
A computer‑aided determining method 
for the myometrial infiltration depth of early 
endometrial cancer on MRI images
Liu Xiong1†, Chunxia Chen2†, Yongping Lin1*, Wei Mao1 and Zhiyu Song1 

Introduction
Endometrial carcinoma, or uterine cancer, is a malignancy arising from the endome-
trium [1]. Women have a 1 in 40 lifetime risk of being diagnosed with endometrial can-
cer (EC), which is regarded as the fourth most common malignancy among women. 
Furthermore, in countries with rapid socioeconomic transition, its incidence rate has 
increased over time and in successive generations [2]. According to the data of Global 
Cancer Statistics in 2018 and 2020, the number of new cases of corpus uteri cancer was 
382,069 and 417,367, respectively, and the number of deaths was 89,929 and 97,370, 
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respectively [3, 4]. American Cancer Society estimates the number of new cases of uter-
ine corpus cancer will be 66570, and the deaths will be 12940 in the US, in 2021. The 
uterine corpus cancer is often referred to as EC because more than 90% of cases occur 
in the endometrium (lining of the uterus) [5]. According to the International Federation 
of Gynecology and Obstetric (FIGO) in 2009, carcinoma of the endometrium is divided 
into 4 stages [6]. Most ECs (75%) are diagnosed at an early stage (FIGO stages I or II) 
and the 5-year overall survival ranges from 74% to 91%, but for FIGO stage III and IV, 
the 5-year overall survival is only 57% to 66% and 20% to 26% [7]. Although tumors can 
be graded by preoperative endometrial biopsy, this method may underestimate the grade 
of the tumor compared to the final surgical pathology [8, 9]. Prognostic factors such as 
FIGO staging, histological grade, and lymph node metastasis (LNM), which are used for 
risk stratification, can usually only be assessed in the surgical specimen [8–10]. Com-
puter-aided diagnosis (CAD) in medical imaging aims to assist specialists in diagnosing 
diseases [11]. Therefore, a non-invasive method for predicting the staging and invasive-
ness of tumors that can help radiologists to risk-stratify early EC patients is a clinical 
need.

Preoperative imaging is essential for the surgical management of EC, and pelvic mag-
netic resonance imaging (MRI) is preferred for assessing the extent of localized tumors 
in the pelvis [12]. MRI can accurately outline the extent of localized disease and depict 
the spread of tumors outside the uterus, and is highly sensitive and specific for describ-
ing important prognostic factors [13, 14]. In recent years, there has been increasingly 
attention to employing CAD methods based on machine learning (ML) to help radiolo-
gists analyze MRI images of EC patients. Examples include assessment of the depth of 
myometrial infiltration (MI) [15, 16], classification of stage IA and stage IB in patients 
with FIGO stage I [17], and detection of LNM [18, 19]. In Chen et al.’s study, a YOLOv3 
model was used to detect uterine and tumor regions, and then the detected regions were 
cropped out and fed into a CNN model for classification, with an Accuracy (ACC) of 
84.78% with the Sensitivity (SEN) of 66.67% and the Specificity (SPE) of 87.50% [15]. 
Dong et al. used a U-net model with different encoder structures to semantically seg-
ment the uterine and tumor regions on MRI, then manually annotated the uterine 
cavity lines of the segmented maps, which in turn assessed the depth of MI of the EC 
patient, with a classification ACC of 79.2% on T1-weighted imaging (T1WI) and 70.8% 
on T2-weighted imaging (T2WI) [20]. For the detection of lymph nodes, Bnouni et al. 
used a region-growing algorithm to segment the region of interest (ROI) and then used 
a support vector machine (SVM) to classify the segmented ROI regions with an ACC of 
78.50% [18]. Similarly, Yang et al. also chose the decision-tree classification method and 
achieved SEN and SPE and area under curve (AUC) of 86%, 78%, and 0.85, respectively 
[19].

