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 Abstract: Traditional medicine and biomedical sciences are reaching a turning point because of the 
constantly growing impact and volume of Big Data. Machine Learning (ML) techniques and related 
algorithms play a central role as diagnostic, prognostic, and decision-making tools in this field. Anoth-
er promising area becoming part of everyday clinical practice is personalized therapy and phar-
macogenomics. Applying ML to pharmacogenomics opens new frontiers to tailored therapeutical 
strategies to help clinicians choose drugs with the best response and fewer side effects, operating with 
genetic information and combining it with the clinical profile. This systematic review aims to draw up 
the state-of-the-art ML applied to pharmacogenomics in psychiatry. Our research yielded fourteen pa-
pers; most were published in the last three years. The sample comprises 9,180 patients diagnosed with 
mood disorders, psychoses, or autism spectrum disorders. Prediction of drug response and prediction 
of side effects are the most frequently considered domains with the supervised ML technique, which 
first requires training and then testing. The random forest is the most used algorithm; it comprises sev-
eral decision trees, reduces the training set's overfitting, and makes precise predictions. ML proved ef-
fective and reliable, especially when genetic and biodemographic information were integrated into the 
algorithm. Even though ML and pharmacogenomics are not part of everyday clinical practice yet, they 
will gain a unique role in the next future in improving personalized treatments in psychiatry. 
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1. INTRODUCTION 

 The biomedical sciences have always been profoundly 
and strongly dependent on data, even more in the latest dec-
ades with precision medicine's birth and development, which 
caused the need to collect an increasing number of complex 
and multi-dimensional data. All this amount of data derives 
from both microscopic and macroscopic worlds, which led  
to the need to process a massive amount of information  
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emanating from very different biological contexts and sys-
tems [1, 2]. 

 Another distinction lies in the difference between biolog-
ical data and clinical variables, such as patients' records, life-
styles, and psychological aspects. Contemporary medical 
sciences require new and practical tools to gather and pro-
cess all the acquired and produced clinical data to give the 
most detailed representation of complex pathophysiological 
processes [3]. Therefore, scientists must face dimensional 
heterogeneities and categorical distinctions that cannot be 
performed clinically and require analysis with complex soft-
ware systems. 
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 Today we are witnessing the Big Data era in its early 
stage of development since most of the technologies, practic-
es, and analytical applications appeared around 2010 [4]. Big 
Data means a massive amount of digital data collected from 
any sources that are raw, unstructured, and too different from 
each other to be analyzed using conventional statistical and 
relational techniques [5]. All the features of Big Data can be 
summarized with "the three V's": volume, velocity, and vari-
ety. First, volume refers to the massive quantity of data; each 
organization generates terabytes or petabytes of information. 
Second, variety describes the different natures of the data 
themselves. Third, velocity is linked with the insane fre-
quency with which today's data is generated, gathered, and 
processed. All the value of these data loses importance with-
out an effective system for managing, extracting, and analyz-
ing it [5]. The systematic and comprehensive exploration of 
data is mainly carried out using Artificial Intelligence which 
provides a mechanism for data-driven hypotheses, experi-
mental planning, precision, and evidence-based medicine. 

1.1. Precision Psychiatry 

 Psychiatry is dedicated to understanding mental diseases 
and assisting those affected in leading gratifying lives. Alt-
hough current treatment strategies for many mental disorders 
can be remarkably effective at improving patients' quality of 
life and mitigating the burden of symptoms, finding the 
proper treatment for an individual can be a long and arduous 
process, during which symptoms can worsen and could in-
crease the clinical risk related to other health conditions. 
 Precision psychiatry is a promising new direction to 
overcome those limitations [6]. It consists of the translation 
into the clinical psychiatry of the precision medicine meth-
ods, thus considering the latest biomarker-based research 
approaches to accurately assess an individual's risk of devel-
oping mental illnesses for preventive purposes. Predictive 
psychiatry aims to construct clinical and molecular models to 
better predict individual and varied therapy responses and 
increase the early detection of mental diseases. Pattern 
recognition could extract signatures from clinical, cognitive, 
imaging-based, and, where applicable, genetic data that can 
be applied quantitatively to individual patients to anticipate 
desired and undesired pharmacological effects. Another main 
objective of precision psychiatry is to identify drug treat-
ments that could have better efficacy and tolerability for a 
specific patient [7].  
 The most recent innovations come from the fields of 
pharmacogenomics and Artificial Intelligence, of which ML 
is currently among the most promising approaches. 

1.2. Machine Learning 

 ML is made up of mathematics, statistic, and computer 
science. It can be considered an engine, a kind of "intelli-
gent" product whose ability is to make accurate and precise 
predictions based on data from several different sources [8]. 
ML techniques use algorithms that describe the relationships 
between variables. These algorithms might be represented on 
a continuum between easy to decode and understand and 
those with great difficulties in decoding; the whole working 
system may be compared to a "black box" [9].  

 Conventional statistical techniques, such as linear and 
logistic regression, can show the relationship between two 
variables; then, the inference is about how two data are relat-
ed. On the other side, ML's primary goal is prediction; here, 
the main purpose is to assess whether and to what extent 
some data might predict an event [10]. The learning process 
has a crucial role in achieving a predictive capability and 
divides ML into two categories: Supervised ML and Unsu-
pervised ML. 
 Supervised ML is a technique in which a model is trained 
on a range of features associated with a known outcome. 
These features might be represented by patients' characteris-
tics or history related to a specific outcome (e.g., weight, 
BMI, and the onset of diabetes within some years). Once an 
algorithm is trained, it will predict outcomes when applied to 
a new data set. Furthermore, predictions can be discrete (e.g., 
healthy/unhealthy, malignant/benign) or continuous (e.g., 
range of values) [11, 12]. Both features and outcomes are 
organized in a dataset to which an algorithm may be applied. 
Then the algorithm is improved during its development to be 
optimized, reducing the risk of giving errors in predictions. 
 Unsupervised ML, so far, has found few applications in 
medicine [13]. Focusing on unsupervised ML, the main dif-
ference with supervised learning is the absence of a prede-
fined outcome. The algorithm gains an exploratory purpose 
in this situation since the user does not include any output in 
the dataset. Hence, this kind of learning may have significant 
implications regarding the most complex pathophysiologic 
mechanisms and possible new therapeutic paths; on the other 
hand, the learning process is more difficult to understand and 
apply in clinical practice. Therefore, due to the inherent un-
predictability of the results provided, the application of un-
supervised ML in clinical practice still has several issues. 

