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Kidney disease is highly prevalent and affects approximately 850 million people worldwide. It is also associated
with high morbidity and mortality, and current therapies are incurable and often ineffective. Animal models are
indispensable for understanding the pathophysiology of various kidney diseases and for preclinically testing novel
remedies. In the last two decades, rodents continue to be the most used models for imitating human kidney
diseases, largely because of the increasing availability of many unique genetically modified mice. Despite many
limitations and pitfalls, animal models play an essential and irreplaceable role in gaining novel insights into the
mechanisms, pathologies, and therapeutic targets of kidney disease. In this review, we highlight commonly used
animal models of kidney diseases by focusing on experimental AKI, CKD, and diabetic kidney disease. We briefly
summarize the pathological characteristics, advantages, and drawbacks of some widely used models. Emerging
animal models such as mini pig, salamander, zebrafish, and drosophila, as well as human-derived kidney
organoids and kidney-on-a-chip are also discussed. Undoubtedly, careful selection and utilization of appropriate
animal models is of vital importance in deciphering the mechanisms underlying nephropathies and evaluating the
efficacy of new treatment options. Such studies will provide a solid foundation for future diagnosis, prevention,
and treatment of human kidney diseases.
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Introduction
Kidney disease has become a public health problem
on a global scale and is often associated with high
morbidity and mortality. The prevalence of kidney
diseases is continuing to increase, and currently there
are approximately 850 million people having some
kinds of kidney disorders worldwide.1 Based primar-
ily on the duration of the disorders, kidney disease is
generally classified into two distinct syndromes, AKI
and CKD.2 Clinically, AKI and CKD are closely inter-
connected, and they share many common risk factors
such as old age, diabetes mellitus, hypertension, and
other preexisting medical conditions.2–4 Epidemiolog-
ical studies have suggested that AKI and CKD are
each a risk factor of the other.5,6 Although AKI is now
recognized to pose an important risk leading to the
development of CKD and even to ESKD, the extent
to which AKI contributes to the incidence of CKD
remains unclear. The pathologies of AKI-to-CKD
transition or AKI-in-CKD coexistence, combining with
many serious complications and comorbidities,
pose a challenge in the modeling, diagnosis, and treat-
ment of specific syndromes. Strategies to precisely
target the underlying mechanisms and to halt or re-
verse the progression of CKD have been largely
unsuccessful.

Animal models are indispensable in understanding
the pathophysiology of kidney diseases and in pro-
viding reliable preclinical testing systems for new
therapies. A variety of experimental models for AKI
and CKD have been developed, and rodents, partic-
ularly mice, are the most used species. Despite the
valuable insights into kidney disease gained from
existing models, many results do not fruitfully trans-
late into clinical treatments in humans, raising con-
cerns about the applicability of these widely used
models. In this context, it is prudent to determine
which aspects of animal models recapitulate the rele-
vant phenotypes of human kidney disease. In this
review, we highlight commonly used animal models
of kidney diseases by focusing on experimental AKI,
CKD, and diabetic kidney disease (DKD). We briefly
summarize the model types, pathological features,
advantages, and drawbacks of some popular models.
We also discuss current challenges for modeling hu-
man kidney diseases in animals and provide future
perspectives on emerging experimental models.

AKI Models
As a form of acute and rapidly developing disorder,

AKI is determined based on the sudden elevation of
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serum creatinine (SCr) and/or oliguria within a duration of
7 days.7 AKI affects one in five hospitalized patients world-
wide and associates with high mortality.8,9 The sudden loss
of kidney function generally results in the retention of
metabolic wastes and imbalance of body fluid, with sub-
sequent development of various complications and even
endangering other organs.10 Although functional criteria
present detailed definitions regarding urine and serum
components,7 structural assessment is unavailable with
existing techniques beyond biopsy. Of note, before the
changes of urine and serum composition are detectable,
the eGFR has greatly reduced, reflecting an abnormal
kidney function. A series of AKI biomarkers for injury have
been proposed and investigated in clinical trials over the
past decade.11 However, these biomarkers have limitations
with modest predictive performance and low sensitivity,
which hinders their clinical usefulness.
AKI is encountered with a variety of pathologies and

pathophysiological processes. The major causes of AKI in
humans include renal hypoperfusion, direct nephrotoxicity,
and sepsis.4,12 Thus, commonly used AKI models are in-
duced by ischemia and reperfusion, drugs or nephrotoxins,
and sepsis inducers in animals, which reflects the diverse
etiologies of AKI in humans (Table 1).

Ischemic AKI Models
Ischemic AKI models in mice or rats mainly include

bilateral ischemia–reperfusion injury (BIRI), unilateral
ischemia–reperfusion injury (UIRI), and UIRI combined
with uninephrectomy (UIRI/UNX).13 In the ischemic
model, the proximal tubular cells in the S3 segments of
the nephron are mostly affected, which is due to the block-
age of oxygen and nutrient delivery and waste removal
channels for the renal cells.14,15 Ischemia–reperfusion will
trigger tubular cells to undergo sublethal injury or cell death
by different modes such as apoptosis, necrosis, necroptosis,
pyroptosis, and ferroptosis, which in turn leads to kidney
dysfunction.16–18 The typical kidney tubular damage in-
cludes loss of brush border, contraction and flattening of
the cells, cell death or detachment, and apparent debris in
the lumen.15 In the same settings, the time points for
assessment after reperfusion determine the injury pheno-
type and pathological findings because short time points
within 3 days manifest tubular cell damage, various
modes of cell death, and inflammation, whereas long time
points within weeks present with fibrosis.17,19,20 More-
over, longer ischemia duration worsens kidney function
and usually leads to progression to CKD.21,22 Among the
three ischemia-reperfusion injury (IRI) models, BIRI has
the most relevant renal hemodynamics to human patho-
physiology, and the changes in kidney function could be
readily monitored because of ischemia of both kidneys.
UIRI does not allow for measuring kidney functional
changes based on SCr and BUN because the contralateral
uninjured kidney will compensate for the lost function of
the injured one. Severe BIRI leads to the death of animals,
whereas UIRI rarely cause animal loss and thus enables
longer observation and develops more robust fibrosis than
BIRI. These features of UIRI make it a suitable model for
investigation of postischemic AKI-CKD transition.23,24