Research to date has reported relatively unsatisfactory SEN, SPE and ACC for MI 
assessment on MRI images using CAD methods based on the ML approach. A sequence 
of MRI images is generated after a patient undergoes an MR examination. However, typi-
cally only one or two slices of these images can reflect the lesion. Previous studies usually 
required radiologists to manually select that slice, which is a time-consuming and error-
prone task. The results of MI assessment depend mainly on the extraction of MRI image 
features and the lack of the radiologist’s view. In order to address these limitations, this 
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study proposed a method to generate a virtual uterine cavity line (UCL) (i.e., the pre-
sumed inner edge of the myometrium) to assess the depth of MI of the tumor. The main 
idea focuses on determining the depth of MI in FIGO stage I EC. To our best knowledge, 
no study has been published on combining DL and UCL on MRI images to automatically 
determine MI depth.

Therefore, the aims of this study are as follows: 

1.	 Establish an object detection network to automatically ROI and select the optimal 
slice from the patient’s MRI sequence.

2.	 Establish a semantic segmentation network to segment the uterine and tumor 
regions on the slices.

3.	 Employ a uterine cavity line generation algorithm (UCLGA) to generate UCL on the 
segmentation map. Calculate the exact MI depth and classify early endometrial can-
cer based on the UCL.

Results
Performance of the automatic ROI detection model on MRI

In this study, four other classical object detection models were studied to detect uterine 
and tumor regions in MRI images. A threshold value of a minimum overlap ratio of 0.75 
is used to determine positive samples. The detection results of different object detec-
tion models are shown in Table 1. The data in the table show that the SSD model is the 
best in detecting the uterus and tumor regions, while the other models perform better in 
detecting only the uterus region. This is due to the fact that the SSD model has the least 
amount of parameters compared to the other models, which avoids overfitting. In the 
independent test dataset, the SSD model obtains an average precision (AP) of 98.70 and 
84.93% in the uterine region and the tumor region, respectively. The detection results 
for the uterine region and the tumor region are shown in Fig. 8. The corresponding pre-
cision-recall (PR) curves are shown in Fig. 1. The loss curve of the best object detection 
model is shown in Fig. 2a. The training was performed for 100 epochs with a batch size 
of 8 and an early stop mechanism. By using the radiologist’s manual selected slices as 
positive labels, the CAD has a 67.39%, 86.96% and 97.83% accuracy rate in selecting the 
optimal slice in CAD1-accuracy, CAD2-accuracy and CAD3-accuracy.

Performance of the semantic segmentation model

The segmentation results for the uterine region and the tumor region are shown in 
Fig. 9e. The segmentation performance of the model is evaluated using Intersection 
over Union (IOU), Pixel Accuracy (PA), and Dice Similarity Coefficient (DSC). Two 
other state-of-the-art semantic segmentation models were used to segment uterine 

Table 1  The detection results of different object detection models

Average precision (threshold = 0.75)

SSD (%) Fast R-CNN (%) CenterNet (%) YOLOv8 (%) DETR (%)

Uterus 98.70 63.07 60.52 89.56 83.30

Tumors 84.93 1.47 2.49 67.11 56.20
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and tumor regions in MRI images. The segmentation results of different models are 
shown in Table 2, all models have better segmentation results for the uterus than the 
tumor. This is due to the fact that early lesions are small, and the tumor boundary is 
not clear enough. Compared to other models, the Attention U-net model has the best 
segmentation performance. This is because the model is primarily designed for medi-
cal datasets and can deliver good results even on small datasets. The loss curve of the 
best semantic segmentation model is shown in Fig. 2b. The training was performed 
for 200 epochs with a batch size of 8 and an early stop mechanism.