1.3. Machine Learning in Pharmacogenomics 

 Pharmacogenomics is widely considered one of the most 
promising fields of clinical medicine [14]; it focuses on iden-
tifying genomic aspects that could be correlated with drug 
effects and metabolization. Pharmacogenomics focuses on 
the role of the genome in drug response. It analyzes how the 
genetic asset of an individual can affect the response to 
drugs, having a potentially positive impact on clinical prac-
tice, primarily in treatment-resistant mental disorders [15]. 
The most prescribed psychiatric drug in 2015 was sertraline, 
a member of the selective serotonin reuptake inhibitors 
(SSRIs) class adopted for depression, obsessive-compulsive 
disorder, panic disorder, post-traumatic stress disorder, and 
anxiety disorders. This drug class includes many other mole-
cules, such as fluvoxamine, citalopram, escitalopram, fluoxe-
tine, and paroxetine, most of which demonstrated efficacy in 
65% of treated patients or less [16,  17]. A similar issue ex-
ists in treating resistant schizophrenia spectrum disorders, for 
which the atypical antipsychotic drugs may show low or 
insufficient efficacy and response rates [18, 19]. These ele-
ments underline the need for a new paradigm in treating psy-
chiatric disorders, switching from the traditional evidence-
based approach (based on data gathered in large populations 
of patients) to an individual-based and data-driven 
knowledge of clinical and biological data (phenotypical, 
genotypical, and molecular). Thus, precision medicine's fun-
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damental consists of tailoring care and focusing on the 
unique characteristics of patients [20].  
 Artificial intelligence and ML aim to provide a data-
driven algorithm that learns from past and present data to 
elaborate predictive outcomes for any unknown data or any 
unknown event in the future [21, 22]. 

 Thanks to the recent advances in multi-omics, precision 
psychiatry is acquiring high growth potential to satisfy the 
requirements of new drugs and therapeutic interventions 
[23]. Multi-omics currently promises to improve human 
health and disease knowledge, and many researchers are 
working on methods to generate and analyze disease-related 
data. Multi-omics applications improved understanding of 
host-pathogen interactions, infectious diseases, chronic and 
complex non-communicable diseases, and personalized med-
icine. However, the challenges we face today in precision 
psychiatry are still mostly unmatched, considering mental 
disorders' multifactorial aetiology. The development of soft-
ware tools based on artificial intelligence and ML frame-
works could help to predict specific quantitative and categor-
ical phenotypes in clinical settings by utilizing next-
generation technology multi-omics and neuroimaging da-
tasets [24]. This study aims to systematically review the cur-
rent evidence on the use of ML and artificial intelligence in 
precision psychiatry, underlining the current possibilities and 
promises of this approach for patients with mental disorders. 

2. METHODS 

 A systematic review of the literature was conducted to 
investigate the field of application of ML technology in the 
study of pharmacogenomics in psychiatry, evaluating types 
and prospects of application. The examined studies were 

identified through research in online databases (PubMed, 
Scopus, Web of Science, CINHAL, and PsycINFO) carried 
out using the following string: ((machine learning) OR (deep 
learning) OR (algorithm)) AND pharmacogen* AND (psy-
chiatr* OR mental). 
 We included articles describing studies focused on the 
use of ML and artificial intelligence in the field of phar-
macogenomics in psychiatry. We excluded articles unrelated 
to the central issue of this review. 
 The initial research was completed on November 28, 
2021, producing 113 results on PubMed, 27 on Scopus, 29 
on Web of Science, ten on CINHAL, 25 on PsycINFO. From 
these, 26 articles obtained from Scopus have been eliminated 
since they coincide with results obtained by PubMed; 28 
from Web of Science, since similar articles in PubMed and 
Scopus; finally, ten articles from CINHAL and 25 from 
PsycINFO since already identified through the other search 
engines. Therefore, the preliminary investigation was con-
ducted on 115 articles (113 from PubMed, 1 from Scopus, 1 
from Web of Sciences). Among all, we excluded 51 articles 
unrelated to the object of this study, two editorials, 23 re-
views, 19 that did not apply an ML method, three related to 
other fields of medicine, one letter to the editor, one animal 
study, and one ongoing study. Therefore, the total database 
included 14 peer-reviewed scientific articles (Fig. 1). 

3. RESULTS 

3.1. Overview of Articles’ Characteristics 

 Our qualitative synthesis yielded 14 papers published 
between 2013 and 2021; this underlines the novelty of this 
topic and how the adoption of ML applied to phar-
macogenomics is gaining interest in psychiatry. Out of 14, 

 

Fig. (1). Search strategy. 
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11 studies have been published in the last three years [24-
34]. The total sample is made up of 9, 180 patients with dif-
ferent diagnoses. 8 studies focused on Major depressive dis-
order (MDD) [24, 26, 27, 30, 32-35], 1 study on bipolar dis-
order (BD) [28],  1 study on MDD and depressive episodes 
in BD [31], three studies on psychotic spectrum diseases [25, 
29, 36] and 1 on Autism spectrum disorder (ASD) [37]. Most 
of the papers (8) are cohort studies [24-26, 28-32], 2 of them 
are case-control [35, 36],  and the other four are association 
studies derived from randomized control studies (RCT) [27, 
33, 34, 37] (Tables 1 and 2). 

3.2. ML Application Domains in Pharmacogenomics 

 Two domains of pharmacogenomic ML in psychiatry 
were identified: (i) prediction of drug response (n=12) and 
(ii) prediction of side effects (n=2).  

1) Prediction of drug response includes articles aiming 
to identify which genes and subpopulation character-
istics are associated with a positive response to a 
specific drug class or molecule. According to recent 
studies, individual phenotypic differences may also 
emerge from epigenetic modifications like histone 
acetylation or DNA methylation. In addition, 
noncoding RNA interactions also have a role in pro-
tein expression and may alter drug effects. Different 
promising therapeutic techniques are now being de-
veloped, although the role of epigenetics in pharma-
cological treatment response needs further study 
[38]. The study of gene-gene interactions may better 
underline individual pharmacokinetic and pharma-
codynamic pathways [21]. 

2) Prediction of side effects studies focuses on which 
genetic variables might play a role in the onset of 
undesirable effects due to a specific drug. In both 
domains, the core question is to find a suitable sub-
population, based on a genomic study, for a specific 
pharmacological treatment to establish a tailored 
therapy, theoretically, with no side effects and the 
best odds of a response. 

3.3. Prediction of Drug Response 

 Eugene and colleagues focused on lithium treatment in 
bipolar and schizoaffective disorder; more specifically, they 
intended to spotlight the gender-specific transcriptional-level 
regulators of lithium treatment response [28]. They performed 
4 Differential Gene Expression Analyses (DGEA). Through 
DGEA-1, the gender-specific transcriptome was obtained 
comparing male vs. female; DGEA-2 comparing male non-
responders vs. male responders; DGEA-3 was performed on 
female non-responder vs. female responders and, finally, 
DGEA-4 on male responders vs. female responders. The 
main 250 genes from DGEA-1 to DGEA-4 were then over-
laid to result in gender-linked genes related to the response 
to the treatment with lithium. After identifying the statistical-
ly significant DNA microarray genes, two ML algorithms 
were used for classification: Decision Tree and random for-
est. They selected the Decision Tree algorithm to classify 
male versus female samples; more specifically, the Riboso-
mal protein S4, Y-linked 1 (RPS4Y1) gene expression was ≥ 
9.643 in male patients and < 9.643 in female patients with a 