Compared with UIRI, UIRI/UNX allows one to assess
kidney function by SCr and BUN for monitoring renal
injury and repair.25

The pathological changes of ischemic AKI largely depend
on the models used, as well as the animal species, strain,
sex, and age.26 In general, female mice are more resistant to
IRI than male counterparts. Therefore, longer duration of
ischemia is often used in female animals to achieve a com-
parable degree of AKI. Age is another important factor in
determining the severity after IRI. The aged mice typically
exhibit an increased mortality and exacerbated kidney dam-
age, compared with the young.27 Another variable is the
body temperature during ischemia, and warm ischemia is
used in most IRI models to increase the severity of renal
injury, rather than cold one.23 Therefore, the body temper-
ature of animals is usually kept at 37°C or above during
ischemia.
It is worthwhile to point out that there are significant

differences in histological changes after IRI between humans
and animal models. Some investigators have questioned
whether the murine models of ischemic AKI are truly rel-
evant to humans, especially considering the more severe
injury in animal models than that in patients.28 Furthermore,
unlike animal models, the duration of ischemia in humans
does not always correlate with the outcome.29 Nevertheless,
substantial studies have demonstrated that murine IRI
model exhibits significant similarity to human in short-
term outcomes and characteristic features.21 In this context,
one should keep in mind that translation of the experimental
findings from murine models to humans has to be cautious.
Attention should be paid to details including, but not limited
to, duration of ischemia, body temperature during ischemia,
and observation timing after reperfusion.

Nephrotoxic AKI Models
Nephrotoxins or medications with nephrotoxic effect are

another common cause of AKI in hospitalized patients.12,30

The cellular mechanisms and signal pathways causing kid-
ney dysfunction are different among various agents, mainly
through direct tubular injury, renal inflammation, or intra-
tubular obstruction leading to AKI.31 A variety of drugs and
toxic agents, such as cisplatin, gentamicin, aristolochic acid,
and folic acid, are used to induce nephrotoxic AKI models.
Cisplatin-induced AKI is commonly used to model drug
nephrotoxicity in humans because cisplatin, as an effective
chemotherapeutic agent for a variety of cancers, incites
adverse effects on renal proximal tubular cells and often
causes AKI.32 Repeated-dosing protocol with cisplatin in
mice has been demonstrated to recapitulate the nephropa-
thy of those kidneys given cisplatin in humans.33,34

Gentamicin-induced AKI is considered as a promising
model to study the clinical effects of aminoglycosides on
kidney.35–37 Aristolochic acid and folic acid models are also
widely used in AKI research field, which are particularly
attractive for modeling the transition of AKI-to-CKD in
mice because of their early fibrotic characteristics.38–40 In
humans, rhabdomyolysis often causes AKI because of in-
trinsic muscle dysfunction. Accordingly, intramuscular in-
jection of glycerol in rodents is the well-established model
of rhabdomyolysis AKI.41,42
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Table 1. The commonly used rodent models of AKI

AKI Models Induction
Methods Pathology Pros and Cons Refs.

Ischemic
AKI

BIRI c Mainly damage the S3 segments of proximal tubules.
c Sublethal tubular injury and cell death.
c Interstitial inflammation.

c Kidney function can be monitored; species-independent and strain-
independent; relevant to humans.

c Severer tubular damage than that in human; significant animal loss; female
mice are resistant.

13,23,25,127,128

UIRI c Similar to BIRI. c Enables longer observation time; no animal loss; develops more severe
fibrosis.

c Unable to monitor kidney function.
UIRI/UNX c Similar to BIRI. c SCr and BUN at 24 h after UNX can be monitored; enable AKI-to-CKD

progression.
c Additional surgical stress.

Nephrotoxic
AKI

Cisplatin c Mainly damage the proximal tubular cells.
c Severe model with increased BUN and SCr,

inflammation, fibrosis.

c Simple and reproducible, many similarities to humans.
c No standardized protocol.

33,129

Gentamicin c Collecting duct epithelial cell death, necrosis.
c Increased BUN and SCr, decreased GFR.
c Inflammation, fibrosis.

c Resemble aminoglycoside-induced AKI in humans.
c Require high dose.

36,37,130

Aristolochic
acid

c Proximal tubular cell injury and death.
c Increased BUN and SCr.
c Progressive interstitial fibrosis.

c Simulate clinical aristolochic acid nephropathy and AKI-to-CKD progression.
c Require high-dose, systemic toxicity.

38,39

Folic acid c Disruption of tubular integrity.
c Increased BUN and SCr.
c Fibrotic lesions.

c Reproducible and simple, simulate AKI-to-CKD progression.
c High variable injury, less clinical relevance.

40,131

Glycerol c Tubular cell death.
c Myoglobinuria.
c Inflammation.

c Simulate the rhabdomyolysis.
c Moderate kidney injury and dysfunction.

41

Septic AKI LPS c Tubular cell apoptosis.
c Inflammatory cell infiltration.
c Increased BUN and SCr.
c Mitochondrial injury.

c Simulate the hyperinflammatory state of sepsis.
c Transient increases in inflammatory mediators, less clinical relevance.

