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ABSTRACT There is variability in viral load (VL) among individuals with untreated 
human immunodeficiency virus (HIV) infection, and this variability can be partly 
attributed to host genetics. HIV is known to develop escape mutations to evade host 
immune pressure, particularly from HLA alleles and, in some cases, counteracts the 
protective effect of host alleles. A recent genome-wide association study (GWAS) of 
HIV VL in individuals of African ancestry identified a locus on chromosome 1, near 
the protein-coding gene chromodomain helicase DNA-binding protein 1 like (CHD1L), 
that has a novel association with control of HIV replication. However, not all individu
als carrying the protective alleles maintain low VL, and the region’s impact on viral 
evolution has not been investigated. To address this, we conducted a host-virus regional 
association analysis in 147 people living with HIV (PLWH) from South Africa with both 
human and viral genome data available. We observed significant associations between 
the CHD1L variants rs77029719 (G) (P = 1.6 × 10−2), rs7519713 (T) (P = 2.3 × 10−2), 
and rs59784663 (G) and 73004025 (T) (P = 1.4 × 10−2) with codon 248 of HIV reverse 
transcriptase (RT) and between CHD1L variant rs7519713 (T) and codon 18 (P = 3.2 × 
10−2) and 147 (P = 3.9 × 10−2) of HIV gag. These associations are consistent with viral 
escape from CHD1L pressure. In addition, we observed significant associations between 
HLA B*81 (P = 1.5 × 10−5) and HLA C*18 (P = 7.0 × 10−4) with RT codon 4 and HLAB*58 with 
RT codon 196 (P = 9.0 × 10−4). This study reveals new evidence of host genetic variation 
impacting viral evolution in a population highly affected by HIV.

IMPORTANCE It has been previously shown that genetic variants near CHD1L on 
chromosome 1 are associated with reduced HIV VL in African populations. However, 
the impact of these variants on viral diversity and how they restrict viral replication are 
unknown. We report on a regional association analysis in a South African population 
and show evidence of selective pressure by variants near CHD1L on HIV RT and gag. Our 
findings provide further insight into how genetic variability at this locus contributes to 
host control of HIV in a South African population.

KEYWORDS HIV, genome-to-genome analysis, host-pathogen interaction, viral 
genomics, host genomics, HLA, viral load

N o cure for HIV has been ascertained in the 40 years since its discovery, and 
it remains a major public health concern that disproportionately affects people 

living in low-income countries (1). HIV disease progression is variable among untreated 
individuals and their viral load (VL), measured as HIV RNA copies/mL of plasma, is a 
predictor of disease progression (2–5) and transmission potential (6–9). Several factors 
contribute to an individual’s VL during infection including their environment, gen
der/sex, use of antiretroviral treatment (ART), attributes of the infecting virus, co-mor
bidities (including co-infections), and host genetics (2–4, 10, 11). Host genetic studies, 
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primarily in populations of European ancestry, have consistently shown associations 
between variation in HLA and CCR5 with VL, accounting for up to 25% of VL 
variability in people not receiving ART (4, 12). In addition to host genetics, HIV sequence 
variation contributes ~30% to variability in VL (4, 5, 11, 12).

A key component among individuals with untreated HIV infection is within-host 
viral evolution, where the virus adapts to its environment to maximize replication 
and transmission potential (13, 14). The best evidence for viral adaptation to host 
genetic variation comes from numerous studies identifying viral escape mutations 
from HLA class I alleles (13, 15–19). For example, HLAB*51 restricts an epitope in 
reverse transcriptase (RT) which selects for the I135X escape mutation in ~96% of 
HLAB*51 carriers and interferes with CD8+ T-cell recognition (13, 18). Importantly, 
HLAB*51 was protective against HIV disease progression prior to 1997 in Japanese 
populations where the allele frequency is high, but is no longer protective due to 
the accumulation of I135x within the population (13). Another example is HLAB*57:03, 
which is known to reduce VL and drives the T242N mutation in the gag TW10 
epitope in ~80% of HLAB*57:03 carriers (17, 18, 20–22). In contrast to HLAB*51, the 
T242N mutation has a viral fitness cost, and individuals carrying the protective allele 
exhibit slow disease progression (13, 17).