probability=100%. A random forest algorithm was adopted 
for classifying male responders and female responders. The 
RBPMS2 and LILRA5 genes were involved in the lithium 
response in males with an area under the receiver operator 
characteristic curve (AUROC) of 0.92, and the ABRACL, 
FHL3, and NBPF14 genes were found related to female lith-
ium responders with AUROC of 1. RBPMS2 is a gene codi-
fying for an RNA Binding Protein with Multiple Splicing, 
while LILRA5 codifies for Leukocyte Immunoglobulin Like 
Receptor A5. ABRACL Codifies for ABRA C-Terminal-like 
protein, FHL3 for Four and a Half LIM Domains 3, and 
NBPF14 for Neuroblastoma Breakpoint Family Member 14.  
 ML-based algorithms analyzing functionally validated 
pharmacogenomic biomarkers associated with clinical 
measures could predict the remission/response rate to selec-
tive serotonin reuptake inhibitors (SSRIs) in patients affected 
by MDD [30]. Athreya et al. [30] studied 1, 030 MDD pa-
tients treated with citalopram/escitalopram from Mayo Clinic 
Pharmacogenomics Research Network Antidepressant Medi-
cation Pharmacogenomic Study (PGRN-AMPS; n = 398), 
Sequenced Treatment Alternatives to Relieve Depression 
(STAR*D; n = 467), and International SSRI Phar-
macogenomics Consortium (ISPC; n = 165) trials. As phar-
macogenomic biomarkers, they included six SNPs, either in 
or close to the TSPAN5 (rs10516436), ERICH3 (rs696692), 
DEFB1 (rs5743467, rs2741130, and rs2702877), and AHR 
(rs17137566) genes. SNPs were identified through a ge-
nome-wide association study for PGRN-AMPS plasma me-
tabolites associated with SSRI response (serotonin) and base-
line MDD severity (kynurenine) [30, 39, 40]. Unsupervised 
learning was applied to identify clusters of patients (men and 
women separately) with similar symptom severity at baseline 
and after 4 and 8 weeks of treatment. It was applied an Ex-
pectation-Maximization (EM) algorithm that assumed only 
one component in the mixture (a single bell-shaped curve 
distribution) and gradually increased the number of compo-
nents (distributions with multiple peaks) until an adequate fit 
of the data was achieved. Then, they adopted a trained ran-
dom forest algorithm (random forest R library) using PGRN-
AMPS's baseline depression severity and pharmacogenomics 
data to predict remission/response and then externally vali-
dated by the trained prediction model using STAR*D and 
ISPC data. For both women and men, the top predictor for 
remission was baseline depression severity, followed by the 
DEFB1_2 (rs2741130) and DEFB1_1 (rs5743467) SNPs 
biomarkers identified during our GWAS for plasma 
kynurenine concentrations. The top SNPs for response in the 
men group were the TSPAN5 SNPs, related to serotonin 
concentration, followed by the DEFB1_1 and DEFB1_2 
SNPs. For response in women, the top predictor was the 
DEFB1_1 SNP, followed by baseline depression severity 
and the DEFB1_2 SNP [30, 39, 40].  
 Another 6-week duration cohort study evaluated the ther-
apeutic outcome of different antidepressants [32]. The ex-
pression of the C allele of rs6354 polymorphism and the G 
allele of rs12150214 (SLC6A4) showed a poorer treatment 
response to fluoxetine. The SNPs rs929377-rs6191-rs32897 
were also significantly associated with the treatment re-
sponse to fluoxetine. In female MDD patients, the minor 
allele of rs6323 and rs1137070 on the MAOA gene showed 
to be related to a worse response to venlafaxine. 
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 Lin and colleagues tested a wrapper-based feature selec-
tion algorithm integrated with a boosting ensemble predic-
tive framework for building predictive models of antidepres-
sant treatment response among 421 MDD patients. Their 
primary purpose was to compare the efficacy of different ML 
techniques. This study demonstrated that the ensemble ML 
framework might be a valuable technique for creating bioin-
formatics tools for discriminating non-responders from re-
sponders before treatment with SSRIs [24].  
 Another study evaluated five different ML approaches 
(neural networks, recursive partitioning, learning vector 
quantization, Gradient boosted machine, and random forest) 
on three different samples testing 44 SNPs of 8 candidate 
genes (CACNA1C, CACNB2, ANK3, GRM7, TCF4, ITIH3, 
SYNE1, FKBP5). FKBP5 polymorphisms seemed effective 
candidates for inclusion in antidepressant pharmacogenetic 
tests. Furthermore, pathways including the CACNA1C, a 
Calcium channel-related gene, could be involved in treat-
ment-resistant depression, which could be considered for 
developing multi-marker predictors [26].  
 Kautzky and colleagues focused their attention on treat-
ment-resistant depression [35]. They demonstrated that using 
the random forest algorithm, combining SNPs (12 SNPs in 
HTR2A, COMT, ST8SIA2, PPP3CC, and BDNF) and clini-
cal variables, it is possible to detect treatment-resistant pa-
tients. A combination of two ML models was tested by Mac-
iukiewicz et al. [27], applying classification-regression trees 
(CRT) and linear support vector machine (SVM) to predict 
duloxetine response in MDD. Additionally, they used the 
genome-wide logistic regression to identify potentially sig-
nificant SNPs variants related to duloxetine response/ 
remission and extracted the most promising predictors using 
LASSO regression. CRT performed poorer for remission 
(accuracy = 0.51, sensitivity = 0.51, specificity = 0.51), 
when compared with SVM (accuracy = 0.52, sensitivity = 
0.58, specificity = 0.46). In response, both algorithms per-
formed poorly. Regarding CRT, models achieved an accura-
cy = 0.57, a sensitivity = 0.75, and a specificity = 0.15. In 
SVMs, they observed an accuracy = 0.64, a sensitivity = 
0.87, and a specificity = 0.07. For remission, the SVM mod-
els achieved an accuracy = 0.41, a specificity = 0.43, and a 
sensitivity = 0.41. In conclusion, SVM models based on pre-
defined classes perform significantly better. 
 Joyce and colleagues explored the application of ML 
tools in combined pharmacological treatment in MDD [34]. 
In detail, they examined data from 264 MDD patients treated 
with citalopram or escitalopram deriving from Mayo Clinic 
PGRN-AMPS and 111 MDD patients under treatment of a 
combined antidepressant therapy from Combined Medication 
to Enhance Outcomes of Antidepressant Therapy (CO-MED) 
study. The central hypothesis of Joyce and colleagues is that 
enriching clinical measures with biological ones (such as 
metabolomics and genomics) might improve the predictabil-
ity of response to combined antidepressant therapies. They 
applied a first model made up of clinical, sociodemographic, 
and metabolomic (plasma metabolites) aspects and a second 
model, additionally considering six validated SNPs related to 
MDD pathophysiology and citalopram/escitalopram re-
sponse. These SNP biomarkers are located near or in 
TSPAN5, ERICH3, DEFB1, and AHR genes [39-41]. Both 