44,132

CLP c Much later and lower cytokine levels than LPS
model.

c Severely hypotensive.

c Simulate human sepsis better than LPS model.
c Difficult to control the severity of sepsis, differences in age and strain.

47,133

BIRI, bilateral ischemia–reperfusion injury; UIRI, unilateral ischemia–reperfusion injury; UNX, uninephrectomy; SCr, serum creatinine; CLP, cecal ligation puncture.
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Septic AKI Models
Sepsis is the most common etiology of AKI in humans.12

Septic AKI is characterized by the excessive production of
proinflammatory cytokines, which trigger kidney injury and
dysfunction.43 LPS-induced animal model is the simplest one
for septic AKI mimicking, which is frequently harnessed to
study the pathophysiology, cellular mechanism, and thera-
peutic potentials of sepsis-associated AKI.44–46 Another com-
monly used model, the cecal ligation puncture model, is
believed to resemble the progression and characteristics of
human sepsis more accurately than the LPS model.47 How-
ever, cecal ligation puncture model is difficult to control the
severity of sepsis and therefore results in poor reproducibility
with significant animal loss.48,49

CKD Models
The prevalent and incurable CKD is posing a substantial

burden and challenge to the world.3 CKD is characterized by
progressive destruction of renal parenchyma and reduction of
functional nephrons. Processes such as glomerular hyperten-
sion, renal inflammation, glomerulosclerosis, and tubuloin-
terstitial fibrosis are associated with progression of CKD.
Therapies for patients with CKD in clinic are often ineffective
and cannot completely halt its progression to renal deficiency,
although significant progresses have been made recently.50,51

Animal models are extremely valuable tools for investigating
the pathological mechanisms of these diseases and for testing
the therapeutic efficacy of potential remedies. In this section,
we discuss some experimental CKD models that are widely
used in the nephrology community (Table 2).

Interstitial Fibrosis Models
Kidney fibrosis is the common outcome of CKD and can

serve as a strong predictor for CKD progression and prog-
nosis.52 The unilateral ureteral obstruction (UUO) model has
become increasingly popular and is a widely accepted in vivo
model for studying kidney fibrosis because it recapitulates
the fundamental pathological features of CKD, including
tubular injury and atrophy, interstitial infiltration of inflam-
matory cells, myofibroblast activation, and deposition of the
extracellular matrix leading to fibrotic lesions and microvas-
cular rarefaction, in a relatively short time span.53 The UUO
model is performed by ureteral ligation with a short duration
ranging from 3 days to 2 weeks in mice and rats.54 The
fibrotic lesions in this model are very robust and highly
reproducible. Furthermore, this model shows no specific
species, strain, and gender dependence, which are particu-
larly suited for studies involved in genetically modified mice
with C57BL/6J background. Despite these advantages, the
limitations of this model should be carefully considered
because it lacks a functional readout because of the compen-
sation of the unobstructed contralateral kidney. Complete
UUO is uncommon clinically, and therefore, its clinical rel-
evance has been questioned. In this regard, partial UUO
model has also been established using silastic tubing,55 but it
is unpopular because of technical difficulty. Contrary to the
irreversible model of UUO, reversible UUO model has been
established to study the resolution of inflammation and
fibrosis by relieving the ligation of the ureter.56

Epidemiological studies have shown that AKI is a sig-
nificant risk factor leading to progressive CKD.57 Consistent

with clinical studies, a variety of experimental models have
demonstrated that AKI can result in chronic damage and
lead to CKD. As such, those models that are initially used to
incite AKI have been increasingly used for studying CKD
progression in a long-term course. For example, CKDs are
induced by severe UIRI,23 two-stage UIRI/UNX in which
UIRI is followed by UNX at a later time point,22 and re-
peated low-dose cisplatin in a long-term protocol.24,58 Of
note, renal function parameters in the two-stage UIRI/UNX
model at the early time points such as 1 day after UNX may
only reflect an impaired compensatory capacity of the in-
jured kidney and do not truly indicate renal failure because
SCr and BUN levels gradually return toward the baseline in
several days after UNX in this model.59 Furthermore, owing
to another surgery required to remove the uninjured
kidney, this two-stage UIRI/UNX induces additional sur-
gical stress to the animals. In recognition of the fact that the
same etiologies such as IRI can induce AKI, CKD, and the
AKI-CKD transition, careful attention should be paid on
selection of the timing to administer therapeutic remedies. It
should be noticed that a key limitation to current models of
AKI-to-CKD progression is the lack of a sustained effect on
renal function. Although fibrosis develops at later time
points after AKI, SCr and BUN values typically return
toward the baseline levels, which preclude the use of renal
function as an end point in evaluating the therapeutic
efficacy of potential remedies in these models.

