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Abstract

Infections and inflammation during pregnancy or early life can alter child neurodevelopment 

and increase the risk for structural brain abnormalities and mental health disorders. There is 

strong evidence that TORCH infections (i.e., Treponema pallidum, Toxoplasma gondii, rubella 
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virus, cytomegalovirus, herpes virus) alter fetal neurodevelopment across multiple developmental 

domains and contribute to motor and cognitive disabilities. However, the impact of a broader 

range of viral and bacterial infections on fetal development and disability is less well understood. 

We performed a literature review of human studies to identify gaps in the link between 

maternal infections, inflammation, and several neurodevelopmental domains. We found strong 

and moderate evidence respectively for a higher risk of motor and cognitive delays and disabilities 

in offspring exposed to a range of non-TORCH pathogens during fetal life. In contrast, there is 

little evidence for an increased risk of language and sensory disabilities. While guidelines for 

TORCH infection prevention during pregnancy are common, further consideration for prevention 

of non-TORCH infections during pregnancy for fetal neuroprotection may be warranted.
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Introduction

Brain development is a complex process that begins a few weeks after conception and 

continues through childhood and adolescence. In fetal life, exposure to inflammatory or 

infectious agents can perturb or arrest fetal brain programming with major consequences 

for motor abilities, cognitive function and mental health [1,2]. Strong evidence links 

“TORCH” infections in the mother during pregnancy to sensory and motor deficits in the 

child. “TORCH” is a mnemonic which currently stands for Treponema pallidum (syphilis), 

Toxoplasma gondii, “other” pathogens [varicella-zoster virus (VZV), parvovirus B19)], 

rubella virus (RuV), cytomegalovirus (CMV), herpes simplex virus (HSV), hepatitis viruses, 

and human immunodeficiency virus (HIV). Mother-to-child transmission of TORCH 

pathogens can occur either prenatally, perinatally, or postnatally through breastfeeding, but 

most often transmission occurs antepartum through transplacental passage of organisms. 

TORCH infections acquired during pregnancy are characterized by complex fetal brain 

injuries, which can have long-term neurologic effects on the child [3-7] and eventually 

in the adult. In contrast, the impact of most other “non-TORCH” infections on fetal and 

child neurodevelopment and neurologic deficits is poorly understood. There is a large 

body of work examining the risk of prenatal infection on later development of psychiatric 

pathology over the life course [8-10]. However, in this review, we focus on the question of 

whether endemic infectious diseases, like malaria, or bacterial infections (e.g., genitourinary 

infections) can also cause fetal brain injuries that lead to cognitive, motor or other delays 

or disabilities when acquired by a pregnant individual. For these and other non-TORCH 

infections, the impact of a maternal infection on child developmental outcomes is not 

generally appreciated.

The original “TORCH” paradigm was defined in 1971 by Andres Nahmias to capture four 

congenital infections: TOxoplasmosis, Rubella, Cytomegalovirus, and Herpes Simplex Virus 

[11]; the “O” later came to stand for “Other” pathogens that included parvovirus B19 and 
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the “H” was expanded to include hepatitis B virus [12]. Traditionally, TORCH pathogens 

have several common characteristics including a mild illness in the infected mother, vertical 

transmission to the fetus, and a spectrum of several anomalies that develop in the affected 

fetus [13]. More recently, Zika virus (ZIKV) has also been labeled as a new “TORCH” 

pathogen [14-17], due to its link with complex neurologic and sensorineural injuries, 

microcephaly [18], and neurocognitive impairments [19]. However, there are generations 

within the medical and scientific workforce that associate only the specific pathogens 

specified by the “T”, “R”, “C”, and “H” letters with congenital anomalies and neurologic 

impairment. Our current understanding of the complex interactions between maternal 

infections and fetal/child neurodevelopment extends well beyond this simple paradigm. A 

broader range of bacterial and viral infections have now been studied in pregnancy with a 

variable focus on the different neurologic outcomes in the exposed fetus. In this review we 

sought to determine the spectrum of developmental differences posed by a wide spectrum of 

“non-TORCH” infections focusing on non-psychiatric pathology.