linear and non-linear algorithms were tested. A linear regres-
sion model was successful at predicting changes in symp-
toms' scores using clinical and metabolomic features; they 
then tested extreme gradient-boosted decision tree-based 
ensembles (XGBoost) as nonparametric models. Nonpara-
metric models identified possible non-linear relationships 
among predictors while predicting treatment outcomes. Fi-
nally, a cross-trial replication was conducted, showing that 
integrating data on specific metabolites and SNPs achieves 
more accurate treatment response predictions across classes 
of antidepressants [34]. 
 Taliaz and his group used STAR*D patients' data for 
algorithm assembly and evaluation; they randomly divided 
530 patients into a validation group of 271 and a test group 
of 259 [33]. They further proceeded with external validation 
of their ML tool, used on data from the PGRN-AMPS of 
patients treated with citalopram. They used several ML algo-
rithms: SVM with a linear kernel, XGBoost, random forest, 
and Adaptive Boosting (AdaBoost). In addition, 5- or 10-
fold repeated cross-validations (CVs) were performed on the 
training datasets to reach optimal parameters; these were 
used to re-train the various models using the complete train-
ing datasets. The authors considered 8, 210 SNPs, deriving 
from STAR*D genetic data and genetic data and the Genome 
Reference Consortium Human genome, obtaining highly 
similar results for STAR*D and PGRN-AMPS test sets, with 
good accuracy. These findings support the feasibility of us-
ing ML algorithms applied to large datasets with genetic, 
clinical, and demographic features to improve accuracy in 
antidepressant prescription [42]. 

 The only study focused on the depressive symptoms 
among two different diagnosis groups (MDD and BD) was 
the one conducted by Borro et al. [31]. All the recruited pa-
tients were pharmacoresistant, with at least three previous 
failed treatments. A new algorithm-based tool, Drug-PIN, 
was employed to re-evaluate and optimize therapies. They 
compared results from Drug-PIN with the ones obtained by 
therapy counseling. The number of baseline poly-therapies 
classified as low-, moderate- or high-risk did not change 
significantly between the manual system or the Drug-PIN 
system. As the counseling process, also the Drug-PIN system 
showed a significant decrease in the predicted treatment-
associated risk. In summary, this informatic tool seems to 
replicate traditional counseling, virtually reducing time and 
the risk of mistakes in everyday clinical practice. 

 Switching attention to antipsychotic drugs, Lee and col-
leagues developed a computational algorithm to personalize 
schizophrenia treatment [25]. This kind of algorithm was 
first adopted to identify who benefits most from the treat-
ment group in clinical trials [43] and it is based on a classical 
clustering algorithm called the partitioning around medoids 
(PAM) algorithm. It uses both clinical profile and genetic 
information with two sets of SNPs. The authors proposed a 
computational algorithm that simultaneously used genetic 
information and clinical profiles to predict who will or will 
not benefit from a specific antipsychotic medication among 
patients with schizophrenia. The model provided a good pre-
diction for Ziprasidone by 13 SNPs and 53 baseline variables 
[44, 45]. 
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 Only a study focused on ASD [37]. An SNP ranking al-
gorithm was used based on a linear SVR with MATLAB 
2014 on the LIBSVM package. The SNP information was 
binarized and divided into the SNP response data to test and 
train data in a leave one out cross-validation. The training 
data fitted the binary information of SNPs to the oxytocin 
efficacy with SVR and calculated the mean square error. 
This procedure was repeated for each SNP. The set of most 
informative SNPs based on the top 10% ranking was chosen. 
For SVR, there were 4 clusters, and calculated the weight of 
every SNP for each cluster. They evaluated the relationship 
between 27 OXTR SNPs and six types of behavioral/neural 
response to oxytocin treatment in 38 ASD patients. It came 
out that major alleles of several prominent OXTR SNPs, 
including the rs53576 and rs2254298, were related to the 
oxytocin effect. We resumed the main results of ML studies 
in psychiatry in Tables 1 and 2. 

3.4. Prediction of Side Effects 

 Boloc and colleagues used ML techniques to test whether 
it can predict the side effects of drug treatment, for example, 
the extrapyramidal symptoms that may occur during an anti-
psychotic treatment [29]. Supervision methods of class pre-
diction based on ML were applied. ML has been trained to 
identify control and case classification patterns using the 
Discovery Sample of the SNPassoc R package. Support vec-
tor machine, Naive Bayes, and random forest were adopted, 
showing a better EPS prediction. The Naive Bayes achieved 
the best result. The exact purpose was pursued by Son et al. 
[36]. They investigated the polymorphisms associated with 
tardive dyskinesia in patients treated with typical antipsy-
chotics and predicted it using the MDR (multifactor dimen-
sionality reduction). MDR is nonparametric and model-free, 
made up of two stages. Stage 1 involves choosing the best 
combination of factors, and stage 2 involves classifying the 
combinations of genotypes into high-risk and low-risk 
groups based on the ratio of cases to controls with that geno-
type [46]. MDR ultimately selects one genetic model, single 
or multi-loci, which predicts phenotype with good success. 
The model's predictive ability was assessed using the 10-fold 
cross-validation. Statistical significance is determined empir-
ically by permuting the case and control labels 1000 times. 
SCL6A11 genotypes distribution showed a significant dif-
ference between patients with and without tardive dyskinesia 
(TD), providing significant evidence for gene-gene interac-
tions (SCL6A11, GABRG 3, and GABRB2) in its develop-
ment [36]. 

4. DISCUSSION 

 In almost all these papers, ML algorithms showed prom-
ising results when combined with either pharmacogenomic 
information alone or clinical features.  
 The random forest algorithm seems to be the most adopt-
ed technique [26, 28-30, 32, 35]. The random forest classifier 
is a data mining method that offers superior classification 
performance than other innovative algorithms [47]. These 
properties have made random forests increasingly popular in 
the last few years, especially in psychiatry [48]. The expres-
sion "random forest" derives from being made of many trees; 
more specifically, random forest is a classifier consisting of a 

