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ABSTRACT Uganda experienced five Ebola disease outbreaks caused by Bundibugyo 
virus (n = 1) and Sudan virus (SUDV) (n = 4) from 2000 to 2021. On 20 September 
2022, Uganda declared a fifth Sudan virus disease outbreak in the Mubende district, 
resulting in 142 confirmed and 22 probable cases by the end of the outbreak decla­
ration on 11 January 2023. The earliest identified cases, through retrospective case 
investigations, had onset in early August 2022. From the 142 confirmed cases, we 
performed unbiased (Illumina) and SUDV-amplicon-specific (Minion) high-throughput 
sequencing to obtain 120 SUDV genome-and coding-complete sequences, representing 
95.4% (104/109) of SVD-confirmed individuals within a sequence-able range (Ct ≤30) 
and 10 genome sequences outside of this range and 6 duplicate genome sequences. 
A comparison of the nucleotide genetic relatedness for the newly emerged Mubende 
variant indicated that it was most closely related to the Nakisamata SUDV sequence 
from 2011, represented a likely new zoonotic spillover event, and exhibited an inter- 
and intra-outbreak substitution rate consistent with previous outbreaks. The most recent 
common ancestor for the Mubende variant was estimated to have occurred in October 
and November 2021. The Mubende variant glycoprotein amino acid sequences exhibited 
99.7% similarity altogether and a maximum of 96.1% glycoprotein similarity compared to 
historical SUDV strains from 1976. Integrating the genetic sequence and epidemiological 
data into the response activities generated a broad overview of the outbreak, allowing 
for quick fact-checking of epidemiological connections between the identified patients.

IMPORTANCE Ebola disease (EBOD) is a public health threat with a high case fatality 
rate. Most EBOD outbreaks have occurred in remote locations, but the 2013–2016 
Western Africa outbreak demonstrated how devastating EBOD can be when it reaches 
an urban population. Here, the 2022 Sudan virus disease (SVD) outbreak in Mubende 
District, Uganda, is summarized, and the genetic relatedness of the new variant is 
evaluated. The Mubende variant exhibited 96% amino acid similarity with historic SUDV 
sequences from the 1970s and a high degree of conservation throughout the outbreak, 
which was important for ongoing diagnostics and highly promising for future therapy 
development. Genetic differences between viruses identified during the Mubende SVD 
outbreak were linked with epidemiological data to better interpret viral spread and 
contact tracing chains. This methodology should be used to better integrate discrete 
epidemiological and sequence data for future viral outbreaks.
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E bola disease (EBOD) caused by the Orthoebolavirus genus (1) remains one of the 
most challenging public health threats for global communities in the modern 

era. When outbreaks occur, they trigger immense fear in the general population and 
devastate health and the economy (2–4). Patients with EBOD usually present with acute 
fever and progress rapidly into fulminant disease with multi-organ involvement and 
subsequent hemorrhagic manifestations (5). Death usually occurs in at least 50% of 
EBOD victims (6).

Ebola virus disease (EVD) caused by the Orthoebolavirus zairense species was first 
definitively described in 1976 when simultaneous outbreaks occurred in the villages of 
Yambuku (then in Zaire, now the Democratic Republic of the Congo) and Nzara (then 
in Sudan, now in South Sudan) (7–9). For the next 20 years, human cases were rare 
and geographically localized within the Middle Africa region (10). It is hypothesized 
to circulate in pteropodid bats and possibly other non-human primates that act as its 
natural reservoirs (11). However, outbreaks of EBOD have become more frequent, with 
almost 70% of the total outbreaks recorded after the year 2000 (10). The 2013–2016 
Western Africa EVD outbreak, which involved >28,000 cases (10, 12), remains the largest 
on record. With rapidly increasing international traffic and trade amidst an increasing 
human population, deforestation, and rural urbanization, the pandemic potential for 
EBOD is increasing (13). As a result, there is increasing concern that its natural occurrence 
may be geographically wider than previously thought (14, 15).

