signal–regulated kinase.

Phase plane dynamics of ERK phosphorylation
expression for the time-dependence of the ball’s velocity and
position. Below, we derive the phase plane representation for
the temporal progress of ERK phosphorylation by MEK and
demonstrate how it can be used to analyze kinetic data and
interpret the effects of mutations.

Results

Phase plane dynamics of dual phosphorylation

We start with a mass-action model of a kinetic experiment
in which active MEK is added to unphosphorylated ERK (4, 5).
The concentrations of MEK and ERK are denoted by ET and
ST , respectively. The composition of the reaction mixture is
described by six concentrations, corresponding to the free
enzyme (E), three phosphorylation states (S0, S1; S2), and two
enzyme–substrate complexes (C0, C1). Since ERK activation
follows an ordered mechanism, S1 corresponds to ERK phos-
phorylated on a tyrosine residue within the activation loop
(Fig. 1, A and B). When monophosphorylated substrate does
not dissociate from the enzyme before the next phosphoryla-
tion, dual phosphorylation is called processive (4, 20); other-
wise, it is called distributive (Fig. 1C).

At the start of the experiment, S0ð0Þ = ST , Eð0Þ = ET , and all
other concentrations are equal to zero. Since there are two
conservation laws: ET ¼ EðtÞþC0ðtÞþC1ðtÞ and ST ¼ S0ðtÞþ
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S1ðtÞþS2ðtÞþC0ðtÞþC1ðtÞ, the composition of the system is
described by four differential equations:

dS0
dt

¼ − kb;1S0 ×Eþ kd;1C0; S0ð0Þ¼ ST ;

dC0

dt
¼ kb;1S0 ×E − kd;1C0 − kc;1C0;C0ð0Þ ¼ 0;

dC1

dt
¼ kb;2S1 × E − kd;2C1 þ kc;1C0 − kc;2C1;C1ð0Þ ¼ 0;

dS1
dt

¼ − kb;2S1 ×Eþ kd;2C1; S1ð0Þ ¼ 0;

with EðtÞ and S2ðtÞ obtained from the conservation laws.
Next, we use a steady-state approximation for complexes,

which is valid when ST >> ET (16, 21), and rescale the problem
as follows: τht×kc;1×

ET
ST
; xhS0

ST
; yhS1

ST
. This leads to the

following reduced model:

dx
dτ

¼ −
x

αxþβyþγ
; xð0Þ ¼ 1;

dy
dτ

¼ δx−εy
αxþβyþγ

; yð0Þ ¼ 0:



Phase plane dynamics of ERK phosphorylation
The five dimensionless parameters in these equations are
defined as follows:

αh
kc;1þkc;2þkd;2

kc;2þkd;2
; βh

KM;1

KM;2
; γh

KM;1

ST
; δh

kd;2
kc;2þkd;2

;

εh

�
kc;2
KM;2

���
kc;1
KM;1

�
;

where KM;1ð2Þ are the Michaelis constants of the two phos-
phorylation steps: KM;1ð2Þ ¼ kc;1ð2Þþkd;1ð2Þ

kb;1ð2Þ
.

The two equations can be combined into a single ordinary
differential equation for the dependence of the mono-
phosphorylated concentration on the unphosphorylated con-
centration:

dy
dx

¼ ε

y
x
−δ; yð1Þ ¼ 0:

This equation has a closed form solution:

yðx; δ; εÞ¼ δ

1−ε
ðxε − xÞ;

which describes the trajectory that joins the fully unphos-
phorylated and dually phosphorylated states, going through a
peak at xmax ¼ ε

1
1−ε; ymax ¼ δε

ε

1−ε.
The derived expression depends on two dimensionless

groups. The first group, δ, is the probability that the newly
formed complex of the enzyme and monophosphorylated
substrate dissociates before the substrate is phosphorylated the
second time (22–24). Note that 1−δ is the probability that both
phosphorylations happen within the same enzyme–substrate
binding event (also known as the processivity). As a conse-
quence, δ is the probability of the distributive reaction channel.
The second group, ε, is the ratio of the second-order rate
constants (also known as enzyme specificities) for two of the
enzymatic reactions, quantifying how the unphosphorylated
and monophosphorylated substrates compete for their com-
mon enzyme. Fig. S1 shows the plots of the derived expression
for different choices of δ and ε. We see that δ simply scales the
curve the shape of which is determined by ε.