collection of tree-structured classifiers made of independent, 
identically distributed random vectors. Each tree casts a unit 
vote for the most popular class [49]. 
 The use of clinical applications based on ML techniques 
considering pharmacogenomic data is not yet about to be 
used in everyday clinical use. All the studies adopted super-
vised ML technologies, where the outcome is already 
known, and artificial intelligence is trained to understand and 
predict such outcomes. Only Athreya and colleagues used 
unsupervised ML [30],  but to test whether the distribution of 
symptom severity scores was expected; in a second step, 
they applied the trained random forest. Then, although ML 
currently has an investigative role, once it is trained on large 
numbers and a homogenous population, its diagnostic and 
predictive function will become more reliable and could be 
better used in clinical practice as a diagnostic tool [10-12]. 
 In 2013 the FDA listed that pharmacogenomic testing 
should be used in early-phase clinical trials for the identifica-
tion of suitable populations, cohorts, and individuals "that 
should receive lower or higher doses of a drug, or longer 
titration intervals, based on genetic effects on drug exposure, 
dose-response, early effectiveness and common adverse re-
actions" [50]. However, this innovative approach has not 
been widely adopted by pharmaceutical companies yet, both 
for the risk of reducing its potential market size and the lack 
of available extensive genomic data resources, data hetero-
geneity, and the absence of universal benchmarks [51]. 
 Genomics represents a critical but small part of data 
needed for patient stratification, which involves heterogene-
ous biomedical, demographic, and sociometric data and ef-
fective predictive ML models. Despite not being designed 
for research application, substantial amounts of data within 
electronic health records have been proven for use through 
several notable studies in GWAS and phenome-wide associa-
tion studies analysis [52]. Furthermore, studies on EHR-linked 
(Electronic Health Records) DNA biorepositories have suc-
cessfully shown that integrating such pharmacogenomic and 
sociometric data can be helpful in predictive modeling for 
optimizing dosage and reducing dosing error [52]. By using 
clinically available information, such as age, gender, and 
education, healthcare providers and clinical researchers can 
identify better treatment options and patient responses to 
maximize efficacy and cost-effectiveness [52, 53]. 
 However, several challenges are associated with the ef-
fective integration of EHR data with pharmacogenomics 
applications. For example, because of the high dimensionali-
ty of the EHR data structure, background noise, heterogenei-
ty, shortage, incompleteness, random error, and systematic 
biases [54], extraction of relevant clinical phenotypes may 
require advanced computational models. Ongoing research in 
this field and recent advance in deep learning prove the po-
tential of deep learning to overcome these difficulties and 
learn patient data representations that are useful for treatment 
response, adverse effects, and outcome prediction [51]. Re-
cent applications include the extraction of general-purpose 
representations of patients from EHRs, often performed with 
generative models trained either on permanent or temporal 
data [51]. These models can uncover patterns in sparse, 
complex, heterogeneous datasets and produce surrogate  
patient phenotypes. Both are unsupervised, such as Deep 
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Table 1. Studies’ characteristics. 

Authors Type of Drug Sample Age, Years (SD) Assessment Test Design 

Eugene R.A. et al. 
2018 Lithium 60 (20 ♂; 40 ♀) BD patients ♂; 41(10.8);  

♀ 39 (13.1) CGI-BP-S Cohort study 

Athreya P.A. et al. 
2019 Citalopram/Escitalopram 1030 MDD patients / HDRS, QIDS-C Cohort study  

(8 weeks) 

Bi Y. et al. 2021 SSRI/SNRI/TCA/NaSSAs 610 MDD patients 35.96 (13.85) HDRS, HAM-A Cohort study  
(6 weeks) 

Lin E. et al. 2020 Antidepressants (SSRI) 4223 MDD patients 43.7 (14.6) HDRS Cohort study  
(8 weeks) 

Boloc D. et al. 2018 
Antipsychotic (Amisulpride, 
Paliperidone, Risperidone,  

Risperidone LAI, Ziprasidone) 
357 treated with antipsychotics 29.3 (10.0) SAS Cohort study 

(6months) 

Fabbri C. et al. 2018 Antidepressants 671 patients (MDD) / MADRS, HDRS Cohort study 

Lee B.S. et al.  2018 
Perphenazine, Olanzapine,  

Quetiapine, Risperidone, and 
Ziprasidone. 

51 from the Clinical Antipsy-
chotic Trials of Intervention 

Effectiveness (CATIE) 
/ PANSS Cohort study 

Son W. et al.  2013 Typical antipsychotics 276 SCZ patients 
46.29  (9.72) in TD 

SCZ vs. 43.47 (9.17) 
in nonTD SCZ 

AIMS, RDC-TD Case-control 
study 

Kautzky A. et al.  
2014 Antidepressants 225 MDD patients 50.99 HAM-D, MINI 

interview 
Case-control 

study 

Watanabe T. et al. oxytocin 38 high functioning ASD >20 years ADOS, WAIS-R, 
ADI-R 

Association 
study, data are 
taken from a 
clinical trial 

(with placebo) 

Maciukiewicza M.  
et al.  2018 Duloxetine 186 MDD patients 46.7 (12.4) MADRS 

Association 
study, data are 
taken from a 
clinical trial 

(with placebo) 

Borro M. et al., 2021 Poly-therapy 200 MDD or BD patients with a 
depressive episode 56.9 (12) / Cohort study 

Joyce J.B. et al., 
2021 

Citaloprma, escitalopram,  
bupropion, venlafaxine,  

mirtazapine, placebo 
375 MDD patients 42 (12.4) QIDS-C 

Association 
study, data are 
taken from a 
clinical trial 

(with placebo) 

Taliaz D. et al., 2021 Citalopram, sertraline and  
venlafaxine 530 MDD patients / QIDS-C and HDRS 

Association 
study, data are 
taken from a 
clinical trial 

(with placebo) 
Abbreviations: Bipolar Disorder (BD); Schizophrenia (SCZ); Clinical Global Impression Scale for Bipolar Disorder-Severity (CGI-BP-S); Hamilton Depression Rating Scale 
(HDRS); Quick Inventory of Depressive Symptomatology (QIDS-C); Hamilton Depression Rating Scale (HDRS); Hamilton Anxiety Rating Scale (HAM-A); Simpson-Angus Scale 
(SAS); Montgomery–Åsberg Depression Rating Scale (MADRS); Positive and Negative Syndrome Scale (PANSS); Abnormal Involuntary Movement Scale (AIMS); Research Diag-
nostic Criteria for TD (RDC-TD); Autism Diagnostic Observation (ADOS); Wechsler Adult Intelligence Scale-Revised (WAIS-R); Autism Diagnostic Interview-Revised (ADI-R); 
Major Depressive Disorder (MDD); Autism Spectrum Disorder (ASD); Standard Deviation (SD); Selective Serotonin Reuptake Inhibitor (SSRI); Serotonin Noradrenalin Reuptake 
Inhibitor (SNRI); Tricyclic antidepressant (TCA); Noradrenergic and Specific Serotonergic Antidepressants (NaSSAs). 
 
Patient [54] and semi-supervised, for example, Denoising 
Autoencoder for Phenotype Stratification [55]. These models 
rely on an autoencoder network structure to model EHR data 
for deriving patient representations predictive of final diag-
nosis, and different outcomes (for example, drug response, 
mortality, adverse events, and hospitalization risk). As gen-
erative deep model development progresses quickly, applica-
tions of novel architectures, such as Generative Adversarial 

Networks, to EHR data are starting to emerge, demonstrating 
improved performance for the disease prediction [56] and 
risk prediction given treatment [57]. 

 Even though ML seems promising, the application of deep 
learning algorithms in mental health is still in its first stages, 
with limited exploration. ML is yet treated as a black box by 
researchers, making this approach hard to be understood in 



2402    Current Neuropharmacology, 2023, Vol. 21, No. 12 Del Casale et al. 

Table 2. Algorithms’ and genomics’ features. 

Authors Machine Learning 
Algorithm Tools Main Hypothesis Outcome Genes 

Eugene 
R.A. et al. 

2018 

Decision Tree Ran-
dom Forest Machine 
Learning techniques. 