The objective of our narrative review was to analyze the strength of the evidence in the 

literature for causal relationships between non-TORCH infections and neurodevelopmental 

delays and disabilities in the child to highlight pathogens of concern beyond TORCH. We 

used a developmental domain framework seeking to classify evidence of delay or disability 

according to functional areas of child development. While there are many developmental 

frameworks and classification systems, in this review we focus on a child’s motor, cognitive, 

sensory, and language development.

Adverse Neurologic Outcomes Induced by TORCH Pathogens

An analysis of the adverse outcomes induced by TORCH pathogens represents a starting 

point for consideration of neurologic outcomes potentially linked to non-TORCH pathogens. 

Notable clinical symptoms that are characteristic of TORCH infections at birth include fever, 

jaundice, low birth weight, purpura (small red or brown dots), blue/purple spots (rash), 

an enlarged liver, and eye injuries or cataracts (Table 1, Figure 1). Among the TORCH 

pathogens, T. gondii, T. pallidum, RuV, CMV, and HSV 1 and 2, HIV and ZIKV are 

known to increase the risk of motor delay and disability through widespread neurological 

damage, particularly in the motor cortex [20-25][26,27]. Studies have also established that 

infants exposed to maternal TORCH infections are at higher risk for cognitive, learning, and 

speech & language delays and disabilities [23,28-34] [22,35-51]. TORCH infections are also 

classically linked to eye injuries, such as congenital cataracts and chorioretinitis [52-58]. 

Auditory development is similarly disturbed by several TORCH infections [59-69]. A range 

of complex motor, learning, speech, sensory and cognitive deficits are strongly associated 

with classic TORCH pathogens.

Maternal Immune Activation Hypothesis

Although not specific for any pathogen, there is another paradigm that requires examination 

when analyzing links between fetal exposure to non-TORCH pathogens and development 

of neurologic deficits. Many epidemiologic and animal studies suggest that non-TORCH 

pathogens induce fetal neurologic injury without direct infection of the fetus (Figure 2). 
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This led to the “maternal immune activation” (MIA) hypothesis which proposed that 

in utero inflammation can alter fetal neurodevelopment through placental transmissions 

of inflammatory signals between mother and fetus. [70-74] Findings from the animal 

literature suggest that maternal infection and inflammation can cause generalized changes 

to white matter and hippocampal development, increased microglial activation as well 

as alterations in the development of the dopaminergic, glutamatergic, serotonergic and 

GABAergic neuronal systems [75-85]. Mechanisms causing abnormal oligodendrocyte 

development and death are also under study [86-89]. Maternal inflammation also appears 

to induce epigenetic changes through histone acetylation, DNA methylation and microRNA 

expression in a host of genes [73,90]. Although it is not yet known how maternal infection 

during particular gestational windows may differentially affect neurologic development, 

evidence from rat studies suggest that infection at different points in gestation may result in 

different neurological pathologies [91].

The MIA hypothesis raised the possibility that any infectious or inflammatory condition in 

the mother might be harmful to the fetal brain. Further, it allowed for the use of pathogen-

associated molecular patterns, like bacterial cell wall components (e.g., Lipopolysaccharide 

or LPS) or viral RNA, to model the impact of common bacterial and viral inflammatory 

insults in animal models on fetal neurodevelopment. The MIA hypothesis also provided a 

broader foundation for epidemiologic studies to analyze links between systemic bacterial 

infections, not thought to infect the fetus, and neuropsychiatric pathology in the child. For 

example, epidemiological studies have investigated the impact of maternal genitourinary 

and respiratory infections on the long-term mental health of the child and risk of autism 

spectrum disorder, schizophrenia, and depression [8-10,92,93]. This framework is valuable 

because it suggests that a broad range of non-TORCH pathogens may also increase the risk 

of neurodevelopmental delay and disability.