Using phase plane representation for parameter estimation

The phase plane trajectory, which uses a single curve to show
how the amounts of unphosphorylated and mono-
phosphorylated ERK vary in relation to one another across time
(Figs. 2, A–D and S2, A and B), provides a convenient way for
analyzing the kinetics of ERK phosphorylation. The conve-
nience comes from the fact that it is insensitive to errors in
estimating the times at which the reaction has been stopped and
is independent of γ, both of which depend on the experimental
choice of substrate concentration. The probability of the
distributive reaction channel (δ) and the ratio of the two spec-
ificities (ε) can be readily estimated from kinetic data. As an
illustration, we show the nonlinear least squares fits to the data
from our earlier experiments where ERKwas phosphorylated by
either wildtype MEK or one of the three MEK variants from
human diseases (19, 25, 26). Each of these variants has a single
amino acid substitution: the E203K variant was identified in
melanoma (Fig. 2B), while the Y130C and F53S variants were
identified in the cardiofaciocutaneous syndrome (Fig. 2, C and
D). The cancer mutant has a strongly reduced probability of
distributed phosphorylation, whereas the cardiofaciocutaneous
syndrome variants are indistinguishable from the wildtype, at
least with respect to their ability to directly phosphorylate ERK
(Fig. 2, A–D). Understanding these effects in vivo requires car-
rying out similar analyses for other reactions involving MEK,
including their activation by Raf, dephosphorylation by phos-
phatases, and degradation by proteases (7, 27, 28).

The proposed approach to kinetic data analysis will not
work when a mutation changes the mechanism of phosphor-
ylation from a strictly ordered to random, and the dynamics
can no longer be analyzed in terms of a two-dimensional
trajectory. However, it shows how one can make progress in
model-based data analysis even when individual rate constants
cannot be constrained. One can appreciate this advance by
examining the results of nonlinear fits to data using the full,
six-parameter model. To that end, we sampled six-dimensional
parameter space to generate the initial guesses for the
nonlinear least squares algorithm that converged to local
minima of the objective function. Figure 3 displays the mar-
ginal distribution functions for the six rate constants from
multiple minima identified by the algorithm. The individual
rate constants are not constrained, which makes the full model
not useful for comparing different variants, highlighting the
value of the presented phase plane analysis.

The linearized form of the model is obtained when αxþβy
<< γ. This case is realized when most enzyme molecules are not
bound to substrates, and their concentration can be assumed
constant throughout the transformation from the unphos-
phorylated to dually phosphorylated state. In this case, the
equations for the three phosphostates become:

dS0
dt

¼−κ1S0; S0ð0Þ¼ ST ;

dS1
dt

¼ − κ2S1þδκ1S0; S1ð0Þ ¼ 0;

dS2
dt

¼ κ2S1þð1− δÞκ1S0; S2ð0Þ ¼ 0;

where κ1;2h
kc;1ð2Þ
KM;1ð2Þ

ET . The linear model can be used to fit the

time series, yielding the estimates for the specificities of indi-
vidual phosphorylation steps and the probability of the
distributive reaction channel (19). The validity of this model
depends on the assumption of linearity, which might be hard
to justify. We realized that since our phase plane approach is
free from these assumptions, it can provide an independent
test of the linear model. Specifically, when the values of δ
and ε obtained by fitting the data as a phase plane trajectory
and as time series are close to each other, we have an
additional argument in favor of the linear model. We found
that this is indeed the case. Fitting the linear model to the
wildtype time series data, we found that both mean and
standard deviation values for δ (0.80, 0.18) and ε (0.80,0.53)
J. Biol. Chem. (2023) 299(11) 105234 3