DNA microarray from Lithium 
Treatment-Moderate dose Use 

Study 
placed in the National Center 

for Biotechnology Information 
(NCBI) Gene Expression Om-

nibus (GEO); Illumina Hu-
manHT12 V4.0 expression, 

Beadchip GPL10558 platform 
file to associate gene names and 

descriptions. 

Transcriptome-level 
gene signatures are 
differentially ex-

pressed between male 
and female bipolar 

patients, before 
lithium treatment. 

Pre-treatment gender- and 
gene-expression-based 

predictive model selective 
for classifying male lithium 
responders with a sensitivity 

of 96% using 2-genes and 
female lithium 

responders with sensitivity 
= 92% using 3-genes. 

RBPMS2 and LILRA5 genes 
classify male lithium responders 

with AUROC: 0.92 and the 
ABRACL, FHL3, and NBPF14 

genes. 

Athreya 
P.A. et al. 

2019 

Unsupervised ma-
chine learning to test 
whether the distribu-

tion of symptom 
severity scores was 

normal. Random 
forests based on 

baseline depression 
severity and phar-

macogenomics data 
to predict SSRI 

response and remis-
sion. 

A genome-wide association 
study for PGRN-AMPS plasma 

metabolites associated with 
SSRI response (serotonin) and 

baseline MDD severity 
(kynurenine) identified single 

nucleotide polymorphisms 
(SNPs) 

Machine learning-
based algorithms may 

predict selective 
serotonin reuptake 
inhibitors in MDD 

patients 

Supervised machine-
learning methods trained 

using SNPs and total base-
line depression scores 

predicted remission and 
response at 8 weeks with the 

area under the receiver 
operating curve (AUC) > 
0.7 (P < 0.04) in PGRN-

AMPS patients, with com-
parable prediction accura-
cies > 69% (P ≤ 0.07) in 

STAR*D and ISPC 

Baseline kynurenine in MDD 
and DEFB1, ERICH3, AHR, 
and TSPAN5 were tested as 

predictors. DEFB1_2 
(rs2741130) and DEFB1_1 

(rs5743467) SNPs—biomarkers 
identified. The top SNPs for the 

response for men were the 
TSPAN5 SNPs, followed by the 
DEFB1_1 and DEFB1_2 SNPs. 

DEFB1_1 SNP, followed by 
DEFB1_2 SNP 

Bi Y. et al. 
2021 

Random forest is 
employed to screen 
factors that predict 

antidepressant effica-
cy from multidimen-

sional variables. 

All SNPs were genotyped by 
mass spectrometers using Mas-
sArray Analyzer 4 system. All 
probes and primers were prede-

signed by the MassARRAY 
Assay Design 3.0 software. The 
sample DNA was amplified by a 

multiplex PCR reaction. The 
extension products were ana-

lyzed by Matrix-Assisted Laser 

Genetics, cognitive, 
neuroendocrine, as 
well as personality 

factors, are all intrin-
sically linked and 
contribute to the 

diversity of treatment 
outcomes. 

SSRI and SNRI are better 
treatments than TCA and 

NaSSA in the Chinese 
population. Citalopram and 

venlafaxine were more 
effective than mirtazapine. 
rs929377-rs6191-rs32897 

located in the HPA pathway 
was significantly associated 
with the treatment outcome 

of fluoxetine. 

rs6354 and rs12150214 in gene 
SLC6A4; rs3847621 in gene 
SLC1A2; rs478962 in gene 
GRIA1; rs9870680 in gene 

GRM7; rs6323 in gene MAOA; 
rs1137070 in gene MAOA 

Lin E. et al. 
2020 

A wrapper-based 
feature selection 

algorithm was adopt-
ed, where the feature 
selection algorithm 
acts as a wrapper 

around the predictive 
algorithm. It was 
integrated with a 

boosting ensemble 
model. 

For all subjects, they performed 
single nucleotide polymorphism 

SNP genotyping by using 
Illumina HumanOmniExpres-

sExome 
BeadChips in the International 
SSRI Pharmacogenomics Con-

sortium 

Chose the SSRI 
response relying on 
10 genetic variants 
and 6 clinical varia-

bles. 

The average value of the 
receiver operating curve 
(AUC) for the boosting 

ensemble prediction model 
with the wrapper-based 

feature selection algorithm 
was 0.8122 (standard devia-
tion = 0.0702) by using the 

selected 15 features. For 
forecasting antidepressant 

remission, the average value 
of AUC was 0.8111 (stand-
ard deviation = 0.0691) by 

using the original 16 bi-
omarkers. 

ARNTL rs11022778, CAMK1D 
rs2724812, GABRB3 
rs12904459, GRM8 

rs35864549, NAALADL2 
rs9878985, NCALD rs483986, 

PLA2G4A rs12046378, PROK2 
rs73103153, RBFOX1 

rs17134927, and ZNF536 
rs77554113 SNPs 

Boloc D.  
et al. 2018 

Supervision methods 
of class prediction 
based on machine 

learning (ML) were 
applied. ML is trained 
using the Discovery 

Sample of the SNPas-
soc R package. Sup-
port vector machine, 

Naive Bayes and 
Random Forest were 

used. 

Real-time PCR using TaqMan 
allelic discrimination prede-

signed assays. 

Genetic factors 
implied in Extrapy-
ramidal symptoms 

during antipsychotic 
therapy may be 

detected with ML 
techniques. 

The three machine learning 
methods showed a better 

EPS prediction. The Naive 
Bayes achieved the best 

result. 

AKT1 (rs1130214, rs74090038, 
rs33925946); FCHSD1 

(rs1421896, rs34798770); 
DDIT4 (rs1053639, rs4747241, 
rs474742, rs10823911); Raptor 

(rs34726568, rs9899898, 
rs9915667) 

(Table 2) Contd…. 
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Authors Machine Learning 
Algorithm Tools Main Hypothesis Outcome Genes 

Fabbri C.  
et al. 2018 

Five machine learn-
ing models (neural 
networks, recursive 

partitioning, learning 
vector quantization, 

gradient boosted 
machine and random 
forests) were adopted. 

/ 

FKBP5 and CAC-
NA1C polymor-

phisms may play a 
role in antidepressant 

response and TRD 
(treatment-resistant 

depression). 

In all original samples 
response and remission at 

week 4 or 6 were investigat-
ed according to standard 
definitions (response was 
defined as a decrease of at 
least 50% in the HDRS-21 

or the MADRS, while 
remission was defined as 
HDRS ≤ 7 or MADRS  

< 10). 

ANK3 (rs1049862);  
CACNA1C (rs2283326, 

rs10848635, rs11062157); 
FKB5 (rs9470080, rs9368882, 

rs38000373, rs1360780) ; 
CACNA1C (rs2283326, 
rs1006737, rs10848635); 
CACNB2 (rs2799573);  

FKBP5 (rs3800373,  
rs1360780) 

Lee B.S.  
et al. 2018 

A classical clustering 
algorithm called the 
partitioning around 

medoids (PAM) 
algorithm and, for the 
distance measure, the 
dissimilarity measure 

of Gower. 