In a genome-wide screen comparing host genetic variation to viral genetic varia
tion, in ~1,000 individuals of European ancestry, Bartha et al. observed evidence of an 
association between HLA alleles and amino acid (AA) variants across the HIV proteome 
(14). Notably, the associations between HLA alleles and viral variation were many orders 
of magnitude stronger than those observed between VL and HLA alleles. These findings 
suggest that the viral genome may provide more power to detect signatures of host 
pressure on the virus, compared to clinical features.

One major shortcoming of current HIV host genomic studies is that they have 
largely been performed in individuals of European ancestry with clade B HIV infection. 
Therefore, these studies do not interrogate the majority of human and HIV genetic 
diversity or the populations most impacted by HIV. In a GWAS of 3,879 individuals 
of African ancestry, the International Collaboration for the Genomics of HIV (23) 
identified a locus on chromosome 1, near the protein-coding gene CHD1L, that is 
associated with reduced VL (24). The top associated variant in this region, rs59784663 
(G), is associated with a ~0.3 log10 copies/mL reduction in VL and is only present 
at high frequency in individuals of African ancestry. Additional analyses using a 
two-way analysis of variance found that two single nucleotide polymorphisms (SNPs), 
rs73004025 and rs7519713, in high linkage disequilibrium with the top variant, had 
a larger combined impact on VL than rs59784663 (G) alone. However, ~18% of 
individuals who carry the protective alleles at this locus still exhibit high VLs, defined 
as being in the top quartile of the VL distribution, suggesting the protective effect is 
not absolute.

Here, we hypothesize that HIV mutates to counteract the protective effect of 
chromosome 1 variants, just as it does to abrogate the protection afforded by certain 
HLA alleles. We tested this hypothesis by conducting a regional association analysis 
on 147 PLWH from South Africa and assessed the impact of host genetic variation in 
the chromosome 1 and HLA regions on viral sequence diversity and VL (Fig. 1). We 
also investigated predicted epitope binding affinities for significant HLA-to-viral variant 
associations. We demonstrate that viral sequence variation can serve as a phenotype 
for association analyses and identify areas of the viral genome that associate with host 
genetic variants that impact VL. This study further investigates host-HIV interaction in 
an understudied population, increasing our understanding of viral evolution and host 
control of HIV.
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MATERIALS AND METHODS

Study populations

We obtained host and viral genetic data from two cohort studies. The HIPSS study 
was a community-wide study undertaken in KwaZulu-Natal, South Africa, between the 
years of 2014 and 2017 to determine the association of contemporaneous programmatic 
scale-up of prevention and treatment efforts on HIV prevalence and incidence (25). 
Genotyping information for 97 participants of the HIPSS (25) with available HIV sequence 
data was acquired through collaboration with the University of KwaZulu-Natal, South 
Africa. HIPSS participants selected for this study were PLWH, had CD4+ T-cell counts of 
>350 cells/mm3 of plasma, and self-reported as ART naïve. The HIPSS cohort comprised 
men and women from urban and rural communities. For the VL data, it is unknown at 
which point in the individuals’ infection course the VL measurement was taken.

The CAPRISA-004 trial was a randomized placebo-controlled trial undertaken in 
KwaZulu-Natal, South Africa, from 2007 to 2010 to assess the safety and effectiveness 
of 1% tenofovir gel for the prevention of HIV infection in women (26). Women who 
seroconverted were referred to the CAPRISA AIDS Treatment Program and offered 
enrollment into the CAPRISA-002 Acute Infection Study (27). We acquired genotyping 
information for 71 PLWH from the CAPRISA-004 trial (26), with or without prior exposure 
to tenofovir gel, of which we had access to clinical data for 53 individuals who self-repor
ted as ART naïve in the first year of infection. VL was measured 1 year post-seroconver
sion, and individuals with VL data below the limit of detection (<400 copies/mL of 
plasma) were assigned a log10 VL of 1.3. Previously collected plasma samples were used 
for viral sequencing (26).