Figure 2. Two-parameter model fit to ERK phosphorylation trajectories. A, phase plane trajectory of ERK phosphorylation by WT MEK (gray). Average S0
and S1 values are plotted for seven time points. The standard deviation in S0 and S1 for each time point is shown (NWT = 12). The solid line represents the
model fit to data. S0 and S1 represent unphosphorylated and monophosphorylated ERK, respectively, normalized by the total amount of substrate. B–D,
model fits to the E203K, Y130C, and F53S trajectories (NE203K = 5; NY130C = 5; NF53S = 5). Best fit values are displayed along with their 95% confidence
intervals. ERK, extracellular signal–regulated kinase.

Phase plane dynamics of ERK phosphorylation
are close to the wildtype values shown in Figure 2A. This
justifies the use of a linear model in our earlier work (19).
Phase plane analysis of heterozygous systems

Once kinetic properties of individual variants are understood,
one can askwhat happenswhen two different variants are present
in the same reaction system, as occurs in the heterozygous con-
ditions in diseases associated with gain-of-function mutations in
MEK (Fig. 4A) (29). The fact that even a single copy of a mutant
gene can cause a phenotype poses interesting theoretical ques-
tions about heterozygous enzyme networks. Most modeling pa-
pers on heterozygosity focus on loss-of-function mutations
(30–33). Such systems can be adequately modeled by changing
the enzyme (or substrate) dosage, which means that models
established for the homozygous conditions still hold but operate
in a different parameter regime. On the other hand, when two
different variants are simultaneously present, the model is
different as one must consider more species and reaction paths.
This is true even for the simple case of ordered ERK phosphor-
ylation. When only one variant is present, an ERK molecule can
arrive to its dually phosphorylated state via two different paths,
depending on whether it dissociates from MEK after the first
phosphorylation. In a heterozygous mixture, both of these paths
are present (for each variant), but there are also two new paths, in
which the first and second phosphorylation steps are carried out
by different enzyme variants (Fig. 4B).
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Our phase plane analysis for homozygous systems can be
applied to heterozygous conditions. Consider a mixture in
which two MEK variants (wildtype, “w,” with total concen-
tration WT , and mutant “m,” with total concentration MT )
are phosphorylating ERK. Using the same non-
dimensionalization as for the wildtype system and elimi-
nating the enzyme–substrate complexes, we arrive at the
following model for the nondimensionalized concentrations
of the unphosphorylated and monophosphorylated sub-
strates:

dx
dτ

¼ −

�
x

αwxþβwyþγw
þ ρ

x
αmxþβmyþγm

�
; xð0Þ¼ 1;

dy
dτ

¼
�

δwx−εwy
αwxþβwyþγw

þ ρ
δmx−εmy

αmxþβmyþγm

�
; yð0Þ¼ 0:

All subscripted parameters have the same meanings as
before but must be evaluated for a specific variant. The new
dimensionless group ρhMT

WT

kc;1;m
kc;1;w

quantifies the relative
amounts of two variants, and the relative rates constants for
the first catalytic steps. The phase plane dynamics for this
system obeys the following differential equation:

x
dy
dx

¼−
ðδwx−εwyÞðαmxþβmyþγmÞþρðδmx−εmyÞðαwxþβwyþγwÞ

ρðαwxþβwyþγwÞþðαmxþβmyþγmÞ
;

yð1Þ¼0:



Figure 3. Summary of nonlinear least square fits with the six-parameter and two-parameter models. The six histograms labeled kb;1, kd;1, kc;1, kb;2, kd;2,
and kc;2 show the marginal distributions of each parameter obtained by fitting the six-parameter model to wildtype MEK data. The central contour plot
corresponds to the best fit using a 2-parameter model. Gray arrows indicate which parameters from the original model contribute to the two parameters of
the reduced model. The contour plot axes represent the values of each of the two parameters, and contour lines correspond to different values of the
squared norm of the residual for 96 data points (12 replicates, 7 time points per replicate) of the wildtype MEK data. The red dot at δ = 0.81, e = 0.81 marks
the best fit for wildtype MEK.