Fig. 1  The PR analysis for detecting ROI region. The PR curves for the uterine region (left) and the tumor 
region (right) in the testing dataset show the corresponding average precision rate of 98.70% and 84.93%

Fig. 2  Loss curves for the training and validation sets are provided for each model. a A loss curve for SSD 
model. b A loss curve for Attention U-net model

Table 2  The segmentation results of different semantic segmentation models

Model Region IOU PA DSC

Attention U-net Tumor (mean ± std) 0.655 ± 0.159 0.749 ± 0.171 0.779 ± 0.127

Uterus (mean ± std) 0.738 ± 0.099 0.867 ± 0.079 0.845 ± 0.067

SegFormer Tumor (mean ± std) 0.610 ± 0.293 0.686 ± 0.318 0.705 ± 0.298

Uterus (mean ± std) 0.715 ± 0.168 0.806 ± 0.173 0.820 ± 0.193

Deeplabv3 Tumor (mean ± std) 0.591 ± 0.260 0.667 ± 0.293 0.701 ± 0.263

Uterus (mean ± std) 0.722 ± 0.132 0.867 ± 0.112 0.831 ± 0.102
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Comparison of diagnostic results between CAD and radiologists

Considering stage IA as the positive sample, stage IB as the negative sample, and patho-
logical diagnostic results as the gold standard. By using the receiver operating charac-
teristic curve (ROC) (Fig. 3), the AUC of the proposed CAD method on the test dataset 
is 0.89, and the AUC of the radiologist on the test dataset is 0.81. The difference in the 
number of points on the ROC curve is due to the CAD model’s output of classification 
probabilities, which allows for varying classification outcomes at different probability 
thresholds, resulting in a greater number of data points. The red line (Radiologist) pre-
sents fewer points due to the radiologist providing direct binary classification results, 
which do not vary based on different probability thresholds. In order to determine the 
difference between these two AUC values, the study was statistically analyzed by using 
the DeLong test. The results show a significant difference (p-value less than 0.05) by dif-
ferent methods. The CAD method correctly classifies a greater number of staged cases 
compared to the radiologist’s diagnosis (Table 3), which obtains ACC, SEN, and SPE of 
86.9%, 81.8%, and 91.7%, respectively (Fig. 4). Figure 4 demonstrates the results of CAD 
in determining MI depth on sagittal T2WI images of four patients, two in stage IA and 
two in stage IB. 

Fig. 3  ROC analysis with the CAD for classifying MI depth. The ROC curves for the radiologist (red) and the 
proposed CAD method (blue) show the AUCs of 0.81 and 0.89, respectively

Fig. 4  Results of the CAD determination of MI depth on stage IA and IB
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Discussion
The proposed CAD approach implements an end-to-end diagnostic flow with 81.8% for 
SEN, 91.7% for SPE, and 86.9% for ACC in the final determination of MI depth. The 
results indicate that the CAD method and radiologists have been neck and neck for 
determining MI depth. In addition, it is compared to other ML-based computer models 
and is more intuitive and interpretable.

In past studies on EC, MRI data used for experiments were commonly selected manu-
ally by radiologists, which was a time-consuming and laborious task. In contrast, the 
proposed method could automatically select the most suitable MRI slices from an MRI 
image sequence by computer, completing the end-to-end design of the CAD method 
used for early EC. X. Chen et al. proposed a two-stage DL method based on a CNN for 
the evaluation of MI depth that yielded a SEN of 66.6%, a SPE of 87.5%, and an ACC 
of 84.8% [15]. Although they also used an object detection model (based on YOLOv3) 
for uterine and lesion region detection in MRI images and obtained 86.67% AP, a better 
detection performance (98.70% AP) was obtained in our proposed model by using the 
SSD-based detection. Moreover, they directly fed the cropped images into the classifier 
for MI depth classification, the CAD system cropped the MRI images of detection boxes 
first, and further performed semantic segmentation on the cropped images and did an 
accurate MI depth calculation. In the study of Dong et al., a similar approach to generate 
UCL was applied but the classification ACC reached only up to 79.2% [20]. We spec-
ulate that lower ACC might be due to a semantic segmentation model they employed 
to directly complete the segmentation of the endometrial lining (which we call UCL) 
on a whole MRI image. Moreover, it is a great challenge for the radiologist to label the 
dataset as well as for the predictive performance of the model since the UCL is difficult 
to find on most MRI images. Zhu et al. established an ML model for identifying deep 
MI, obtaining ACC, SEN, SPE, and F1 scores of 93.7%, 94.7%, 93.3%, and 87.8% [17]. 
However, the feature extraction used to train the model is tedious (geometric features, 
first-order histogram-based features, GLCM-based features) and requires human inter-
vention, which is not fully automated. In contrast, the proposed approach can determine 
the MI depth fully automated.