Orthoebolaviruses, some of which cause EBOD, belong to the Filoviridae family, 
a group of enveloped, filamentous viruses with non-segmented, negative-sense RNA 
genomes of approximately 19 kb. Currently, four orthoebolaviruses are pathogenic to 
humans [Ebola virus (EBOV), Sudan virus (SUDV), Bundibugyo virus (BDBV), and Taï 
Forest virus], with no evidence of acute human disease attributed to the other two 
member species [Bombali virus and Reston virus (RESTV) (but anti-RESTV antibodies 
have been detected in a single individual)] (16, 17). Previous EBOD outbreaks in Uganda 
have been associated with both BDBV (Bundibugyo district, 2007) and SUDV (Gulu 
district, 2000; Luweero district, 2011 and 2012; and Kibaale district, 2012) (10, 18). In this 
paper, we report on the genomic characterization of the SUDV variant that caused the 
2022 Sudan virus disease (SVD) outbreak, first identified in September 2022 after SVD 
was confirmed in a 26-year-old male from Maduddu sub-county, Mubende district (19). 
The value of genomic data to the advancement of filovirology was recently highlighted 
(20) and was found to be a useful tool during response to ongoing outbreaks (21, 22). It is 
also worth noting that the amount of genomic data for SUDV that are currently available 
in GenBank and other databases is limited, when compared to its EBOV counterpart, 
perhaps partly due to SUDV’s infrequent occurrence and relatively smaller outbreaks (23); 
thus, it presents a challenge to developing medical countermeasures.

MATERIALS AND METHODS

Patient enrollment and sample collection

In this investigation, participants were initially sampled when they met the established 
criteria for suspected viral hemorrhagic fevers (VHFs) in Uganda. Briefly, these suspected 
cases presented with either a clinical sign [acute onset of fever (>38°C)] and other clinical 
symptoms or were epidemiologically linked to a confirmed case. In all cases, whole blood 
samples were collected and submitted for EBOD confirmation to the VHF Laboratory 
at Uganda Virus Research Institute (UVRI) in Entebbe or Mubende Mobile Laboratory at 
Mubende Regional Referral Hospital, Mubende district.

Nucleic acid extractions and RT-PCR

At UVRI, samples were processed for EBOD confirmation using previously reported 
methods (18, 24). Briefly, the MagMax Kit (Applied Biosystems Inc., Vilnius, Lithuania) 
was used to extract RNA, followed by RT-PCR on ABI’s QuantStudio 5 or 7500 Real-Time 
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PCR System instruments (Applied Biosystems), using the US CDC custom primers and 
probes that target the NP region for SUDV [EboSudBMG 1(+) 5′-GCC ATG GIT TCA GGT 
TTG AG-3′, EboSudBMG 1(−) 5′-GGT IAC ATT GGG CAA CAA TTC A, and EboSudBMG 
Probe 5′FAM-AC GGT GCA CAT TCT CCT TTT CTC GGA-BHQ1] (25). While at the Mubende 
Field Laboratory, SVD was confirmed using the RealStar Filovirus Kits (Altona Diagnostics, 
Hamburg, Germany), according to the manufacturer’s instructions (26). However, all 
samples confirmed at Mubende were transferred to UVRI, where a repeat test using the 
CDC protocol (as stated above) was done.