The HIPSS study comprised 20,048 total participants (25), and the CAPRISA-004 study 
comprised 889 total participants. Thus, the genotyping data for the 97 and 71 selected 
individuals constituted a small percentage of the study populations.

Host genotype data

Host genotyping was done using the custom H3Africa microarray (Illumina). The 
microarray consisted of 2,267,346 tag SNPs enriched with genetic content to improve 
resolution of genomic diversity in African populations. Quality control (QC) filtering was 
done with PLINK version 1.9 (28–31) using a previously described protocol (32). Study 
participants had been filtered using thresholds of missingness of >2%, heterozygosity 
rate of >3 standard deviations from the mean, and cryptic relatedness of >0.2. SNPs 
were filtered using thresholds of missingness of >2%, minor allele frequency (MAF) of 
<0.01, and Hardy-Weinberg equilibrium of P > 1×10−6. Principal component analyses 
were done using PLINK v1.9. RT, and protease (PR) sequences were matched to 97 HIPSS 
and 58 CAPRISA-004 individuals with high-quality genomic data (Fig. 2A). Gag and nef 
sequences were matched to CAPRISA-004 individuals, resulting in 49 and 51 individuals, 
respectively (Fig. 2B and C).

FIG 1 The two analyses done in the present study to investigate associations between the host and viral 

genome and viral load. AA, amino acid; CHR, chromosome.
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Viral sequence data

For RT and PR, we obtained 97 HIPSS and 58 CAPRISA-004 sequences for 99 codons of the 
PR gene and the first 255 codons of the RT gene (26, 33). HIV sequences for CAPRISA-004 
were generated after seroconversion was identified (26). For HIPSS, it is unknown at 
which point in the individuals’ infection course the virus was sequenced. Sequences 
were generated via Sanger sequencing using ABI 3130, and consensus sequences were 
aligned with Sequencher version 4.5 (26) or Clustal W (33). RT and PR sequences were 
run through the Stanford University HIV Drug Resistance Database version 9.1 (https://
hivdb.stanford.edu/hivdb/by-sequences/) to identify individuals with drug resistance 
mutations, viral subtype, and for AA alignment. Twelve HIPSS and nine CAPRISA-004 
individuals were removed due to the presence of drug resistance mutations. This left 
85 HIPSS and 49 CAPRISA-004 individuals for analysis (Fig. 2A, B, and C). All 85 HIPSS 
viral sequences were subtype C; 48 CAPRISA-004 sequences were subtype C; and 1 
CAPRISA-004 sequence was subtype A/D. AA codons with ≥10% and ≤90% of individuals 
with a non-consensus AA were selected for statistical testing. A variant AA was described 
as an AA that differed from the consensus sequence. Empty codons added to accom
modate the alignment were considered to have no information for that position. After 
filtering, there were up to 15 PR codons and 22 RT codons left for statistical testing.

We also obtained 49 sequences from the CAPRISA-004 cohort for 501 codons 
covering the gag gene and 51 sequences for 207 codons covering the nef gene 
(Fig. 2B and C) (34, 35) (GenBank accession numbers: EU347404-EU347714, KF208740-
KF208816, and KF208817-KF208898). Gag and nef sequences were generated from 
plasma samples within 6 months from seroconversion (35). Sequences were previously 
subtyped, and all but one sequence for gag and nef was subtype C, with the other 
being related to subtype A/D. Viral sequences were aligned with default settings and 
translated into peptide sequences using the Gene Cutter online tool from the Los Alamos 
HIV sequence database (https://www.hiv.lanl.gov/content/sequence/GENE_CUTTER/cut

FIG 2 (A) HIPSS and (B) CAPRISA-004 cohort filtering. (C) The number of individuals that have sequences shared across the different regions of the HIV genome 

for CAPRISA. PR, protease; PRRT, protease and reverse transcriptase; QC, quality control; RT, reverse transcriptase.
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ter.html). Codons for statistical testing were selected using the protocol described above. 
After filtering, there were 93 gag codons and 50 nef codons left for statistical testing.