Remnant Kidney and Other Hypertensive Models
The remnant kidney after 5/6 nephrectomy (5/6NX) in

rodents is a classic and widely used model to mimic the
CKD progression caused by nephron number loss, and it is
also a model of hypertensive CKD. Ligation and ablation
are the most common ways to produce the remnant kidney.
Regarding phenotypic similarities, both methods produce
hypertension, proteinuria, glomerular sclerosis, tubular at-
rophy, tubulointerstitial fibrosis, and possible ESKD.60

However, the ligation model develops more rapid-onset
and more severe hypertension than the ablation model. The
5/6NX model develops hypertension and proteinuria,
which could enable one to continuously monitor the disease
progression. Although 5/6NX model in rats faithfully rep-
licates the most pathological features of human CKD, one
major drawback is that mouse genetic background exerts
quite differential responses to renal mass reduction, and
especially C57BL/6 strain seems highly resistant to the
development of fibrosis and progressive CKD.61 Because
most of the genetically modified (knockout or transgenic)
mice are generated in C57BL/6 background, this drawback
makes 5/6NX model increasingly less popular in mice.
There are several hypertension models, including the

deoxycorticosterone acetate and high-salt diet rodent
model, the spontaneously hypertensive rat model, and
the chronic angiotensin II infusion model. These models
recapitulate many aspects of human hypertensive nephrop-
athy, including hypertension, proteinuria, and glomerulo-
sclerotic and tubulointerstitial fibrotic lesions.62,63

Glomerular Disease Models
Glomerular disease is characterized by two major path-

ological features including podocyte injury leading to
proteinuria and mesangial activation leading to
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Table 2. The commonly used rodent models of CKD

CKD Models Induction
Methods Models(Refs.) Pathology Pros and Cons

Interstitial fibrosis
models

Surgical UUO53,54 c Tubular injury and atrophy.
c Myofibroblast activation and interstitial fibrosis.
c Infiltration of inflammatory cells.

c Work in all species and strains.
c Rapid and robust fibrosis.
c No functional assessment.
c Less clinically relevant.

Severe UIRI23 c Tubular cell injury and atrophy.
c Interstitial inflammation.
c Long-term expression of tubular injury markers and
cytokines.

c Avoid animal loss.
c Significant fibrosis.
c No functional assessment.

Two-stage UIRI/UNX22 c Increased BUN and SCr levels.
c Myofibroblast activation, interstitial fibrosis.
c Interstitial inflammation.

c Avoid animal loss.
c Significant fibrosis.
c SCr and BUN assessing impaired

compensation after UNX.
c Additional surgery.

Drug-induced High-dose folic acid134 c Damage proximal tubular cells.
c Interstitial inflammation.
c Interstitial fibrosis, increased BUN and SCr.

c Modeling intratubular obstruction.
c Moderate fibrosis.

Repeated low-dose cisplatin34,58 c Tubular cell injury and atrophy.
c Interstitial fibrosis, increased BUN and SCr.
c Long-term expression of cytokines.

c Modeling clinical protocol.
c Moderate fibrosis.

Remnant kidney
model

Surgical 5/6 subtotal nephrectomy60,61 c Hypertension.
c Proteinuria, glomerular sclerosis.
c Tubulointerstitial inflammation and fibrosis.

c Recapitulate most human CKD features.
c Work well in rats.
c Resistant in C57BL6 mice.

Hypertensive
nephropathy model

Drug-induced DOCA-salt63 c Low-renin, neurogenic form of hypertension.
c Renal sodium retention, aldosterone release,
inflammation, and mild fibrosis.

c Cardiovascular lesions.

c Neurogenic model of hypertension.
c Relevant to humans.

Ang II infusion62 c Hypertension, lesions in kidney, and extrarenal
organs.

c Proteinuria and mild-to-moderate podocyte injury.
c Renal inflammation and mild fibrosis.

c Imitate systemic RAS activation.
c Affects extrarenal organs such as heart.

Genetic Spontaneously hypertensive rat135,136 c Model of essential hypertension.
c Mild proteinuria.
c Renal inflammation and fibrosis.
c Cardiovascular lesions.

c Spontaneity.
c Enigmatic origin.
c Normotensive WKY rats as controls.

Glomerular disease
models

Drug-induced Adriamycin65,67

Puromycin66,68
c Podocytes injury, proteinuria.
c Glomerulosclerosis.
c Tubular injury and interstitial fibrosis.

c Simple injection operation.
c High reproducibility and relatively low

mortality.
c Resistant in C57BL6 mice.

Immunological Lupus nephritis (NZB/W F1, MRL/lpr,
or BXSB strains)73

c Mesangial proliferation.
c Proteinuria and glomerulonephritis.
c Tubular atrophy and interstitial inflammation.

c Rodent sex-related.
c Variable in individual animals.

Thy-1 nephritis137 c Simple injection operation.
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Table 2. (Continued)

CKD Models Induction
Methods Models(Refs.) Pathology Pros and Cons

c Mesangial cell proliferation.
c Inflammatory cell infiltration.
c Mesangial matrix expansion.
c Proteinuria and hematuria.

Anti-GBM nephritis138,139 c Proteinuria and crescent formation.
c Mesangial cell proliferation.
c Inflammatory cell infiltration.
c Interstitial fibrosis.

c Simple injection operation.
c Variable susceptibility among different

strains.
c Animal loss.

Polycystic kidney
disease models

Hereditary
model

Pcy mice75,76

Cy rats
PCK rats

c Renal cysts formation and grow.
c Renal volume expansion.
c Increased cell proliferation.

c Relatively long lifespan.
c Suitable for pharmacological

experiments.
c Variable severity of phenotypes.

Gene-modified
model

Pkd1 knockout75,76 c Renal cysts formation and grow.
c Renal volume expansion.
c Increased cell proliferation.
c Inflammatory cell infiltration.
c Renal fibrosis.

c Relevant to humans.
c Suitable for cystogenesis research.