High-throughput sequencing and bioinformatics

High-throughput sequencing was performed using either unbiased library preparation 
and Illumina sequencing or SUDV-amplicon-specific library preparation and minion-
based sequencing. Samples with a cycle threshold (Ct) ≤25 were prepared for Illumina 
sequencing by treating with RNase-free DNase (Roche, Basel, Switzerland), and depleting 
host rRNA with the NEBNext rRNA Depletion Kit v2, followed by library preparation 
using the NEBNext Ultra II Directional RNA Library Preparation Kit (New England Biolabs, 
Beverly, MA). Libraries were then sequenced using either an Illumina iSeq100 (V1 2 × 150 
cycles) or a MiSeq (2 × 150 cycles). In the beginning of the outbreak, all samples were 
sequenced using unbiased library preparation (Illumina) and after an SUDV consensus 
genome sequence was generated, the amplicon-based minion protocol was developed 
and deployed (after an initial validation where duplicate samples were sequenced 
using both Illumina and Minion methods). Samples with 25 < Ct < 30, and another 
subset of samples with Ct ≤25, were sequenced using SUDV-specific primers (Table 
S1) and the ARTIC protocol (https://www.protocols.io/view/ebola-virus-sequencing-pro­
tocol-e6nvw9p7dgmk/v1) (27, 28).

Consensus genome sequences were constructed using the bioinformatics method 
appropriate to the library construction method—either the ARTIC EBOV bioinfor­
matics protocol (for amplicon-based MinIon sequencing) or a read mapping to 
a reference genome sequence using in-house scripts (https://github.com/evk3/ 
UVRI_Sudan_EBOV_Uganda_2022 for TruSeq-based Illumina sequencing). Configuration 
files were changed to trim SUDV primer pools from the reads for the artic EBOV 
bioinformatics protocol. For TruSeq-based Illumina sequencing, low-quality reads/bases 
were filtered using Prinseq-lite v0.20.3 (-min_qual_mean 25 -trim_qual_right 20 -min_len 
50), and SUDV genome sequences were assembled by aligning trimmed reads to the 
Nakisamata 2011 outbreak sequence (JN638998) using BWA-mem (29) and iteratively 
mapped to the intermediate scaffold genome sequence; new consensus genome 
sequences were called using samtools mpileup (-A -aa -d 6000000 -B -Q 0) and ivar 
consensus (1.3.1) (-m 2 -n N). Genome sequences were deposited into GenBank with 
accession numbers OQ672950–OQ673069.

Tempest, Bayesian analysis, and phylogeographic reconstruction

Root vs tip date divergence was performed using TempEst (v1.5.1) (30) to estimate the 
clock-like nature of inter- and intra- outbreak substitution rates. SUDV alignments were 
made using MAFFT (v7.450) (31), while its maximum likelihood trees were made using 
RAxML (v7.3.0) (32). Trees were rooted to the earliest available inter- and intra-outbreak 
sequences, MK952150 Maridi or OQ672950 2022002242_C008, respectively. Since the 
2022002242_C008 sequence was collected nearly 2 months after the beginning of the 
Mubende outbreak, the intra-outbreak root age was estimated using the correlation 
model in TempEst (30). A single sample sequence missing the collection and symptom 
onset dates (2022005178) was removed from the intra-outbreak rate analysis.

All Bayesian analysis was performed using BEAST (v1.10.4) (33). SUDV alignments 
were split into coding and non-coding regions with unlinked substitution models. Model 
parameter testing was performed using the GTR+Γ (4) nucleotide substitution model, 
different clocks (fixed local clock, strict or uncorrelated relaxed lognormal clocks set 
with an initial prior value of 1 × 10−3 subs/site/year), and tree parameters [constant, 
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exponential, or Skygrid (inter-outbreak: time at last transition point = 47.0 and 94 grid 
points; intra-outbreak: time at last transition point = 47.0 and 564 (or 94) grid points)]; 
the new tree operator mix and strength of model fit were assessed using Bayes factors 
calculated from path sampling and stepping stone analysis (Table S2). Each analysis was 
run for 4 (inter-outbreak) or 3 (intra-outbreak) independent replicates consisting of 100M 
states logged every 10,000th state, and 10% burn-in was removed from each replicate 
(in 3/16 replicates with a higher burn-in of 17.5%, 23%, or 40% was removed before 
convergence was met). Joint and prior ESS values were >200 for all models.