The CAD3-accuracy was 97.83% in selecting the optimal MRI slice. Although the 
CAD2-accuracy and CAD1-accuracy were low, the reason was not about CAD selec-
tion errors, but simply non-intersection with the images selected by the radiologists. To 
obtain the CAD1-accuracy of the IA-Patient2 in the test set as shown in Fig.  5, CAD 
selected the 11th slice while the radiologist selected the 12th slice. However, the radiolo-
gist could also select the 11th slice which is almost not different from the 12th slice. Both 

Table 3  Diagnostic performance comparison between radiologist and CAD

Results Pathology report ACC (%) SEN (%) SPE (%)

IA IB

CAD IA 18 2 86.70 81.00 91.70

IB 4 22

Radiologist IA 19 6 75.60 66.70 85.70

IB 3 18
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slices showed the uterus and tumor correctly. It is not a selection error, just another 
option by the radiologist which was abandoned randomly, which increases an additional 
error rate. For the IA-Patient18, the CAD chose the 4th slice and the uterus and tumor 
were not clearly visible, which was a true selection error. With the exclusion of non-
selection errors, CAD1-accuracy increased from 67.39% to 90.48%.

As shown in Table   3, there is no significant difference in diagnostic performance 
between CAD methods and radiologists. But there are still mistakes in the final stag-
ing as shown in Fig. 6. In the first example (Fig. 6a–c), the radiologist was able to cor-
rectly diagnose the case as IA, whereas the CAD method diagnosed it as IB. The lack of 
precision in tumor and uterine segmentation as well as the fact that the UCL does not 
correspond to reality leads to diagnostic errors. In the second example (Fig. 6d–f), the 
radiologist incorrectly diagnosed it as IB while the CAD was able to correctly diagnose it 
as IA. Although the segmentation is also not very precise, it does not affect the final UCL 
obtained. Thus, it can be seen that the accurate generation of UCL can greatly improve 
the accuracy of the diagnosis. For elliptical-shaped and banana-like shaped uterus, the 
CAD method can better fit the UCL in practice, while for other shapes of the uterus, 
perhaps a new algorithm is needed to better realize the UCL generation.

It is notable that the cropped MRI images were used in the training and prediction 
of the semantic segmentation model for two main reasons. One reason is to take full 
advantage of the object detection model, not only for selecting MRI slices, but also for 
reducing interference factors that may be inside or outside the uterus (such as pelvic 
effusion, hematocele, uterine fibroids, cervical cancer, and so on) by using the detec-
tion box. The other reason is that the cropped images can reduce the time cost of 
subsequent model training and prediction, improving the overall efficiency of CAD. 
An advantage of this study is combining the UCLGA (inspired by the experience of 

Fig. 5  A non-selection error example and a selection error example
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radiologists) with the DL model, which allows us to calculate the exact value of MI 
depth, visualize the result of our judgments, and interpret it scientifically. Most DL-
based studies in the past relied too much on model judgments and could not visual-
ize and explain their classification reasonably. At present, there are few MRI images 
of patients with advanced EC in the institution, so the advanced-stage EC classifica-
tion has not been studied. We will focus on advanced-stage classification in the future 
when more MRI data can be obtained. In addition, we will take the impact of the 
tumor microenvironment into consideration while determining the depth of tumor 
infiltration. A more comprehensive system will be designed to fully utilize imaging 
resources and provide creative solutions.