/ 

A computational 
algorithm may pre-
dict treatment re-

sponse with antipsy-
chotic medication 

among patients with 
schizophrenia. 

The model provided a 
promising prediction for 

Ziprasidone by 13 SNPs and 
53 baseline variables. 

rs10803138, rs11682175, 
rs6704641, rs6704768, 
rs215411, rs1106568, 

rs12522290, rs4129585, 
rs2514218, rs2239063, rs4702, 

rs12325245, and rs9636107, 
rs4846033, rs10911902, 
rs9309325, rs1569351, 
rs4568102, rs1380272, 
rs1495716, rs9295938, 

rs9400690, rs16917897, 
rs297257, rs9512730,  

rs942348, rs17070578, 
rs17095545, rs7144633, 
rs16977195, rs234993, 
rs151222, rs17455133, 

rs2824301, rs10521865, 
rs2159767, rs2536589, 

rs952515. 

Son W.  
et al. 2013 

Multifactor dimen-
sionality reduction 

(MDR) Stage 1 
involves choosing the 
best combination of 

multifactor, 
and MDR stage 2 

involves classifying 
the combinations 
of genotypes into 

high-risk and low-risk 
groups. 

Genomic DNA was isolated 
using NucleoSpin® Blood 

DNA Extraction Kit (Macherey-
Nagel, Germany) according 

to manual procedures. 

ML techniques may 
detect which poly-
morphisms of the 
GABA transporter 
gene are associated 

with tardive dyskine-
sia (TD). 

SCL6A11 genotypes distri-
bution showed a significant 
difference between the TD 

and non-TD patients (P 
0.049). These analyses 

provided significant evi-
dence for gene-gene interac-

tions (SCL6A11, 
GABRG 3 and GABRB2) 
in the development of TD. 

Three polymorphisms in 
SLC6A11 (rs4684742), 

GABRG3 (rs2061051) and 
GABRB2 (rs918528) 

Kautzky A. 
et al. 2014 

A random forest 
algorithm was  

adopted. 

The SequenomiPLEX assay of 
Cogenics was used to obtain 
genotypes, deploying locus-

specific PCR primers as well as 
allele-specific detection primers 
according to the protocol of the 

MassARRAYAssayDesign 
software. 

ML algorithm might 
be adopted to spot-

light SNPs and 
clinical variables 

related to treatment 
response. 

About 62%of patients 
exhibiting the allelic combi-

nation of GG-GG-TT for 
rs6265, rs7430 and rs6313 
of the BDNF, PPP3CC and 
HTR2A genes, respectively, 

and without melancholia 
showed a HAM-D decline 

under 17 compared to about 
34% of the whole study 

sample. 

Polymorphisms from the  
BDNF gene (rs6265, 

rs11030101and rs11030104) 
were chosen. SNPs from the 

PPP3CC gene (rs7430, 
rs10108011). Two SNPs  

from the ST8SIA2 
gene (rs3784732, rs8035760). 
Two SNPs from the COMT 

gene (rs174696, rs4680).  
Two SNPs from the HTR2A 

gene. 

Watanabe 
T. et al. 

2017 

Support vector  
regression (SVR) 
machine learning. 

Among 27 OXTR SNPs of 
interest were selected 21 based 
on Affymetrix Genome-Wide 

Human SNP Array 6.0. 

Among 27 OXTR 
SNPs of interest were 
selected 21 based on 
Affymetrix Genome-

Wide Human SNP 
Array 6.0. 

Major alleles of several 
prominent OXTR  

SNPs-including rs53576 
and rs2254298-were  

found to have dissociable 
effects on the oxytocin 

efficacies. 

The best selection was among 
six types of efficacy in 21 

alleles for OXTR. 

 

(Table 2) Contd…. 
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Authors Machine Learning 
Algorithm Tools Main Hypothesis Outcome Genes 

Maciukie-
wicz M.  

et al. 2018 

Two machine-
learning algorithms 
were utilized: classi-
fication-regression 

trees (CRT) and 
linear support vector 

machine (SVM) 

Infinium PsychArray BeadChip 
by Illumina (“PsychChip”) 

The current investi-
gation aims to use 

supervised machine 
learning (ML) to 
build predictive 

models of duloxetine 
outcome in a small 
MDD cohort with a 
standard depressive 

assessment with 
available genome-

wide data. 

none of the pairs performed 
significantly better than 

chance (accuracy p > .1). 
The best performing SVM 

fold was characterized by an 
accuracy = 0.66 (p = .071), 

sensitivity = 0.70 and a 
sensitivity = 0.61. 

rs2036270 RARB intronic; 
rs7037011 19 kb 3′ of RP11-

29B9.1; exm775913 
(rs1138545) TNC missense;; 
rs1107372 2.8 kb 3′ of TNC; 
rs11136977  RP11-124B13.1; 

rs11581838 LINC00466 intron-
ic; rs11843926 5′ of SLC10A2; 

rs1347866 61 kb 5′ of; 
AC062021.1; rs16932062 6.8 

kb 3′ of TNC; rs1999223 7.5 kb 
3′ of TNC; rs2710664 VSNL1 
intronic; rs39185 THSD7A; 

rs4520243 FCN2 synonymous; 
rs4685865 5′ of ARL8B; 
rs4777522 3′ of MIR630; 

rs4954764 54 kb 5′ of 
AC062021.1; rs60230255 3 

VSNL1 intronic; rs6550948 5′ 
of RARB; rs972016 5′ of 

RARB 

Borro M.  
et al. 2021 

Drug-PIN programme 
based on multi-pass 
analysis algorithm. 

/ 

Drug-PIN might help 
clinicians to optimise 

pharmacological 
therapies in patients 

diagnosed with major 
depressive disorder 
or depressive epi-
sodes in bipolar 

disorder with treat-
ment failure in at 

least three psycho-
pharmacological 

therapies. 

Drug-PIN replicates the 
output of a counselling 

process, allowing for opti-
misations of the assessment 
of the risk and efficacies of 

polytherapy. 

ABCB1 (rs1128503, 
rs1045642); ABCC1 

(rs45511401); ABCC2 
(rs8187710, rs17222723, 

rs717620); ABCG2 
(rs2231142); SLCO1B1 
(rs4363657, rs4149056); 

SLC15A2 (rs2257212); 5-HTT; 
5HTT-LPR; CYP1A1 
(rs1048943); CYP1A2 
(rs2069514, rs762551); 
CYP2A6 (rs28399433, 
rs1801272); CYP2B6 

(rs2279343, rs3745274, 
rs3211371, rs28399499); 
CYP2C8 (rs11572103, 
rs1058930); CYP2C9 

(rs1799853, rs1057910); 
CYP2C19 (rs6413438, 

rs12248560, rs4244285, 
rs4986893, rs28399504, 

rs56337013, rs72558186); 
CYP2D6 (rs1065852, 
rs28371706, rs16947, 

rs61736512, rs1080985, 
rs35742686, rs3892097, 
rs28371725, rs5030655, 
rs5030867, rs5030656, 

rs72549351, rs72549354); 
CYP3A4 (rs2740574, 

rs35599367); CYP3A5 
(rs776746); COMT (rs4680, 

rs4633, rs4818); EPHX1 
(rs2234922, rs1051740); NAT1 

(rs5030839, rs56172717, 
rs56379106, rs4986782); NAT2 

(rs1801280, rs1799930, 
rs1799931); TPMT (rs1800462, 

rs1800460, rs1142345); 
UGT1A1 (rs8175347); 

UGT2B17 (Gene deletion); 
DRD2 (rs1800497, rs1799732, 
rs1801028); DRD3 (rs6280); 
HTR2A (rs6314, rs7997012, 
rs6311); HTR2C (rs6318); 

OPRM1 (rs1799971) 

(Table 2) Contd…. 
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Authors Machine Learning 
Algorithm Tools Main Hypothesis Outcome Genes 

Joyce J.B. 
et al., 2021 

Linear and non-linear 
algorithm; tree-based 

algorithm. 