Phylogeographic reconstruction was performed using Nextstrain (v5.0.1) and 
visualized using Python (v3.9.13) with the Baltic and matplotlib packages.

Nucleotide and amino acid comparisons

Nucleotide and amino acid entropy were calculated using Nextstrain with Auspice 
(v2.43.0) (34). Ancestral sequences were estimated for the root and internal nodes, while 
entropy was calculated as a count of the observed and inferred mutations relative 
to the total number of sequences in the tree. Glycoprotein full-length amino acid 
alignments were generated using MAFFT (v7.490) (31) in Geneious Prime (2022.1.1) 
(www.geneious.com/) for all available historic SUDV sequences and from Mubende 
outbreak sequences. The protein similarity was determined using BLOSUM62 (35), while 
percentage similarity was calculated using the BLOWSUM62 with threshold = 1 from 
Geneious Prime. When comparing multiple sequences, we selected the lowest percent 
similarity score.

RESULTS

On 19 September 2022, SVD was identified in an individual from Mubende District, 
Uganda, by the VHF Laboratory at UVRI. On 20 September 2022, the Ministry of Health 
of Uganda officially declared an SVD outbreak. There were 142 confirmed and 22 
probable SVD cases with a case fatality rate of 36.6% (52/142) among confirmed cases, 
and the outbreak was declared over on 11 January 2023 (42 days, or two incubation 
periods after the last case). During the outbreak, UVRI attempted sequencing on 129 
specimens and generated 120 genome sequences with greater than 90% coverage 
from 114 unique cases (Fig. 1). Viruses from six individuals were sequenced twice from 
two specimens collected on different dates. Specimens were not available from all the 
probable cases. Therefore, the sequence data presented here represent 95.4% (104/109) 
of SVD-confirmed individuals that contain SUDV RNA within a predetermined (data not 
shown) sequence-able range (Ct <30) and eight genome sequences from SVD-confirmed 
individuals outside of this range.

The earliest available sequence, from an individual with symptom onset of 11 
September 2022 (approximately 2 months after the estimated start of the outbreak), 
represented a likely new SUDV spillover and was most closely related to the May 2011 
Nakisamata outbreak sequence from Luwero District, Uganda (36), instead of the more 
recent SUDV genome sequences from the SVD outbreak in Kibaale (located approxi­
mately 60 km from Mubende) in 2012 (Fig. 2A; Fig. S1) (18). The May 2011 Nakisamata 
outbreak sequence and 2022 Mubende variant (2022002242 isolate) are 99.58% identical 
(86 base pair differences) and only differed by 10 amino acids.

The inter-outbreak mutation rate, including the new Mubende variant (2022002242 
isolate) sequence, was clock-like (Fig. 2B) and similar among different Bayesian models 
(Fig. 2C). The best-fit model (UCLN, Skygrid) inter-outbreak rate was 6.5705 × 10−5 subs/
site/year (1.0050 × 10−5–1.2584 × 10−4, 95% highest posterior density (HPD) estimates), 
similar to the SUDV inter-outbreak rate of 4.6 × 10−5 subs/site/year (Fig. 2B) previously 
observed by Carroll et al. (37).

The phylogenetic tree formed four distinct clades, although the overall tree topology 
was poorly supported (Fig. 3). Over time, the outbreak spread from Mubende District 
to other geographic areas, including the neighboring Kassanda District and Kampala 
Metropolitan Area (Fig. S2). The sequences from the Mubende outbreak exhibited a 
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clock-like rate (Fig. 3B). They demonstrated an intra-outbreak rate of 2.23 × 10−3 (1.274–
3.179 × 10−3 subs/site/year) or 3.998 × 10−3 subs/site/year using a Bayesian and correla­
tive approach, respectively (Fig. 3A and B). The Bayesian method estimated MRCA for the 
Mubende SUDV clade was 1.0783 years (15 October 2021) [0.4068 (17 June 2022)–2.0935 
(9 October 2020), 95% HPD interval] before the most recent case, and the split from 
the most closely related 2011 Nakisamata outbreak sequence to have occurred 11.7442 
years (14 February 2011) [11.5453 (27 April 2011)–12.0357 (30 October 2010), 95% HPD 
interval] before the most recent case (Fig. 3A). The correlated approach (using Tempest) 
also estimated the age of the Mubende SUDV MRCA to be 1.0301 years (2 November 
2021).