There are some potential limitations of our study: (1) our experimental data were 
obtained from a single center and only sagittal T2WI images were used. Although the 
CAD achieved a good result, we believe that a model using a combination of various 
MRI images (T1WI, diffusion-weighted imaging (DWI), etc.) should be considered for 
future research. Additionally, we are open to collaborating with other centers to enhance 
the robustness and generalizability of our findings in future studies. (2) The ACC of 
using the object detection model to select the best MRI slices did not achieve satisfactory 
results, which we believe is mainly due to the insufficient amount of data used for train-
ing and thus the low generalization of the model. (3) The final CAD diagnosis results are 
strongly influenced by the performance of the semantic segmentation model since the 
UCLGA performs the MI depth calculation on the segmented image. The segmentation 
model based on Attention U-net could also be improved to get a higher ACC. At the 
same time, while our UCLGA solves most problems, the diversity of uterine shapes still 
leads to a small number of incorrect diagnoses. In this case, the experience of the doctor 
and the ability to think dialectically reflect the irreplaceability of human beings.

Fig. 6  Two examples of diagnostic errors in the proposed method. a and d Are pathologic staging results. b 
and e Are physician diagnoses. c and f are CAD diagnoses
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Conclusions
This study implemented an end-to-end CAD system for early EC classification. The 
optimal MRI slices were selected automatically by an SSD-based detection model. The 
uterus and lesion area were localized and outlined by a multi-stage DL model method 
on MRI images. Finally, it accurately determined the MI depth by using an ellipse fit-
ting algorithm to mimic the UCL. The results showed that the method has a diagnostic 
performance comparable to that of radiologists. This CAD method is more intuitive and 
interpretable than previous DL-based CAD methods.

Materials and methods
Patients and data preparation

The Institutional Review Board (IRB) of Fujian Maternity and Child Health Hospital in 
China (FMCHH) approved the retrospective study, and the requirement for informed 
consent was waived. 207 patients who underwent pelvic MRI examination in FMCHH 
during the period from January 1, 2018, to December 31, 2020, were included in this 
study after being pathologically diagnosed with early-stage EC. Patients were identified 
by using information from the hospital’s picture archiving and communication system 
(PACS). The exclusion criteria were as follows: (1) without a final pathologic diagnostic 
statement; (2) inability to pathologically confirm early-stage EC (FIGO stage IA or IB); 
(3) missing MRI data (no corresponding sagittal T2WI sequence). The total number of 
patients in the study was 154 (mean age 55.7 ± 9.7 years, 75 stage IA and 79 stage IB). 
All the included patients were confirmed by pathology as shown in Table 4.

Subsequently, visual selection of MRI sequences (24 slices per sequence, for a total of 
3696 MRI images) was performed by two experienced radiologists in a consensus man-
ner and the following exclusion criteria were applied: (1) presence of artifacts; (2) uterus 
and tumor not clearly detectable on T2WI images. Radiologists usually select the MRI 

Table 4  Clinical and pathological data summaries in training, and independent test group

*Indicates the presence of other tumors, such as clear cell carcinoma, uterine fibroids, etc

Parameter Training data (n = 108 ) Independent test data (n = 46)