Methods of Narrative Literature Review

We created a search strategy designed to focus on particular developmental domains 

rather than on general brain injury. We conducted a literature search through November 

2022 using the PubMed database centering on MeSH terms “Language Disorders”, 

“Speech Disorders”, “Developmental Disabilities”, “Sensation Disorders”, “Intellectual 

Disability”, “Learning Disabilities”, “Behavioral Disorders”, and “Motor Disorders”. First, 

we coupled each MeSH term with the phrase “infection” or “inflammation” through 

the Boolean operator “AND”; next, we coupled these terms with “maternal” or “fetal” 

or “perinatal” or “pregnancy” or “congenital” using the Boolean operator “AND”. We 

also used “maternal immune activation” in combination with “cognitive”, “learning”, 

“language”, “dyslexia”, “dyscalculia”, “dysgraphia”, “hearing”, “vision” and “motor” using 

the Boolean operator “AND”. We utilized this preliminary search to identify the most 

prevalent neurodevelopmental conditions within each developmental domain considering 

primarily human studies (Table 2). Additional papers were added to the review based 

on references that appeared within each paper as well as using the Pubmed “cited by 

tool”, which revealed more recent papers. We excluded literature on psychiatric disorders 

and autism spectrum disorder as our intention was to focus on a set of disabilities and 

delays within a developmental domain framework rather than recapitulate the evidence 
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on psychiatric pathology outcomes. We additionally excluded papers written in languages 

other than English. Our review focused on studies assessing correlations between abnormal 

neurodevelopment in the child after exposure to TORCH or non-TORCH pathogens during 

fetal life. As the focus of the review was on non-TORCH infections, inclusion of articles 

related to TORCH infections represented mainly a comparator.

We considered the body of evidence as strong when there was consistent evidence from 

epidemiological studies from multiple populations with control for confounding and some 

evidence of increasing risk with physical proximity to the fetal compartment or severity of 

the infection as well as support from animal studies. We considered the body of evidence 

weak when there were few or conflicting epidemiological studies without confounder 

consideration in the design and inconsistent animal model study findings. We considered the 

body of evidence as moderate when there were consistent animal model findings and several 

epidemiological studies with confounding considerations with mostly consistent findings.

Results

Evidence Linking Maternal Non-TORCH Infections with Disabilities in Exposed Children 
Strong Evidence – Motor Disabilities

There is compelling evidence from both the human and animal literature that maternal 

infection may increase risk of motor deficits in offspring [91][98,99]. Considering extra-

uterine infections first, there is moderate evidence that prenatal infections including maternal 

genitourinary tract infection may increase the odds of cerebral palsy (CP) in preterm and 

low birthweight infants [100]. A Danish population-based study found an increased risk 

(adjusted HR (aHR), 2.1, 95% Confidence Interval (CI) 1.4 - 3.2) of CP among infants 

whose mothers were diagnosed with genitourinary tract infection during pregnancy [101]. 

Another Danish study focusing on self-reported vaginal infections found an increased risk 

of both CP and spastic CP (aHR 1.52, 95% CI, 1.04 - 2.24; and aHR 1.73, 95% CI, 

1.16 - 2.60, respectively), as well as maternal fever and CP (aHR, 1.53; 95% CI, 1.06 - 

2.21); however these findings may be subject to significant recall bias [32]. Similarly, a 

case-control study in Sweden found an increased risk of CP in infants of mothers who had 

any infection during pregnancy (adjusted odds ratio (aOR) 2.9, 95% CI 1.7 - 4.8), severe 

infection during pregnancy (aOR 15.4, 95% CI 3.0 - 78.1), bacterial growth in urine during 

pregnancy (aOR 4.7, 95% CI 1.5 - 15.2), and antibiotic treatment in pregnancy (aOR 6.3, 

95% CI 3.0 - 15.2) [104]. In a large cohort of extremely preterm infants in the United States, 

maternal cervical or vaginal infection during gestation was associated with increased risk of 

motor delay (aOR 1.7; 95% CI 1.04 - 2.7), though this may be confounded by prematurity 

[105]. Collectively, there is evidence from both European and U.S. cohorts that a variety of 

extra-uterine genitourinary infections in pregnancy are associated with an increased risk for 

development of motor delay and disability.