UUO, unilateral ureteral obstruction; UIRI, unilateral ischemia–reperfusion injury; UNX, uninephrectomy; SCr, serum creatinine; DOCA, deoxycorticosterone acetate and high-salt; GBM,
glomerular basement membrane. PCK, polycystic kidney; RAT, renin-angiotensin system; WKY, Wistar Kyoto.
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glomerulosclerosis. FSGS is a common primary glomerular
disorder, which can be induced by 5/6NX or numerous
drugs such as Adriamycin and puromycin.64 As the com-
monly used antibiotics for the study of podocyte injury and
glomerulosclerosis,65,66 these drugs exert direct toxic dam-
age to podocytes, thereby impairing the glomerular filtra-
tion barrier leading to proteinuria and glomerulosclerosis.
Pathology of kidney structure and function in these models
largely resembles human FSGS. These models feature simple
injection, high reproducibility, and relatively low mortality.
However, the degree of renal injury in these models is heavily
influenced by the strain, drug dosage and batches, and route
of administration.67,68 In particular, BALB/c mice are very
sensitive to Adriamycin, but C57BL/6 strain is resistant.
Some investigators use a high dose of Adriamycin protocol
in mice with C57BL/6 background and show only limited
success.69,70 Other genetic models also have good performance
for recapitulating the major features of human glomerular
sclerotic disease, such as HIV-associated nephropathy,
NPHS12/2mice, NPHS22/2mice, and Col4a32/2mouse
model of Alport syndrome.71 The albumin overload model,72

characterized by proteinuria and podocyte injury, also imitate
some features of human glomerular diseases.
Another predominant cause of glomerulopathies leading

to CKD and ESKD is glomerulonephritis. Lupus nephritis
is a form of glomerulonephritis caused by systemic lupus
erythematosus, and its spontaneous mouse models are
available. There are three widely used genetically modified
models including NZB/W F1 mice, MRL/lpr mice, and
BXSB mice, exhibiting some similar features relevant to
human lupus nephritis.73,74 Regarding sex, female NZB/W
F1 and MRL/lpr mice are more severely affected; instead,
BXSB mice are more severely affected in males.73 In addi-
tion to the lupus nephritis models, the nephrotoxic serum
nephritis induced by antiglomerular basement membrane
and anti–Thy-1 models are also common experimental
models of glomerulonephritis. Unfortunately, there is no
widely accepted animal model for human IgA nephropa-
thy, despite this disease is highly prevalent.

Polycystic Kidney Disease Models
Polycystic kidney disease (PKD) is an inherited disorder

and often leads to the development of CKD and ESKD. Two
major types of animal model of PKD have been established:
spontaneous hereditary models or gene-modified models.75

The spontaneous hereditary models include pcy mice, cy
rats, and polycystic kidney rats, which are considered suit-
able for testing medicine efficacy because of their relatively
long lifespan of more than half a year. The gene-modified
models include human orthologous PKD1 transgenic mice
and pkd1 gene knockout mice. Both types of animal models
are used to study the mechanism of cystogenesis and the
efficacy of drug therapy. However, disease progression is
often variable in PKD animal models.76 It is necessary to
apply a sufficient number of animals and multiple models
to increase the credibility of the results.

DKD Models
DKD is a leading cause of CKD and kidney failure

globally, particularly in the industrialized nations.77,78

In humans, DKD is characterized by glomerular

hyperfiltration, progressive albuminuria, declining GFR,
and ultimately ESKD.79 Currently, there is a variety of
diabetic animal models that resemble pathophysiology of
both type 1 diabetes mellitus (T1DM) and type 2 diabetes
mellitus (T2DM). However, these animal models could not
recapitulate every aspect of DKD and often only represent
the early stage of diabetic nephropathy and do not progress
to glomerulosclerosis and renal failure. Therefore, it is
necessary to assess the extent to which the pathophysiology
in animal DKD resembles that in humans. In this section,
we concisely summarize some commonly used rodent mod-
els of T1DM and T2DM and evaluate their utility in the
study of DKD (Table 3).

T1DM Models
T1DM is an autoimmune disease caused by the immune

system destroying b cells in the pancreas. Streptozotocin
(STZ), a compound that specifically causes b cell toxicity, is
routinely used to induce T1DM in rodents. Pathological
changes of STZ-induced diabetes include mild-to-moderate
albuminuria, mild glomerular damage manifested by thick-
ened glomerular basementmembrane andmesangial expansion,
and slight tubular changes, but do not develop hypertension,
glomerulosclerosis, or tubulointerstitial fibrosis.80 Although
C57BL/6 is the most commonly used strain in the studies
involving genetically modified mice, CD-1, DBA/2J, and
KK/HlJ mice are more susceptible to diabetic nephropathy.81

To accelerate the progression of DKD to an advanced stage,
two approaches are often used. One is to inject STZ in the
endothelial nitric oxide synthase (eNOS)–deficient mice be-
cause they sensitize to diabetic injury and produce a pro-
gressive DKD, characterized by advanced nephropathic
changes with pronounced albuminuria, glomerulosclerosis,
and interstitial fibrosis.82 Therefore, this model can be used to
study changes in more advanced stages of DKD.83 Another
approach is adding second or third injurious stimuli such as
advanced oxidation protein products, high-fat diet, and/or
UNX on STZ-treated mice, which produces a more advanced
DKD.84,85 Spontaneous T1DM models due to genetic muta-
tions, such as Akita and Ove26 mice, particularly combined
with UNX, are also prevalent tools for DKD research.86,87

T2DM Models
T2DM is more commonly encountered in the clinic and

represents a greater proportion of the worldwide burden.88

Models of T2DM typically use hereditary obesity which can
be established by leptin-deficient (ob/ob) mice or inactiva-
tion of the leptin receptor (db/db) mice. Both models ex-
hibit typical features resembling the early stage of human
DKD including hyperinsulinemia, albuminuria, and hyper-
glycemia. However, they do not experience progressive
kidney dysfunction and therefore fail to manifest advanced
features of DKD. More advanced progressive models can be
induced by manipulation with UNX or genetic modifica-
tion. For example, early UNX can accelerate the develop-
ment of advanced DKD in db/db mice, which display
tubular atrophy, interstitial fibrosis, and inflammation.89