Chromosome 1 and HLA imputation

To obtain information on classical HLA alleles and SNPs in the chromosome 1 region not 
directly genotyped, we performed genotype imputation in two ways. For chromosome 
1, TOPMed (36) imputation was done using Minimac version 4.0 (37), EAGLE, version 2.4 
phasing, and GRCh38-hg38 array build. HLA imputation was done using the Michigan 
Imputation Server (36) with Minimac version 4.0 (37), a multi-ethnic HLA reference 
panel, GRCh37/hg19 array build and EAGLE version 2.4 phasing. This approach has been 
demonstrated to produce highly accurate HLA allele information in multiple different 
ancestry groups, including African individuals (38). Imputed SNPs and HLA alleles were 
filtered using thresholds of MAF of <0.05 and R2 of <0.6. The four protective chromosome 
1 SNPs (rs59784663, rs73004025, rs77029719, and rs7519713) and 22 two-digit resolution 
HLA alleles were selected from the filtered imputed data set. Rs73004025 was typed 
in the HIPSS cohort, and the other three SNPs were imputed (R2 >0.98). All four SNPs 
were imputed for CAPRISA (R2 >0.97). All 22 HLA alleles were imputed for both cohorts 
(R2 >0.63).

Host genome-to-viral genome association testing

Analysis 1 (Fig. 1) involved testing the association between host SNPs and viral AA 
variants. Logistic regression was done in PLINK v1.9 using a binary phenotype of 
consensus or variant AAs. The first principal component was used as a covariate to 
account for population structure. Association testing was initially completed with HIPSS 
as a discovery cohort and the CAPRISA-004 cohort for replication. The significance 
threshold for the HLA alleles was adjusted by Bonferroni correction per analysis based on 
the number of alleles observed (P < 2.3 × 10−3 for 22 alleles). For chromosome 1 SNPs, the 
significance threshold was set at P < 4.0 × 10−2, reflecting the high linkage disequilibrium 
between the variants (R2 >0.8). False discovery rate (FDR) was also calculated for all P 
values from a single analysis (i.e., the P values from the association of the nth protein 
codon with the 4 chromosome 1 SNPs and 22 HLA alleles). The FDR is based on the 
distribution of P values, accounts for the number of P values input, and is calculated as

FDR =   π0 m pnnpn  ≤  pn
where m is the total number of statistical tests; λ is the threshold for truly null 

statistical tests (set at 0.5); pn is the P value of the nth statistical test; and npn is the 
number of P values that are ≤ or ≥ the specified variable. For FDR, π0 is calculated as

π0 =   npn  ≥  λm  1 −  λ
To summarize, 85 HIPSS and 62 CAPRISA-004 individuals were selected for analyses. 

Up to 15 PR, up to 22 RT, 93 gag, and 50 nef codons were selected for statistical testing 
with 22 two-digit classical class I HLA alleles and 4 SNPs on chromosome 1.

Epitope predictions and allele dosage association testing

Epitope predictions for significant HLA-to-viral codon associations were done using 
TepiTool (39). Epitopes 15 AAs in length covering the codon of interest were provided 
to the program, and the associated HLA allele was selected for a high number of 
peptides using TheImmune Epitope Database (IEDB) recommended prediction method. 
The recommended significance threshold for selecting potential binders is % rank of 
<1 and IC50 <500 nM (40). Analysis 2 (Fig. 1) investigated the association of host allele 
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dosage-to-VL and variant viral AA-to-VL using a two-sample t-test. t-Tests and box plots 
were done in RStudio version 1.3.1056 (41). The significance threshold was set at P < 0.05.

RESULTS

Chromosome 1 SNPs are significantly associated with variant amino acids in 
reverse transcriptase