Stage IA Stage IB Stage IA Stage IB p value

Subpopulation 53 55 22 24

Age (year) 51.4 ± 8.9 58.9 ± 9.3 48.9 ± 10.2 58.5 ± 9.8 0.998

Pathological type 0.918

 Grade 1 32 26 17 9

 Grade 2 19 23 5 12

 Grade 3 2 6 0 3

Maximum diameter (cm) 0.913

 <3 38 21 17 9

 ≥3 15 34 5 15

Myometrial invasion 0.951

 <50% 51 7 22 3

 ≥50% 2 48 0 21

Mixed carcinoma∗ 0.896

 No 32 27 11 19

 Yes 21 28 11 5
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slice with the maximum tumor diameter as the central slice and 1–2 anterior and poste-
rior slices of the central slice as the selected objects for analysis. Finally, the experimental 
data are 224 MRI slices (101 IA images, 123 IB images). The experimental data are ran-
domly divided into the training dataset (70%) and the testing dataset (30%). The training 
dataset has 108 cases (53 stage IA/55 stage IB) including 156 images, and the test dataset 
has 46 cases (22 stage IA/24 stage IB) including 68 images. A flow diagram of the cohort 
selection is presented in Fig. 7.

The proposed methods are all based on a dataset composed of the aforementioned 
MRI images. Since this dataset is relatively small in terms of the number of images, data 
augmentation techniques, such as random horizontal flipping, random vertical flipping, 
and random scaling, were employed during the training process to enhance the model’s 
robustness and prevent overfitting [21].

MRI protocol

All MRI examinations were performed using a 1.5-T MRI scanner (Optima MR360, 
GE Healthcare) with a phase-controlled oscillation coil. Before the examination, the 
patient’s bowel was defecated using a glycerine enema and had an appropriate urine 
holding (about one-half ). To reduce bowel artifacts and motion artifacts caused by 
significant bowel movements, no enemas or slow-defecation medications were used 
for bowel movements. Eating was allowed (food cannot contain iron components) 
and no intramuscular injection of any medication was required. Ensure that the 
patient has no contraindications to MRI and no metallic foreign bodies on the body. 

Fig. 7  A flow diagram of the cohort selection
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It is especially important to ask whether the patient has ever had surgery or radiation 
chemotherapy. Whether the current status is menstrual or menopausal. The patient’s 
position was feet-first and supine in all cases. Keep the body in line with the bed of 
the MR scanner so that the scanning site is as close as possible to the main magnetic 
field and the center of the coil, the center of the coil to the pubic symphysis. Place a 
soft cushion on the lower abdomen to reduce motion artifacts caused by breathing. 
Simultaneously, ask the patient to raise both hands (ensuring they do not cross their 
hands to form a loop) and provide appropriate support using triangular cushions to 
ensure the patient completes the examination in a comfortable position. The fat-sup-
pressed fast-spin-echo T2WI (FS FSE T2WI) sagittal sequence was selected for this 
study. The acquisition parameters of the MRI were as follows: repetition time/echo 
time [TR/TE], 5600− 5700/65− 70 msec; bandwidth, 31.25Hz/pixel; thickness, 5 mm; 
flip angle, 160degrees; field of view, 280mm ; matrix size, 320× 224mm ; and image 
resolution, 512× 512pixels.

MRI lesion labeling

Localization of ROIs in all MRI images and segmentation of ROI contours in cropped 
images in this study were performed by experienced radiologists (Chen’s team). For 
the object detection model, two rectangular boxes were drawn as labels for the data-
set using labelImg (version 1.8.5), one including the uterus, and the other including 
the lesion structures (Fig. 8), and these borders were considered as the ground truth 
for the object detection model. For the semantic segmentation model, the edge con-
tours of the lesion region and the uterine body were outlined using labelme (version 
4.5.7), which was used as the label of the dataset, and these two contours were consid-
ered as the gold standard for the semantic segmentation model (Fig. 8).