In addition, eNOS2/2 db/db mice have also been created
to accelerate DKD.90,91 It is worthwhile to mention that
animal models of DKD are highly strain-specific. Besides
the traditional rodent models, several studies have reported
novel genetic models by crossbreeding. For example, the
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Zucker diabetic fatty rats, generated by crossbreeding be-
tween ZF rat and Wistar Kyoto rat, are widely used in the
T2DM studies.92

Emerging Models
Rodent models remain to be the mainstay of experimental

approaches in nephrology and have a profound effect on
kidney disease modeling and drug discovery. However, the
findings derived from traditional rodent models cannot
always be extrapolated to humans. In addition, there are
many limitations for using rodent models, such as the
inability to perform high-throughput screening, the high
cost, the time-consuming experimentation, and the diffi-
culty for genetic manipulation. Therefore, in addition to
common rodent models, other animal models as well as
human-derived organoids and kidney-on-a-chip are emerg-
ing for the studies of kidney diseases (Figure 1).

Large Animal Models
Several large laboratory animals, such as pigs, dogs, cats,

sheep, and non-human primates, are also used for studying
human kidney disease. The main advantage of these large

animal models is that they are closer to humans in physical
size, anatomic structure, and physiological features, com-
pared with rodent models. The larger physical size enables
the acquisition of sufficient amounts of blood and tissue
material for experimental analysis. However, tools such as
genetic modification, antibodies, and commercial test kits
are not as advance in large animal models as they are in
rodent models. Furthermore, large animals are costly to
house and use and require specially trained surgeons.
Mini pigs, with kidney size resembling that of the human

kidney, are the most commonly used large animal model in
nephrology research. It has been reported that the AKI
model induced by IRI in pigs exhibits significant impair-
ment within 3 days after reperfusion and begins to recover
gradually afterward.93,94 The nephrotoxic AKI induced
by drugs, such as cisplatin and gentamicin, has also been
developed in pigs.95 Compared with gentamicin, cisplatin-
induced model is more reproducible. In addition to AKI
models, researchers have successfully established porcine
CKD models by performing nephrectomy,96 inducing
bilateral renal artery stenosis,97 or by knocking out
PKD1 gene.98 Because of the body size and anatomical
resemblance to humans, surgery instruments such as

Table 3. The experimental models of diabetic kidney disease

Disease Induction
Methods Models(Refs.) Pathology Stage

Simulating

T1DM Drug-induced STZ mice80 c Mild-to-moderate albuminuria.
c Mild glomerular and tubular damage.
c No hypertension, glomerulosclerosis, or interstitial

fibrosis.

Early

STZ/eNOS2/2 mice82 c Albuminuria.
c Glomerulosclerosis.
c Interstitial fibrosis.

Advanced

Spontaneous Akita mice86 c Hyperglycaemia.
c Mild hypertension, modest albuminuria.
c No glomerular or interstitial fibrosis.

Early

Ove26 mice87 c Progressive albuminuria.
c Glomerulosclerosis, interstitial fibrosis.
c Poor viability.

Advanced

T2DM Spontaneous Zucker diabetic fatty rat92 c Hyperlipidemia.
c Moderate hypertension and obesity.
c Progressive renal injury.
c High cost and slow progression to CKD.

Advanced

db/db mice140 c Glomerular and tubular hypertrophy.
c Modest albuminuria.
c Mesangial matrix expansion.
c No glomerular and interstitial fibrosis.

Early

db/db mice with UNX89,90 c Proteinuria and tubular atrophy.
c Interstitial fibrosis.
c Inflammation.

Advanced

db/db mice with eNOS2/
291

c Albuminuria.
c Arteriolar hyalinosis.
c Glomerulosclerosis, interstitial fibrosis.

Advanced

ob/ob mice141 c Podocyte loss, GBM thickening.
c Mesangial matrix expansion.
c No mesangiolysis, glomerular sclerosis.

Early to
modest

Early stage: mild-to-moderate albuminuria, mild mesangial expansion, reduced nephrin expression. Advanced stage: moderate to
macroalbuminuria, severe mesangial expansion and thickened glomerular basement membrane, podocyte loss, glomerular sclerosis,
and tubulointerstitial fibrosis. T1DM, type 1 diabetes mellitus; STZ, streptozotocin; eNOS, endothelial nitric oxide synthase; T2DM,
type 2 diabetes mellitus; db/db, leptin receptor deficient; UNX, uninephrectomy; GBM, glomerular basement membrane; ob/ob, leptin
deficient.
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laparoscope used in humans can be used in mini pigs. Like
murine models, general attributes such as sex, strain, age,
and body weight of pigs have an effect on some experi-
mental results. Some important limitations of porcine mod-
els include the lack of elaborated data at the molecular level
and the high cost of rearing.

Salamander Model
The salamander (axolotl) may be an underestimated tool

for studying kidney injury and regeneration. A distinct
advantage of the axolotl is its unique and powerful regen-
erative capability.99 The axolotl kidney shares remarkable
structural, molecular, and functional similarities with the
mammalian kidney.99,100 New tools for studying axolotl
are improving with the development of their genome
resources.101 Recent studies on single-cell RNA-seqencing
profiles have provided many insights into understanding of
the mechanism underlying axolotl organ regeneration.102

Using gentamicin-induced nephrotoxicity and doxorubicin-
induced glomerular injury models, new studies have shown
that axolotl nephrons including renal tubules and glomeruli
can completely regenerate after severe renal injury.99 In this
context, axolotl may be an invaluable model for understand-
ing the mechanisms of kidney injury repair and regeneration.
However, axolotl is inapplicable to the long-term CKD pro-
gression studies, owing to its ability to repair and regenerate
the injured nephrons in several weeks.