Liquid chromatography electro-
chemical coulometric array 
(LC-ECA) metabolomics  

platform. 

Augmenting clinical 
measures (e.g., 

symptom severity 
scores) with multiple 
biological measures 
(e.g., metabolomics 

and genomics) might 
improve the predicta-
bility of response to 

combined antidepres-
sant therapies. 

Integrating specific metabo-
lites and SNPs achieves 
accurate predictions of 

treatment response across 
classes of antidepressants. 

TSPAN5(rs10516436)  
ERICH3(rs696692), 

DEFB1(rs5743467, rs2741130 
and rs2702877) and 
AHR(rs17137566). 

Taliaz D.  
et al., 2021 

Support vector ma-
chine (SVM) with a 

linear kernel,  
eXtreme Gradient 

Boosting (XGBoost), 
Random Forest, and 
Adaptive Boosting 

(AdaBoost). 

/ 

An application based 
on integrated multi-
modal data might 

enable a more com-
prehensive and 

accurate prediction 
for the treatment of 
depression and will 

pave the way for 
similar analyses of 

accumulating data by 
new technologies. 

Applying ML to datasets 
with genetic, clinical, and 
demographic features to 

improve accuracy in antide-
pressant prescription 

8120 SNPs 

Abbreviations: Machine Learning (ML), single-nucleotide polymorphism (SNP). 
 
terms of how and why these deep learning techniques work 
[58]. In this specific context, it is impossible to identify and 
differentiate which mechanisms are crucial in predicting 
therapy response and side effects depending on the diagno-
sis. 
 Moreover, most of the research on ML is still in the 
proof-of-concept stage, and there needs to be more real-life 
testing. Psychiatric diseases are a complex phenomenon with 
different aspects and variables (i.e., biological, social, psy-
chological) concurring in causing such illnesses. Dang and 
colleagues showed that there is no standard way to gather 
high-quality data. There is difficulty in achieving the labels, 
which causes ML approaches to be uncertain, with the need 
for acknowledging the best practices in handling ML models 
[59]. Such difficulties and reasons might affect the application 
of ML models in everyday clinical practice. In order to make 
this tool effective and powerful, collecting a significant vol-
ume of high-quality data is essential. However, collecting a 
more detailed and high volume of data requires collaboration 
with institutions and a great effort, far from being easy [60]. 
 The picture provided by our review is comprehensive yet 
must be considered, given its limitations. First, 8050 of 9180 
enrolled subjects were affected by MDD, 684 had a psychot-
ic disorder, 60 were diagnosed with BD, and only 38 showed 
autistic features. These results mean that the application of 
ML on pharmacogenomic, so far, has been tested mainly on 
a few mental disorders. Further studies must be conducted to 
explore the feasibility of this tool in tailoring pharmacologi-
cal treatments for other diseases.  

5. LIMITS IN THE CURRENT APPLICABILITY OF 
MACHINE LEARNING ALGORITHMS IN PSYCHI-
ATRY 

 ML provides exciting potential for detecting, preventing, 
and treating psychiatric disorders. However, many factors 

limit its current use in research and practice [61-63]. Data is 
arguably the most apparent constraint in developing ML 
models for diagnosing and treating psychiatric disorders 
[61]. In psychiatry, we do not have the comfort of rich nu-
merical datasets such as those available in intensive care 
units. Large datasets with diverse participants are needed to 
create accurate ML models. Best practice guidelines have 
been published for developing and reporting ML models in 
biomedical research [61].  
 Ethical concerns must be addressed before ML models 
are used in psychiatric disorders. Privacy and digital data 
security may affect a person's mental health. Furthermore, 
many concerns are related to the bias created in ML models 
that may disadvantage underrepresented groups [62]. Like 
humans, all ML models have some degree of error, and that 
error could be associated with significant clinical issues. 
Identifying Mental Health disorder risks based on digital 
data, such as that on social media, and providing help-
seeking information may also be distressing for those who 
were unaware of their vulnerability [61]. The models are 
reliant on the availability of the specific predictors used to 
create them. The more intricate, timely, and costly the pre-
dictors are to collect and input into the ML algorithms, the 
harder they will be to utilize in practice [63]. ML models that 
rely on social media data may only be helpful for active us-
ers of those platforms [61]. Once the specific predictors have 
been collected, they need input into the ML algorithms. Ide-
ally, this process would be automated, but it may be chal-
lenging if the ML models rely on predictors from different 
sources [64]. Simple interfaces should be created to allow 
humans to enter data without requiring extensive technical 
training [64].  
 Finally, and probably the most challenging issue to be 
technically addressed, is the clinicians' trust in the algo-
rithm's capabilities [65]. Clinicians may not value the rec-
ommendations made by ML models or rely solely on them at 
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the expense of their clinical judgment. An adequate balance 
between the algorithm's diagnostic power and the clinician's 
judgment is necessary for a field such as psychiatry. In men-
tal health disorders, the diagnostical and therapeutical out-
comes cannot always be mathematically defined, and the 
clinicians' human qualities are still often needed to reach a 
satisfactory clinical outcome [65]. 

CONCLUSION 

 Precision psychiatry could already be considered a valu-
able clinical instrument in treating drug-resistant forms of 
many psychiatric disorders, such as MDD, BD, and psycho-
ses. Indeed, it provides personalized therapy with improved 
efficacy and reduced adverse drug reactions by correlating 
genotype with clinical phenotype. Pharmacokinetic phar-
macogenetic tests that combine different genomic variants 
show the most clinical utility. These tools are supposed to 
supplement rather than replace prescriber decisions, with 
clinical judgment remaining critical in decision-making. 
Pharmacogenomics could improve shared decision-making 
and risk-benefit analyses in medication selection. Moreover, 
the contamination of pharmacogenomics and ML in psychia-
try may enlighten the development of clinical applications 
aimed at improving the choice of a drug treatment that could 
have an optimal outcome and tolerability. By the way, to 
reach the full potential of precision psychiatry, further re-
search is needed to combine biodemographic data with mul-
ti-omics biomarkers and the whole spectrum of gene interac-
tions using the latest AI computational strategies. 
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