Fig. 8  a, b, e, and f are the labeling and prediction of the object detection model. a and e Are uterus regions, 
b and f are tumor regions. c and g are cropped images based on the detection results. d and h are labeling of 
the semantic segmentation model (red is the tumor, green is the uterus)
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Proposed method

A DL-based multi-stage CAD method is proposed to evaluate the exact MI depth 
(Fig.  9). The object detection model based on the SSD algorithm is used to perform 
ROI detection on the original MRI image sequences (Fig. 9a). The MRI images that can 
clearly show the uterus and tumor are selected according to the confidence score of the 
detection results (Fig. 9b), and be cropped out according to the detection box (Fig. 9c). 
The cropped images (Fig. 9d) are fed into a semantic segmentation model based on the 
Attention U-net network for prediction (Fig. 9e). Then the ellipse fitting algorithm based 
on UCLGA is employed to generate the UCL on the segmentation map. The MI depth is 
obtained by the ratio of the tumor-UCL maximum length to the uterus-UCL maximum 
length. According to the criteria of the FIGO for determining the staging of early EC 
tumors, the depth of tumor infiltration less than 50% of myometrial thickness is identi-
fied as stage IA and greater than 50% of myometrial thickness is identified as stage IB 
[22]. Finally, the EC MRI image is classified as IA stage when MI is less than 0.5 and IB 
stage when MI is greater than 0.5. 

Object detection model

The task of object detection is to locate instances of a certain class of semantic objects 
[23]. In this study, the SSD model [24] is employed to detect the bounding box of ROI 
in MRI images. The architecture of the model is shown in Fig. 10. SSD is a method for 
object detection in images using a single deep neural network. SSD extracts features 
from the image using VGGNet. Additional convolutional layers are then added on top 
of these features to generate feature maps at different scales. These feature maps contain 

Fig. 9  The flowchart of the proposed method. a is the original MRI image sequence. The object detection 
model based on the SSD algorithm is used to detect the ROI (uterus and tumor) (b). c is the optimal image 
that can clearly see the ROI. d is the cropped image, which only includes ROI. The semantic segmentation 
model based on Attention U-net is used to accurately predict the uterus (light blue region) and tumor (red 
region) of the cropped image e. f is the ellipse fitting algorithm that is used to generate UCL, and the R in (i) 
is the final prediction of the depth of MI
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information about objects of different sizes and scales, allowing SSD to detect objects of 
different sizes. Then it discretizes the bounding box output space at each location on the 
feature map, into a set of default boxes with different aspect ratios and scales. Each of 
these default boxes predicts the confidence level of its internal object class and the offset 
relative to the ground truth box. Finally, the proportion of positive and negative sam-
ples of the default boxes is controlled by non-maximal suppression and hard negative 
mining. Firstly, model parameters that were pre-trained on the VOC 2007 dataset were 
loaded. Secondly, the parameters of the first 21 layers of the pre-trained model for train-
ing were frozen in the first 50 epochs. Lastly, the parameters of the overall network were 
updated after 50 epochs of training, which achieved a higher training speed and better 
model performance. The original MRI images and bounding boxes outlined by radiolo-
gists were used as the input data to train the SSD model. The original MRI images were 
uniformly resized to 512×512 and then fed into the object detection model for training.

Semantic segmentation model

Semantic segmentation is the ability to segment an unknown image into different parts 
and objects (e.g., beach, ocean, sun, dog, swimmer). Moreover, segmentation goes 
deeper than object recognition, because recognition is not necessary for segmentation 
[25]. In this study, the Attention U-net model [26] is used to segment the uterine and 
tumor regions of the input images. The Attention U-net is a variant of U-net that retains 
the original encoder–decoder structure as shown in Fig.  10. The encoding layer maps 
the input images to a latent representation or bottleneck, and the decoding layer maps 
this representation to the original images [27]. To concatenate the features of high and 
low levels together, skip-connection was added to the encoder–decoder network[21]. It 
is also boosted with attention gates to highlight better salient features passed through 
the skip connections [28]. First, the model parameters that were pre-trained on the VOC 
2007 dataset were loaded. The parameters of the first 17 layers of the pre-trained model 

Fig. 10  The architecture is used for object detection and semantic segmentation
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were frozen for training in the first 50 epochs, and then the parameters of the overall 
network were updated while training after 50 epochs, which achieved a faster training 
speed and improved model performance. The original MRI image is cropped according 
to the radiologist’s boxed-out uterine region and then fed into the semantic segmenta-
tion model for training. Due to the inconsistent size of the cropped images, a uniform 
size is required for semantic segmentation model training and prediction. To resize the 
image without distortion, this work supplements the image with gray bars of pixel value 
128 around the image to unify the image to 256×256, and the gray bars will be inter-
cepted in the final prediction result.