Among studies considering fetal exposure to bacterial infections or sterile inflammation in 
utero, there appears to be strong evidence for a causal relationship with risk of motor delay 

and or disability. A clinical or histopathological diagnosis of chorioamnionitis, an acute 

inflammation of the placental membranes, typically represents a plausible active or resolved 

polymicrobial bacterial infection that induced a cytokine and chemokine response reaching 
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the fetus [106-110]. A population-based study in California examined chorioamnionitis in 

comparison with maternal genitourinary tract and respiratory infections and found a higher 

odds of CP for the combined clinical and histopathological diagnoses of chorioamnionitis 

(OR 3.1, 95% CI 2.9 −3.4) than for genitourinary infection (OR 1.4, 95% CI 1.3 – 1.6) and 

respiratory infection (OR 1.9, 95% CI 1.5 – 2.2) [111]. A meta-analysis of 26 studies found 

a consistent relationship between chorioamnionitis and risk of CP among full-term infants 

whose mother was diagnosed with clinical chorioamnionitis (RR) 4.7; 95% CI: 1.3 - 16.2) 

[112]. Assuming a causal role of chorioamnionitis in some proportion of cases of cerebral 

palsy, a nested a case-control study using a cohort of 231,582 singleton infants estimated 

that 11% of all cases of CP in singleton births could be attributable to chorioamnionitis 

[96]. As expected, an intrauterine localized infection in close proximity to the fetus was 

associated with a greater increase in the risk for CP than for extrauterine infections.

Considering evidence from animal studies, maternal sepsis was shown to alter strength, 

coordination, function and ability in the offspring in a murine model [94]. Other work in 

mice has demonstrated that experimentally inducing maternal inflammation with pathogen-

associated molecular patterns [poly(I:C)] to mimic an infection causes motor activity and 

coordination deficits that seem to be more pronounced in male offspring [95]. Like the 

mouse model, rabbits exposed to in utero LPS had injury to both white and gray matter as 

well as impaired locomotion and motor deficits related to posture and feeding [96,97].

In contrast to gross motor delay and disability, there is no consistent evidence that 

maternal infection during gestation increases the risk of repetitive and involuntary movement 

disorders like Tourette syndrome or other tic disorders. While a small case-control 

study found that exposure to proinflammatory factors (e.g., autoimmune disease, prenatal 

infection) was more prevalent in mothers of children with tic disorders [113], other studies 

have not found a consistent association between maternal infection and tic disorders 

[114-116]. A large cohort study in Sweden revealed a 60% increase in hazard ratio for 

developing Tourette syndrome and chronic tic disorder in children exposed to prenatal 

maternal infection (aHR, 1.60; 95% CI, 1.23 - 2.09); however this relationship was not seen 

in a sibling-matched sub-analysis suggesting that heritable factors may have a causal role in 

both risk of tic disorders and infection [117].

Moderate Evidence – Cognitive Disabilities

Considering generalized non-TORCH infections, there is evidence from human studies 

that maternal infection may increase the risk of child cognitive delay and intellectual 

disability. Ecological studies have found an increased prevalence of intellectual disability 

in children and adults born during or after peaks of influenza pandemics. Takei et al. 

found increased risk of an intellectual disability diagnosis among patients born after peak 

influenza pandemic periods from 1953 to 1980 in England and Wales [130]. In their 

model, there was a 17% increase in births of what they deemed “mentally handicapped” 

individuals six months after respective seasonal peaks [130]. Another study found that male 

military conscripts in Norway born during the 1969-1970 influenza pandemic had reduced 

intelligence scores in models comparing them with males born before and after [131]. 