We first conducted a regional association study to test whether HLA alleles and 
chromosome 1 variants significantly associate with AA changes in the HIV proteome. 
Variants in individuals from the HIPSS cohort were tested for association with AA variants 
in 7 PR and 20 RT codons. We observed significant associations between host alleles and 
AA variants in RT (Table 1) but not in PR (Table S2). Specifically, significant associations 
were found between chromosome 1 variants rs59784663 (G)/rs73004025 (T) (P = 1.4 × 
10−2; OR = 4.9, 95% CI = 1.4–17.5), rs77029719 (G) (P = 1.6 × 10−2; OR = 4.8, 95% CI = 
1.3–17.0), and rs7519713 (T) (P = 2.3 × 10−2; OR = 4.3, 95% CI = 1.2–15.2) with RT codon 
248. In addition, the HIPSS cohort had significant associations between HLA B*81 (P = 1.5 
× 10−5; OR = 39.8, 95% CI = 7.5–211.4) and HLA C*18 (P = 7.0 × 10−4; OR = 12.5, 95% CI = 
2.9–54.2) with RT codon 4 (epitope SL10), and HLAB*58 with RT codon 196 (P = 9.0 × 10−4; 
OR = 9.1, 95% CI = 2.5–33.8). The odds ratios show that variant AAs in these codons of 
RT are observed more in individuals with these significant alleles, with HLAB*81 having a 
particularly strong association with RT codon 4. In order to test the reproducibility of the 
HIPSS associations, we next performed a similar analysis in the CAPRISA cohort (n = 49). A 
combined analysis of both cohorts together did not uncover any additional associations, 
and we did not observe any significant associations in the CAPRISA cohort at the sites 
implicated in the HIPSS cohort (Table 1) or any other sites in PR and RT (Tables S5 and S6).

Next, we investigated the biological relevance of associations between HLAB*81, 
HLAC*18, and HLAB*58 with RT. In line with previous studies, we found that HLAB*81 has 
a predicted binding affinity (% rank 0.04 and IC50 = 561) to a peptide covering RT codons 
3–12 (epitope SL10) (Table 2). The predicted binding of HLAB*81 to this epitope suggests 
that HLAB*81 may have a function in restricting HIV in this region of RT. The predicted 
binding affinities of other HLA alleles were not significant (% rank >1 and IC50 >500).

In addition to RT and PR, gag and nef sequences were available from the CAPRISA-004 
study. HLA alleles and chromosome 1 SNPs were tested for association with AA variants 
in 93 gag and 50 nef codons. Significant associations were observed between rs7519713 
and gag codon 18 (P = 3.2 × 10−2; OR = 4.0, 95% CI = 1.1–14.6) and 147 (epitope ISW9) 
(P = 3.9 × 10−2; OR = 3.7, 95% CI = 1.1–12.6) (Table 3). Again, odds ratios show variant 
AA in gag codons 18 and 147 is observed more in individuals with the minor allele 
at rs7519713. We did not observe any associations between HLA alleles and viral AA 

TABLE 1 Associations between HIPSS host alleles and viral AA for HIV RT (n = 85)b

Host allele Codon AA HIPSS P value FDR OR 95% CI Joint P value FDR OR 95% CI

rs59784663/rs73004025 248 E248D 1.4 × 10−2a 2.6 × 10−1 4.9 1.4–17.5 9.6 × 10−2 3.1 × 10−1 2.5 0.8–7.7
rs77029719 248 E248D 1.6 × 10−2a 9.4 × 10−2 4.8 1.3–17.0 2.1 × 10−1 3.7 × 10−1 1.9 0.7–5.5
rs7519713 248 E248D 2.3 × 10−2a 1.0 × 10−1 4.3 1.2–15.2 2.8 × 10−1 4.0 × 10−1 1.8 0.6–5.1
HLAB*81 4 P4T,S 1.5 × 10−5a 4.0 × 10−4 39.8 7.5–211.4 1.3 × 10−5a 4.8 × 10−4 36.3 7.2–183.0
HLAC*18 4 P4T,S 7.0 × 10−4a 9.2 × 10−3 12.5 2.9–54.2 5.3 × 10−3 9.6 × 10−2 17.6 1.6–17.6
HLAB*58 196 G196E,K 9.0 × 10−4a 2.2 × 10−2 9.1 2.5–33.8 5.9 × 10–3 1.8 × 10−1 3.8 1.5–9.9
aSignificant association.
bAssociations are also shown for the same host alleles when CAPRISA and HIPSS were analyzed jointly (n = 134).