Phase plane dynamics of ERK phosphorylation
While we could not find a closed form solution, we can
show that, as before, the trajectory starts at (1,0) and ends at

(0,0), going through a maximum ðxhetmax; y
het
maxÞ.

Can this trajectory be approximated by a trajectory of an
appropriately chosen homozygous system? We start with the
case when both enzyme variants are operating far from satu-
ration, which corresponds to γw; γm >> 1: The phase plane
representation of the heterozygous dynamics can be shown to
satisfy:

dy
dx

¼ εhet
y
x
−δhet; yð1Þ ¼ 0;

where εhet ¼ εwþρεmðγw=γmÞ
1þρðγw=γmÞ and δhet ¼ δwþρδmðγw=γmÞ

1þρðγw=γmÞ . Thus, in this

regime, there is an explicit connection between the effective
parameters of individual variants and parameters of the
effective homozygous model. Moreover, as ρ is varied from
zero to infinity, the effective parameters are linearly trans-
formed between parameters of individual variants.
To illustrate the derived expression for the effective
heterozygous parameters, we predicted the phase plane tra-
jectory of the heterozygous mixture of the wildtype and E203K
variants, which display significant differences in processivity.
To compute the heterozygous trajectory, we set ρ ¼ 1, since
the protein levels are the same, and took the limit when both
γm and γw are large, since the quality of the linear model was
found acceptable. The peak of the heterozygous trajectory is
close to the peak of the wildtype, but the amplitude is smaller.

In general case, the phase plane trajectory for the hetero-
zygous system can be found numerically, along with the cor-
responding value for ðxhetmax; y

het
maxÞ: One can then use this value

to find the (εhet; δhet) pair that predicts the phase trajectory
with the same maximum:

xhetmax ¼ εhet
1

1−εhet ; yhetmax ¼ δhetεhet
εhet

1−εhet :

Effectively, this procedure approximates dynamics of the
11-parameter heterozygous system by the 2-parameter
J. Biol. Chem. (2023) 299(11) 105234 5



Figure 4. Dual phosphorylation in heterozygous conditions. A, kinetic model of dual phosphorylation of a single substrate by an equimolar mixture of
the wildtype (W) and mutant (M) enzyme variants. Each phosphorylation step is still modeled by a Michaelis-Menten mechanism but can be carried by
either the wildtype of mutant enzyme variants. B, schematic representation of six paths connecting the unphosphorylated (S0) and dually phosphorylated
(S2) phosphostates. C, predicted phase plane trajectory of the 1:1 mixture of the wildtype and E203K MEK variants (red) plotted together with the phase
trajectories of pure wildtype (black) and pure E203K MEK (orange).

Phase plane dynamics of ERK phosphorylation
homozygous system, although the explicit connection be-
tween (εhet; δhet) and parameters of the individual variants is
lost. We evaluated the quality of this approximation by
randomly generating heterozygous systems, finding the
maxima of their phase plane trajectories, matching them by
6 J. Biol. Chem. (2023) 299(11) 105234
effective homozygous systems, and calculating the relative
error; the quality of this approximation was excellent. We
therefore conclude that heterozygous dynamics for this
mechanism is always well approximated by an appropriately
chosen homozygous model.
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Discussion
For one-step enzymatic reactions, an enzyme/substrate