Population data from California also suggested that children of mothers who experienced a 
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variety of infections during gestation had an increased risk of intellectual disability; this risk 

was highest with infection in the second trimester [132]. A large cohort study of children 

exposed to maternal systemic bacterial infection during pregnancy in Massachusetts and 

Rhode Island were found have lower IQ scores compared to children that weren’t exposed 

[133]. Similarly, another large cohort study of children exposed to maternal infection in 

utero in the United Kingdom had lower total IQ at 8 years of age compared to children 

not exposed to infection [134]. However, a recent population-based study in Sweden found 

that while maternal infection during gestation was an independent predictor of intellectual 

disability (aHR, 1.37 95%CI 1.23 - 1.51), this relationship was not statistically significant 

in a sibling model stratified on the nuclear family; this data suggested that some or all 

of the relationship between maternal infection and intellectual disability may have been 

related to familial or unmeasured confounders [135]. Conversely, in their bias analyses, 

the authors also studied the relationship between maternal infection in the year preceding 

pregnancy as a negative control and risk of intellectual disability in the child and found 

no statistical association [135]. Overall, the findings from this important study imply that 

some degree of unmeasured confounding may influence the apparent relationship between 

maternal infection and intellectual disability.

Evidence from maternal serum and fetal tissue reflecting systemic inflammatory responses 

aligns well with both animal and epidemiologic studies suggesting that maternal 

inflammation imparts a higher risk for child cognitive developmental delay. Several studies 

have found correlations between maternal inflammatory cytokines like Interleukin-6 and 

C-reactive Protein during pregnancy and changes in the child’s brain structural development, 

working memory and cognitive scores [136-138]. In a secondary analysis of a country-wide 

longitudinal cohort study in the United States, funisitis (inflammation of the umbilical 

cord) was also associated with lower intelligence quotient scores at 4 and 7 years of age 

[139]. Funisitis and infection of the placenta are closely linked pathologic events during an 

intrauterine infection.

Maternal urinary tract infections (UTI) have also been regarded as a potentially important 

source of inflammation during pregnancy. In the Collaborative Perinatal Project which 

enrolled pregnant women across the United States, follow-up studies found that among 

white mothers (in contrast with black mothers) UTI during pregnancy increased risk of 

intellectual disability by 62% in an unadjusted analysis [140]. Langridge et al. also found 

an increased risk of mild-to-moderate intellectual disability among children of mothers with 

UTI during pregnancy in Western Australia in an unadjusted analysis [141]. Evidence from 

a study using public insurance claims data in the United States found similar results with 

infants of women diagnosed with a UTI who did not take antibiotics having increased 

risk of intellectual disability or developmental delay (aRR 1.31, 95% CI 1.12 - 1.54) 

compared to women not diagnosed with UTI and compared to women diagnosed with a UTI 

who completed an antibiotic course (aRR 1.22 95% CI 1.02 - 1.46) [142]. A similar but 

unadjusted study in South Carolina had comparable results [143].

Studies in animal models support the detrimental effects of maternal immune activation 

on offspring cognition and memory [118,119]. Mice exposed to MIA with inflammatory 

antigens were found to have cognitive impairment related to disruption in the 
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catecholaminergic, GABAergic and dopaminergic systems [120-124]. Rats with similar 

inflammatory prenatal exposure had differences in working memory and other cognitive 

domains compared to non-exposed rats [125-129]. Another study among pregnant rhesus 

monkeys injected with viral antigen found decreased brain size and cognitive alterations 

[118].

Lastly, while learning and cognition are difficult to separate, many animal studies have 

focused on learning deficits after in utero exposure to MIA. Learning deficits have been 

observed in mice and rats exposed to bacterial infections, LPS and viral mimics in-utero 

[94,125,144,145]. Some work has focused on the possibility of immunologic mediated risk 

of dyslexia. Vincent et al. injected sera from mothers with multiple children with dyslexia 

into pregnant mice and found resulting worse performance of mouse offspring on spatial 

coordination tasks and suggested that this was due to maternal antibodies [146]. In humans, 

studies into prenatal risk factors for dyslexia date back to the 1950s but have produced little 

suggestive published evidence [147]. Some epidemiologic evidence from China susceptible 

to a high degree of recall bias suggested that prenatal maternal infection may increase risk of 

dyslexia [148].