TABLE 2 The sequence and codon number for the SL10 epitope predicted to be restricted by HLAB*81a

Epitope S P I E T V P V R L

Codon 3 4 5 6 7 8 9 10 11 12
aThis sequence covers reverse transcriptase codon 4, where AA variants were significantly associated with 
HLAB*81.
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variants in gag and nef that passed our significance threshold (Tables S3 and S4). Taken 
altogether, these findings suggest that the region on chromosome 1, near CHD1L, has 
a function in restricting HIV that is not exclusive to one region of the proteome. Also, 
the lack of significant HLA associations with gag supports the addition of other African 
cohorts to our data set.

Variability in viral load in HLAB*81 carriers with variant amino acids in reverse 
transcriptase

Because of the predicted binding affinity of HLAB*81 with the SL10 epitope, we 
investigated how the dosage of HLAB*81 and variant AA at RT codon 4 affected VL in 
the HIPSS cohort. Consistent with previous data (42), we observed that VL was ~0.43 
log10 copies/mL lower in individuals that had 1 copy of HLAB*81 than those without a 
copy of the allele (Fig. 3A). When assessing the impact of HIV sequence variation on VL, 
we found that VL was ~0.48 log10 copies/mL higher in HLAB*81 carriers with a variant 
AA in codon 4 of RT compared to those with the reference allele (Fig. 3B); however, 
these results were not statistically significant. There was no difference in VL between 
carriers and non-carriers of HLAC*18 and HLAB*58 (Fig. S1A through C). There was also no 
difference in VL in carriers that had AA variants in RT codons 4 and 196 (Fig. S1B through 
D).

FIG 3 Box plots displaying host allele dosage and AA variant effect on VL. The y-axis displays the log-transformed VL (measured as RNA copies/mL of plasma). 

The x-axis displays the allele dosage or variant AA dosage. (A) The effect of HLAB*81 allele dosage on VL in HIPSS individuals. (B) The effect of a variant AA in RT 

codon 4 for individuals with the HLAB*81 allele. (C) The effect of protective chromosome 1 SNPs on VL in HIPSS and CAPRISA-004 individuals. The x-axis displays 

the number of protective chromosome 1 SNPs the individual has, regardless of homozygosity or heterozygosity. No individuals had three SNPs. (D) The effect 

of variant AA in RT codon 248 on VL for individuals with ≥1 key chromosome 1 SNP. (E) The effect of protective chromosome 1 SNP rs7519713 (T) on VL in 

CAPRISA-004 individuals. (F) The effect of variant AA in gag codon 18 on VL for individuals with rs7519713. (G) The effect of variant AA in gag codon 147 on VL 

for individuals with rs7519713. Plot A shows lower VL in the presence of HLAB*81. Plot B suggests a mechanism of viral escape where a variant AA in RT codon 4 

counteracts the protective effect of HLAB*81. Plots C and E show little change in VL as a result of chromosome 1 SNPs. Plots D and F show little change in VL as a 

result of variant AA in gag. AA, amino acid; RT, reverse transcriptase; VL, viral load.

TABLE 3 Significant associations between CAPRISA-004 host alleles and viral AA for HIV gag (n = 49)

Host allele AA position AA change P value FDR OR 95% CI

rs7519713 (T) 18 K18Q/R 3.2 × 10−2 3.9 × 10−1 4.0 1.1–14.6
rs7519713 (T) 147 K18L/V/M 3.9 × 10−2 3.1 × 10−1 3.7 1.1–12.6
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In contrast to previous findings (24), we observed no difference in VL in individuals 
with SNPs rs59784663 (G), rs73004025 (T), rs77029719 (G), and rs7519713 (T) (Fig. 3C and 
E). There was also no difference in VL in carriers that had AA variants in RT codon 248 
and in gag codons 18 and 147 (Fig. 3D, F, and G). In summary, we observed variability 
in VL due to AA variants in RT codon 4 in carriers of HLAB*81 that warrants further 
investigation in larger samples.