Zebrafish Model
Zebrafish is an alternative animal model to study the

pathophysiology and molecular mechanism of human
kidney diseases because nephron structures of the fish

recapitulate various aspects of mammalian kidney mor-
phology and function.103 Zebrafish is often used for inves-
tigation of drug-induced AKI including cisplatin, gentami-
cin, and doxorubicin, which exhibit similar nephrotoxic
response and injury biomarkers to those of mammals, sug-
gesting applicability to pathological characterization.104

Moreover, the small size, low cost, and large quantity of
zebrafish and the feasibility of live time-lapse imaging
based on fluorescent tracers makes it possible for high-
throughput drug screening and for disease progression
monitoring. Genetic manipulations are also widely imple-
mented in zebrafish to model glomerular disease and
PKD.105 However, similar to axolotl, zebrafish is also in-
applicable to CKD studies because of its regenerative abil-
ity. Moreover, although the kidneys of zebrafish and mam-
mals have a close functional analogy, there are structural
differences. Zebrafish kidney represents the pronephros
rather than the metanephros in mammals. There is no
bladder in zebrafish, making it difficult to detect changes
in the urine for assessing renal function.

Drosophila Model
A wide range of models of kidney diseases have been

developed in drosophila because many kidney-associated
genes are shared between flies and mammals.106 Major
advantages of the fly models include their low cost, short
lifespan, simple renal system, and the availability of live
imaging and easy genetic manipulation, as compared with
mammalian system. Flies can be fed with chemical com-
pounds before dissection for testing therapeutic efficacy.
When combined with genetic manipulation, flies can be
humanized by introducing human genes. Currently,

Experimental models

Human kidney disease

Applications

Rodent Mini pig

Ischemia

AKI CKD

Hypertension
Glomerulonephritis

Diabetes

Inflammation
Interstitial fibrosis

Increase in Scr,
or Oliguria

Nephrotoxins

Sepsis

Disease modeling Target validation Mechanism delineation Drug screening Toxicology

Salamander Zebrafish Drosophila Kidney organoid Kidney-on-a-chip

Figure 1. Schematic presentation of commonly used experimental models of kidney diseases and their applications. The experimental
models used to study human kidney disease are diverse in species. Rodent models remain to be the mainstay of experimental approaches in
nephrology and have a profound effect on kidney disease modeling, target validation, mechanism delineation, potential drug discovery, and
toxicology evaluation. Although rodent models dominate kidney research, the use of large animals, such as mini pigs or simple and humanized
models such as salamander, zebrafish, drosophila, human-derived kidney organoids, and kidney-on-a-chip, can also provide important
insights into the pathogenesis of kidney disease and enable high-throughput screening for therapeutics to prevent and treat human kidney
disorders. SCr, serum creatinine.
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drosophila systems have been taken in studying nephroli-
thiasis, glomerular disease, tubular disorders, diabetic ne-
phropathy, and stone disease.107 Further applications of
flies for large-scale screening may help to facilitate the
discovery of therapeutic drugs. Nonetheless, some limita-
tions need to be pointed out when using the drosophila
model system. For example, the insect kidney is not vascu-
larized and lacks a renin–angiotensin–aldosterone system,
and dysregulation of which plays an important role in the
pathogenesis of mammalian kidney diseases.

Human-Derived Kidney Organoids
The emergence of three-dimensional (3D) organoids orig-

inated from stem cells by means of self-organization has
brought a tool innovation for human kidney development
and disease interrogation.108 Organoids permit in vivo and
in vitro investigation on human tissues and display near-
physiologic cellular composition and behaviors. Therefore,
organoids have been rapidly applied to human disease
modeling and providing knowledge for translational med-
icine and personalized therapy.109 Human kidney organo-
ids derived from human pluripotent stem cells are being
harnessed to model kidney development and diseases. In
comparison with other models, kidney organoids comprise
several major advantages, such as human cell-derived, un-
limited supply, high-throughput screening, and high reca-
pitulation of injury response. To date, kidney organoids
have enabled the pathophysiological validation of both AKI
and CKD in a human context. Studies have demonstrated
that exposing kidney organoids to cisplatin and gentamicin,
two drugs that cause AKI in clinic, display substantial
tubular injury and upregulation of AKI biomarkers.110,111

Extensive characterization of the kidney organoids under-
going drug-induced injury through single-cell sequencing
has revealed detailed kidney-specific cell populations and
underlying pathological pathways.112 In addition, knowl-
edge gained from using kidney organoids has improved the
understanding of disease progression from AKI to CKD.113

Leveraging the genetic manipulability of the organoid, the
specific organoids with PKD mutation or podocalyxin-like
deficiency have also been established and could serve as
genetic kidney disease models.114 Although there are
many merits of kidney organoid in deciphering kidney
development and disease, limitations such as poor vascu-
larization, absence of immune cells and lack of perfusion
and glomerular filtration and tubular flow should be care-
fully considered.115

Kidney-on-a-Chip
With the advances in microelectromechanical systems

and 3D printing techniques, kidney-on-a-chip technologies
hold great potential to improve the in vitro kidney models
that enable microfluidics and vasculature to cells.116

Kidney-on-a-chip devices can include single or multiple
cell types inside a microchamber with continuous fluid
flow recapitulating the tissue microenvironment. Various
kidney-on-a-chip devices have been developed for kidney
disease modeling and drug screening, such as glomerulus-
on-a-chip117 and tubuloids-on-a-chip.118 The integration of
sensors permits real-time monitoring of cell behavior and
cell function.119 Still, most kidney-on-a-chip devices are
composed of a single cell type or single tissue compartment.