The prevalence of nucleotide and amino acid mutations during the outbreak was also 
assessed (Fig. 4). Most nucleotide mutations were silent (Fig. 4A), and a minority of amino 
acid mutations reached prevalence during the outbreak (Fig. 4B). The most prevalent 
mutations occurred in the NP (codon 711) and polymerase (codon 821) regions relative 
to the inferred root ancestral sequence (online supplementary file 1). These mutations 
did not interfere with the diagnostic assays used at UVRI, and it is currently unknown 
whether the mutations impacted the performance of the commercially available RealStar 
Filovirus Screen RT-PCR Kit 1.0 and RealStar Filovirus Type RT-PCR Kit 2.0 assays run 
in the Mubende mobile laboratory (26) since the primer and probe sequences are 

FIG 1 Epidemiological curve and the ratio of sequenced to total samples over time. (A) Epidemiological curve including 

probable and confirmed cases. (B) The ratio of sequenced to total samples over time.
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FIG 2 Orthoebolavirus sudanense species inter-outbreak inferred evolutionary relationships. (A) 

Maximum likelihood phylogenetic tree for all available full-length SUDV sequences. The tree is midpoint 

rooted, and the outbreak locations (Sudan vs Uganda) are indicated by color. Bootstrap support values 

(gray) greater than 70% are indicated at nodes (n = 1,000 replicates). (B) Divergence from root vs time 

demonstrates the clock-like nature of the Orthoebolavirus sudanense species substitution rate (dotted 

line). The confidence interval is shaded gray. (C) Substitution rate estimates compared across different 

Bayesian models, the root-to-tip analysis from (B), and the historic analysis from Carroll et al.
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proprietary. The similarity between the known SUDV glycoprotein (GP) sequences was 
also assessed since the cAd3-EBO vaccine expresses the SUDV glycoprotein (38). The 

FIG 3 Sudan virus, Mubende variant intra-outbreak inferred evolutionary relationships. (A) Time-scaled phylogeny with leaves 

colored according to residence district. Nodes with posterior support greater than 0.6 are labeled in red. Node age estimates 

with 95% HPD intervals are at selected internal nodes (black). (B) Divergence from root vs time demonstrates the clock-like 

nature of the Mubende variant substitution rate (dotted line). The confidence interval is shaded gray. Root age was estimated 

at 1 November 2021.
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Mubende glycoprotein amino acid sequences exhibited 99.7% similarity altogether and 
a maximum of 96.1% similarity compared to historical SUDV sequences from 1976 
(Boniface and Maridi) (Table 1). Most of the amino acid differences between the historical 
and current SUDV GPs occurred in the glycan cap and mucin-like domains; most of the 
Mubende sequences were highly similar and differed only in 1–2 amino acids.

Using epidemiological contact-tracing data, an extensive view of the SVD outbreak 
in the Mubende district was constructed, including genetic data (when available), which 
allowed the geographic and temporal spread of the outbreak to be visualized (Fig. 
5). The ChainChecker tool allowed for fact-checking of epidemiological connections 
based on genetic data (39), and the epidemiologically reported geographic spread was 
consistent with the phylogenetically reconstructed spread (Fig. S2). For example, as 
shown in Fig. 5, case C069 was epidemiologically linked to case C077. However, the 
genetic data indicated that C069 was not closely related to C077, and the number of 
genetic differences (n = 7) was higher than what the substitution rate would predict for 
this exposure window [10 days, expect 1.2 (0.7–1.6) differences], suggesting that C077 
was infected by a source other than C069.