DISCUSSION

HIV remains a global health emergency that disproportionately affects individuals in 
sub-Saharan Africa. Within treated and untreated PLWH, the HIV genome can evolve 
to escape host pressure to maximize its replication and transmission potential. This 
evolution leaves traces of host interaction which may be leveraged to uncover host 
restriction factors or better understand the interplay between host and virus. A previous 
GWAS identified a locus on chromosome 1 that was associated with control of VL (24). 
Although the signal was statistically robust and reproducible across multiple cohorts, the 
underlying biology of what drives the reduction in VL remains unclear. Top associated 
SNPs were located downstream from the gene CHD1L. CHD1L is a helicase and has been 
classified as an SNF2-like protein, with diverse functions in DNA transcription and repair 
(43, 44). CHD1L is activated by poly(ADP-ribose), is recruited to sites of DNA damage 
by PARP-1, and has functions in DNA repair through chromatin relaxation (43–45). In 
addition, TRIM33 is dependently recruited to sites of DNA damage by PARP-1 and CHD1L, 
where it acts as a transcriptional suppressor (46, 47). The helicase-like activity of CHD1L 
and its interaction with PARP-1 and TRIM33 could impact HIV integration, transcription, 
and the production of viral proteins. We hypothesized that by testing for association 
between HIV and host variability, we could identify specific HIV genes targeted by 
CHD1L, therefore shedding light on how it might restrict HIV replication.

We identified several associations between chromosome 1 SNPs and AA variants 
in RT and gag. Specifically, rs59784663, rs73004025, rs7519713, and rs77029719 were 
associated with variants in RT codon 248. Chromosome 1 SNP rs7519713 was also 
significantly associated with variant AA in gag codons 18 and 147 (epitope ISW9). The 
chromosome 1 SNPs included in the present study have only recently been associated 
with variance in VL (24) and for the first time have been associated with variant AAs in RT 
and gag. These findings support the hypothesis that CHD1L has a function in restricting 
HIV. However, our study was limited in power by small sample size, and therefore, we 
suggest further studies to fully understand the mechanism of restriction.

Significant associations were also seen between class I two-digit resolution HLA alleles 
and AA variants in RT. In the HIPSS cohort, HLAB*81 and HLAC*18 were found to be 
significantly associated with variants in RT codon 4 and HLAB*58 with RT codon 196. The 
association of HLAB*81 and RT codon 4 (epitope SL10) has been previously described 
(19, 48–50). The association of HLAC*18 with RT codon 4 (epitope SL10) has not been 
previously shown. A study done by Smith et al. identified an elite controller of HIV 
with both HLAB*81 and HLAC*18 alleles (51). HLAB*81 and HLAC*18 were not found to 
be in linkage disequilibrium within our cohort, so it is unlikely that the association of 
HLAC*18 with SL10 is due to HLAB*81. RT codon 196 has been previously associated 
with other HLA alleles (50) but not with HLAB*58. HLAB*81 and HLAB*58 have been 
previously implicated with reduced viral loads, higher CD4+ T-cell counts, and mutations 
in HIV; however, this has primarily been investigated in the gag and nef genes (18, 22, 
52–54). Significant associations between host alleles and RT were not replicated in the 
CAPRISA-004 cohort. Quality control filtering of HIPSS and CAPRISA-004 genotype data 
was done separately, and the small sample size (n = 62) resulted in some alleles having 
MAFs below filter thresholds and were therefore not included in the analysis. Due to 
the selection threshold, well-documented escape mutations could not be tested; for 
example, the HLAB*57:03/57:02/58:01 association with the gag codons 240–249 (TW10 
epitope), HLAB*57:03 with gag codons 162–172 (KF11 epitope), and HLAB*81:01 with gag 
codons 180–188 (TL9 epitope).
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We further investigated associations between HLA alleles and viral epitopes. Overall, 
we found that HLAB*81 had a predicted binding affinity for an epitope which covered 
RT codon 4 (epitope SL10) (% rank 0.04 and IC50 = 561). The predicted binding affinity 
of HLAB*81 suggests that it may have a function in restricting HIV in that region of 
RT. However, based on a review of the IEDB experimental catalog (55) and the Los 
Alamos HIV Molecular Immunology Database (56), the RT epitope has not yet been 
experimentally confirmed as a major histocompatibility complex (MHC) ligand.