Further efforts need to focus on integrating multiple tissue
compartments, such as the tubule, glomerulus, and inter-
stitium, in the kidney-on-a-chip to better mimic overall
kidney tissue function.

Challenges and Perspectives
Despite great efforts and advances in animal modeling of

human kidney diseases, many results from animal studies
have not successfully translated into clinical treatments in
humans. For examples, while abundant studies have dem-
onstrated the therapeutic efficiency of inhibition of TGF-b
signaling in retarding the progression of CKD in animal
models, such a therapy in the clinical trials for patients with
CKD is disappointed.120,121 This disconnection underscores
the vast difference between animal models and humans and
raises concerns about the applicability of the findings from
animal studies.
The reasons behind this discrepancy between animal

models and humans are multifactorial and variable depend-
ing on the nature of the disease, genetic background, sex,
age, and various comorbidities associated with patients. It
should be stressed that there is no such a thing as a perfect
animal model for human kidney disease, and every model
has its own limitations and pitfalls. These limitations in each
model make it a challenge to select appropriate model for a
particular aspect of pathology and for the assessment of
effective therapy.
Animal models are usually performed by using the in-

bred animals with the same or closely similar genetic back-
ground. However, it is well documented that the genetic
makeup in different species and strains plays a determining
role in the pathogenesis and trajectories of kidney disease.
For example, remnant kidney model works well in rats, but
the same procedure causes little nephropathy in C57BL/6
mice. Adriamycin causes severe podocyte injury and heavy
proteinuria in BALB/c mice, whereas C57BL/6 mice are
resistant to its damage. In future perspective, any therapy
may need to be tested in multiple animal models with
different strains to reflect the complex genetic backgrounds
of human populations before proceeding to the clinical
trials.
At present, the vast majority of animal models are per-

formed in healthy young mice and rats, whereas kidney
diseases in the clinical setting often occur in older patients
with various comorbidities. In this context, the translational
success of animal models requires consideration of comor-
bidities, such as old age, diabetes, hypertension, anemia,
and preexisting CKD, to name a few, to establish models
that could recapitulate the clinical situation more accu-
rately. For example, comorbidity model of DKD has been
developed to simulate complications such as hypertension
or atherosclerosis.122 The comorbidity model of AKI with
aged mice has been shown to better reflect the older patient
population.27,123 AKI model with preexisting CKD confirms
the clinical concept that loss of renal mass caused by prior
disease adversely affects the outcome of superimposed
AKI.124 In the future, developing animal models by multi-
ple injurious stimuli to imitate the patients’ conditions with
various comorbidities should be carefully considered and
increasingly used. Another potential issue is that all current
animal studies are performed in the pathogen-free facility.
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Given the emerging role of an altered gut microbiome in the
pathogenesis of kidney diseases,125 whether or to what
extent the different housing environments between the
experimental animals and humans contributes to the failure
of clinical trials remains elusive.
Animal studies are an integral part of scientific inquiry in

kidney disease and play a key role in preclinical develop-
ment of therapeutic drugs. There are many issues needing
to be considered, such as the selection of appropriate dis-
ease model and the choice of animal species and strains.
Although mice are increasingly being used, thanks to the
availability of genetically modified models, rats remain to
be irreplaceable and extensively used in both AKI and CKD
studies as well. Rats not only are an excellent model for
studying CKD-associated comorbidities such as hyperten-
sion, vascular calcification, and anemia in remnant kidney
after 5/6NX, but also have practical advantages because
they enable multiple blood draws, metabolic cage use, and
abundant tissue, blood, and urine for analysis. Another
issue should be kept in mind that zebrafish and drosophila
share only 70% and 60% identities of the same genes with
human, respectively, suggesting that there is a significant
evolutionary distance that may discourage the use of these
models for drug development. Regardless of the animal
type, studies with animal models should be adequately
powered and reproducible within the same laboratory
and other groups. Recently, the International Society of
Nephrology has offered a set of consensus guidance for
preclinical animal studies in translational nephrology.126

Hopefully, these recommendations will facilitate the opti-
mal conduct of translational animal studies and help to
accelerate the development of new drugs to treat kidney
diseases.

Conclusion
Animal models are essential and irreplaceable for un-

derstanding the pathophysiology of kidney diseases and for
evaluating the efficacy of new therapeutics in the preclinical
setting. In the past several decades, rodents continue to be
the most used species for modeling human kidney diseases.
From countless animal studies, we have gained valuable
knowledge and obtained novel insights into the mecha-
nisms, pathologies, and therapeutic targets of kidney dis-
ease. At the same time, it should be stressed that there is no
so-called perfect animal model for human disease. Further-
more, the different responses to the exact same injury in
animals are relatively common and often influenced by the
specific species, genetic background, age, and sex, making it
extremely imperative to select the right animal model for
the question asked. These shortcomings pose a great chal-
lenge in using animal models for imitating human kidney
diseases and call for more cautious interpretation of the
experimental data generated from animal studies.
Although mammalian models dominate kidney research,

the use of simple or humanized models, such as salaman-
der, zebrafish, and drosophila, as well as human-derived
kidney organoids or kidney-on-a-chip, can also provide
important insights and allow a high-throughput screening
at affordable price. As for future perspective, multiple
models with different genetic backgrounds and models
of large animals, such as mini pigs, may be warranted

before clinical trials in patients. Undoubtedly, careful se-
lection and utilization of appropriate animal models will
help to obtain accurate and reliable research results and
provide a solid foundation for future diagnosis, prevention,
and treatment of human kidney diseases.
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