Optimal slice selection

To solve the problem of requiring radiologists to manually select MRI slices that reflect 
the lesion, an object detection model is employed to automatically select MRI slices that 
can clearly see uterus and tumor from MRI sequence images. To begin with, the MRI 
sequence images of EC patients are fed into the object detection model for detection, 
and then three images of this sequence with the highest confidence scores of the uterus 
and tumor (predicted by object detection models) are selected as the screening results 
(Fig. 9a, b). The performance of the automated slice selection will be evaluated using the 
radiologist’s manually selected slices as positive labels. Since there are no quantitative 
criteria for radiologists to select the best slice, and usually more than one slice in an MRI 
sequence that clearly visualizes the uterus and tumor (One slice was selected by the radi-
ologist as best slice in 24 patients, two slices were both selected by the radiologist as best 
slices in the other 22 patients). Three MRI slices were automatically selected by CAD 
for each patient. CAD1-accuracy is defined as the performance when CAD automati-
cally selects only one slice to match the manually selected slices by the radiologist. Sim-
ilarly, CAD2-accuracy is defined as the performance when CAD automatically selects 
two slices, and CAD3-accuracy is the metric used when any of the three slices suggested 
by CAD is among the manually selected slices by the radiologist. The implementation 
source code and experimental data of the module are available at https://github.com/
mw1998/Optimal-MRI-selection.

UCL generation algorithm

Employing a single algorithm or model to determine MI depth is a great challenge due 
to the diversity of uterine shapes and tumor locations. Therefore, an algorithm for auto-
matic UCL generation (Fig. 9) on the semantic segmentation map is proposed in order 
to calculate the MI depth. The UCL generation algorithm is described in Algorithm 1. 
To begin with, a line is obtained as the virtual UCL. Then, two maximum perpendicular 
lines to the UCL are determined. One line is the maximum thickness of the myome-
trium to the UCL and the other line is the maximum extent of tumor to the UCL. The 
ratio of the line lengths equals the depth of MI. A general formula of the ellipse is as 
shown in equation 1.

A. Fitzgibbon et  al. proposed a direct least-squares fit an ellipse [29], which fits an 
ellipse specific to discrete data by minimizing the algebraic distance, subject to a con-
straint of 4ac − b2 = 1 . It is easy to implement and extremely robust. Where a, b, c, d, e, f 
are the fitted ellipse parameters obtained from the set of points (x,y) extracted from the 
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input uterine contour lines. The algorithm is applied to the uterine contour in the seg-
mentation image and considered the fitted ellipse long axis as the UCL (Fig. 9f ):

Perpendicular lines are made at each point of the UCL, and the distance ratio of each 
perpendicular line to the intersection of the tumor border and the uterine border is cal-
culated, and the maximum distance ratio is considered as the MI depth (m, n in Fig. 9f ).

Validation and statistics

A test dataset containing 68 images from 46 randomly selected patients is used to vali-
date the performance of the CAD method. Given a patient with a sequence of sagittal 
T2WI images (the number of images varies from 19 to 23) is first fed into the object 
detection network to select the optimal MRI slices in which the tumor and uterus could 
be clearly visualized. Then, the radiologist-selected slices are cropped according to the 
detection boxes predicted by the object detection network and fed into the semantic 
segmentation network to obtain segmentation maps of the uterine region and the tumor 
region. Finally, UCL is generated using the UCLGA to yield the infiltration depth and 
classification of MI. Statistical analyses are performed on SPSS (version 26.0., SPSS Inc.) 
and p-values are obtained by t-test.
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