Individuals carrying the HLAB*81 allele had lower VLs than those without a copy of 
the allele. In addition, VL was higher in HLAB*81 carriers with a variant AA in codon 4 
of RT (epitope SL10), although these results did not reach statistical significance. The 
predicted binding affinity of HLAB*81 and higher VLs in individuals with variant AA in RT 
codon 4 highlights a region of immune pressure on the viral genome. A previous study 
(49) found that P4T/S in epitope SL10 reduces viral fitness resulting in reversion of the AA 
variant. Similarly, we found that in the absence of HLAB*81, the mean log10 VL of P4T/S 
was lower than the mean log10 VL of those with a consensus AA (Fig. S1E). In addition, 
Leitman et al. detected the P4T/S variant ~4 months after mother-to-child transmission 
of HIV, where the mother was HLAB*81−/− and the child was HLAB*81+/− (19). Together 
with our findings, these data support that HLAB*81 is driving the P4T/S mutation we see 
in our study. HLAB*81 has also been shown to restrict HIV p24 gag, and HIV responds 
with a T186S mutation in the restricted epitope (18, 22, 57). T186S reduces the replicative 
capacity of HIV (18, 57), which is similar to the trend in RT codon 4, where in the absence 
of HLAB*81, the mean log10 VL is lower in individuals with P4T/S (Fig. 3B and Fig. S1E). 
T186S compensatory mutations in gag provide little improvement to viral replicative 
capacity (18) and VL, whereas the role of compensatory mutations for RT codon 4 is not 
yet described.

The HIPSS and CAPRISA-004 cohorts were chosen for this study because they were 
treatment naïve and represent an African population at high risk of HIV infection (58). 
This presents a unique opportunity to study HIV co-evolution with available human 
and HIV sequence data. Genomes of individuals vary greatly by their ancestral history, 
and individuals of African ancestry have the most diverse genomes with low linkage 
disequilibrium, the most ancestral specific SNPs, and number of rare SNPs (58, 59). 
In genomic studies, large cohort sizes are needed in genetically diverse populations 
to identify significant SNPs with minor effects. For that reason, this study had several 
limitations. Primarily, the small sample size and limited availability of sequence data 
prevented a full genome-to-genome analysis and had limited power to detect associa
tions with modest effect sizes. Thus, we restricted our analysis to loci previously reported 
to impact HIV replication. In some cases, this also limited our ability to test previously 
reported associations. For example, previously described gag associations with HLAB*81 
could not be tested due to low allele frequency (<0.05) in the CAPRISA-004 cohort. 
However, it is important to note that CAPRISA-004 participants were in early stages of 
their infection, while the HIPSS cohort would have had participants at different infection 
stages. Therefore, the HIPSS cohort likely better represents a treatment-naïve population 
during chronic infection, both in the case of viral sequences and VL. This could serve as 
another explanation for why HIPSS associations were not replicated in the CAPRISA-004 
cohort. Our sample size provided ~80% power to detect an HIV AA change in 5% of 
individuals with an OR of >4 at P < 0.05. While our sample size is small, we were able to 
replicate the association between HLAB*81 and RT codon 4, suggesting our approach is 
valid in principle.

Two HIV genome-to-genome analyses have been previously conducted with cohorts 
of >1,000 individuals of European (14) and mixed ancestries (60). Both studies found that 
genome-to-genome analyses produced stronger associations than host (14) or viral (60) 
genome-to-VL analyses. A similar trend was seen in the present study, where significant 
associations were only seen when analyzing associations between host and viral variants 
(Table 1). Therefore, we feel our data warrants future studies in additional cohorts to 
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fully assess the impact of host genetic variability near CHD1L on HIV evolution in African 
populations.

Conclusion

HIV remains a major public health concern which disproportionately affects low-income 
countries and is concentrated in Southern and Eastern Africa. Controlling VL in PLWH 
remains the key goal to end the pandemic. The present study demonstrated that HIV 
sequence variation can be used as a phenotype in host genome studies of African 
populations. In addition, this study found that protective SNPs on chromosome 1 are 
significantly associated with AA variants in RT and gag genes. However, the present 
study was limited by a small cohort size, which prevented the inclusion of more viral 
and host alleles in analyses. Moving forward, it is imperative that similar analyses are 
conducted in larger populations in order to address the burden of HIV in Africa and to 
better understand host control of HIV in these populations.
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