DISCUSSION

Here, a new SUDV variant that caused an SVD outbreak in Mubende, Uganda, from early 
August to November 2022, is characterized. The Mubende variant was likely a single 
zoonotic spillover from an unknown reservoir; the inter-outbreak substitution rate is 
consistent with this spillover scenario and previous inter-outbreak rate estimates (37). 
Furthermore, the Mubende variant likely emerged in October and November 2021, and 
the SUDV acute substitution rate estimates are consistent with previous EBOV estimates 
(2.23 × 10−3 subs/site/year vs ~1 × 10−3 sub/site/year) (40–43). Finally, the Mubende 
variant did not exhibit any mutations in the SUDV diagnostic assay binding site, and only 
minor amino acid mutations were found in viral proteins. However, the phenotype of the 
Mubende variant needs to be further investigated, as previously implied for EBOV (44). 
Nevertheless, given that these mutations only differed a maximum of 3.9% from other 

FIG 4 The prevalence of nucleotide and amino acid mutations during the SUDV, Mubende variant outbreak. Mutations are relative to the inferred root ancestral 

sequence, and entropy is a count of the observed and inferred mutations relative to the total number of sequences in the tree. (A) Entropy of nucleotide 

mutations from Mubende variant sequences (n = 120). A red asterisk indicates the location of the UVRI SUDV qRT-PCR diagnostic assay primer and probe binding 

sites. (B) Entropy of non-silent amino acid mutations from Mubende variant sequences (n = 120).
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FIG 5 Combining epidemiological and phylogenetic networks provides a wide-scale view of the Mubende SUDV outbreak. Circular nodes represent single 

individuals, are located a symptom onset dates (x-axis), and are colored according to residence district. Shading in boxes (green to orange) indicates genetic 

distance relative to the earliest sequence in the outbreak. Inset demonstrates a contact tracing chain consisting of three individuals. Numbers next to nodes 

indicate the number of raw nucleotide differences relative to the C069 sequence.
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SUDV sequences and occurred mainly in the glycan cap and mucin-like domains, we 
believe that vaccine-derived glycoprotein antibodies are likely to cross-react with the 
Mubende variant and that SUDV GP-containing vaccines could reduce viral spread 
during future SVD outbreaks.

During the Mubende SVD outbreak, the UVRI laboratory performed real-time 
sequencing and quickly shared these data with the outbreak response command 
structure. The sequence data were combined with the epidemiological data to create 
a wider view of the outbreak using the ChainChecker application (39). Over time, 
the sequence data supported the contact tracing chains, and in some instances, the 
epidemiological connections were re-evaluated due to the genetic data, described 
in further detail by Kabami et al. (45). Furthermore, when SVD expanded outside of 
the Mubende district, UVRI prioritized the sequencing of specific samples to better 
understand the contact tracing chains. Unfortunately, not all samples from the outbreak 
could be sequenced due to lower viral loads (n = 28) at the time of case detection. 
In limited instances (n = 3), a connection between the sequenced specimen and a 
confirmed case could not be made. Based on the epidemiological data, four chains 
remained unconnected to the extensive contact tracing network. Using genetic data, 
however, we can now hypothetically link these chains to the more extensive contact 
tracing network.

Conclusions

This work demonstrates that the Orthoebolavirus sudanense species continues to evolve 
slower than the Orthoebolavirus zaireense species as previously established (37). These 
data are, therefore, encouraging and suggestive that future Orthoebolavirus sudanense 
species will be susceptible to vaccine-derived cross-reacting SUDV antibodies. Further­
more, by integrating genetic and epidemiological data, a broad view of the SVD outbreak 
was generated, allowing for the fact-checking of epidemiological connections and 
pre-existing assumptions.
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