pair is characterized by its specificity constant, kcat= KM ,
which provides a quantitative way for comparison of
enzyme/substrate pairs. In writing this paper, we were
motivated to understand what metrics can be used for such
comparisons in more complex mechanisms, starting with a
realistic case of two sequential phosphorylations by the same
kinase. Our phase plane representation of dual phosphory-
lation dynamics identified two parameters that can be used
to compare enzyme/substrate pairs, as long as they follow
the same mechanism. One of them is the ratio of two
enzyme specificities, the other is the probability of the
distributive reaction channel. We illustrated our approach by
analyzing data of ERK phosphorylation by the wildtype and
variant versions of MEK and suggest that it is already
suitable for kinetic parameter estimation in other ordered
sequential processes, such as ERK dephosphorylation by
dual specificity phosphatases (34, 35).

The fact that a well-studied model turned out to have an
analytical solution was a pleasant surprise; nonetheless, the
identification of key dimensionless groups is part and parcel
of intelligent data analysis and could be attempted for a
wider class of mechanisms. We found the two groups char-
acterizing ordered dual phosphorylation through a non-
dimensionalization and steady-state approximation, which
might be too cumbersome for larger systems. However, our
model and kinetic data offer a clear test case for data-driven
efforts to automate the discovery and estimation of effective
parameters in biochemical networks. A recent study took a
step in this direction, using low-dimensional description of
parameter ensembles generated by local minimization algo-
rithms (36).

Our phase representation of dual phosphorylation dy-
namics also proved useful in thinking about heterozygous
systems, where two different enzyme variants are
competing for access to the same substrate. This frame-
work could prove particularly relevant for disorders like
melanomas where one copy of MEK has become overactive
through mutation. By using such a model to quantitatively
determine how the dynamics of ERK activation differ in the
presence of an activating MEK mutation, like MEK E203K,
one could better predict the results of therapeutic in-
terventions, like the introduction of a RAF (the kinase that
phosphorylates MEK), MEK, or ERK inhibitor (37). When
both enzyme variants follow the same mechanism, the
heterozygous system is well-approximated by a homozygous
system with appropriately chosen parameters. In other
words, the presence of two enzyme variants does not
introduce new effects. Future work will aim to find
mechanisms where this is not true. In particular, we
wonder whether one could provide an example where a
system that can be ascertained to have only one stable
steady state in homozygous conditions can give rise to
multiple steady states or periodic oscillations when one of
the reactions is catalyzed by two different variants. We
leave this question as a challenge for scientists working on
systems-level properties of biochemical networks (38, 39).

Experimental procedures

All parameter values were determined using data from (19),
in which 0.66 μ M MEK was combined with 5 μ M unphos-
phorylated ERK and concentrations of unphosphorylated (S0),
monophosphorylated (S1), and dually phosphorylated (S2)
ERK were tracked over 20 min, using Phos Tag Gels.
Nonlinear least squares parameter fitting was done using the
lsqcurvefit routine in MATLAB 2022a. The rate constants for
the six-parameter model were found by fitting kinetic equa-
tions and the conservation equations for ST and ET to S2, S1,
and S0 versus time, using the objective functionP21

i¼1

PN
j¼1ðyij−xiÞ2, where yij is the value of data point i (21

data points total with 3 phosphostates × 7 time points) for
replicate j (N = 12 for WT MEK, N = 5 for MEK E203K, N = 5
for MEK Y130C, and N = 5 for MEK F53S) and xi is the value
of data point i predicted by the model. For the two-parameter
model, values for e and δ were found by fitting the equation for
the phase plane trajectory to S1 versus S0 data using the

objective function
P7

i¼1

PN
j¼1ðyij−xiÞ2, where yij is the value of

data point i (7 time points) for replicate j (N = 12 for WT
MEK, N = 5 for MEK E203K, N = 5 for MEK Y130C), and xi is
the value of data point i predicted by the model. For each
model, 1000 fits were performed, with guesses selected by
random sampling from a uniform or log-uniform distribution
bounded by the values listed in Table S1.

Data availability

All data are available in the manuscript.
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