Minimal Evidence – Language and Sensory Disabilities

While there is an abundance of evidence on the increased risk of abnormal communication 

with maternal immune activation in animal models in line with work examining risk for 

autism spectrum disorder, there is little evidence that non-TORCH maternal infections 

increase the risk of speech or language disorders in humans [149-154]. For example, a 

study examining receptive language ability found no difference in scores between children 

exposed in utero to maternal upper respiratory tract infection compared to those who were 

not [157]. Conversely, another small retrospective cohort study of infants less than 30 weeks 

gestation found that histological chorioamnionitis was associated with language disability 

[158]. A cross-sectional study in France found no increased risk of language delay with 

prenatal inflammation among a group of preterm infants [99]. A large selection of studies 

have found that rats exposed to antenatal inflammation have alterations in communication 

compared to unexposed rats [127,155,156]. Although the complexity of human language is 

not perfectly recapitulated by studying communication and vocalization patterns in animal 

models, one can consider vocalization deficits in animals as an early sign of derailed 

neurodevelopment.

Finally, there is little evidence that exposure to non-TORCH infections during pregnancy 

increases the risk of sensory disabilities. The most common sensory disability implicated 

in maternal gestational infection is sensorineural hearing loss (SNHL) of which immune-

mediated mechanisms secondary to viral infection as well as local cochlear inflammatory 

response are responsible for disease [159]. Two small retrospective studies present 

conflicting results for a link between chorioamnionitis and hearing loss [160,161]. One 

case-control study from Columbia suggested a possible increased risk of decreased visual or 

auditory acuity with maternal acute respiratory tract infection in pregnancy [162].
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Understudied Impact of Malaria and Chikungunya Virus on Child Neurodevelopment

Malaria is one of several mosquito-borne infectious diseases that can increase risk of 

both maternal and fetal morbidity and mortality but has a poorly characterized impact on 

fetal neurodevelopment [163]. Nearly 125 million pregnant individuals reside in tropical 

and subtropical areas of the world and are susceptible to Malarial infection via the 

Anopheles mosquito. Despite this global infectious disease threat, malaria in pregnancy 

still lacks a reliable small animal model [164]. Two cohort studies in Malawi have found no 

association between maternal malaria and motor skills deficits [165,166], although language 

development may be impaired [166]. In a prospective study of 493 mother-offspring pairs 

in Benin, perinatal exposure to malaria, especially with a greater burden of parasites in 

maternal blood, was independently associated with impaired gross motor development in 

infants at 1 year of age, but not at 6 years of age, although the association was observed 

in the crude analysis [167]. In a recent randomized clinical trial conducted in Uganda 

examining the effect of malaria in pregnancy and chemoprevention regimens on child 

neurodevelopmental and behavioral outcomes, it was shown that children exposed to malaria 

in pregnancy had worse cognitive, behavioral, and executive function scores than unexposed 

controls [168]. Interestingly, it was demonstrated that more effective chemoprevention 

regimens did not result in better outcomes, possibly implying that more intensive prevention 

prior to and early in gestation may be more effective.

Over the last two decades, Chikungunya Virus (CHIKV) infection has become the most 

prevalent alphavirus disease in the world through the geographic expansion of the Aedes 

mosquito vectors (i.e., Aedes aegypti and Aedes albopictus) [169]. More recently, CHIKV 

was found to be the main neurotropic pathogen among children with brain infections for 

which cerebrospinal fluid was sampled in coastal Kenya, an area where cerebral malaria and 

bacterial meningitis had declined due to better vector control [170]. CHIKV can cause both 

neonatal encephalopathy [171] and encephalitis [172] when transmitted perinatally due to 

antepartum or intrapartum maternal viremia (absolute risk (AR) 22.5%, 95% CI 9.5 - 35.4% 

among the exposed; AR 47.6%, 95% CI 24.9 - 69.8% among the infected) [169,171-177]. 

When infection occurs perinatally, long-term neurological sequelae include cerebral palsy, 

blindness, and seizures [172,175,176].

On Reunion Island, where perinatal transmission of CHIKV was first documented [171], 

51 percent of children exposed to perinatal mother-to-child CHIKV infection had global 

neurodevelopmental delay at two years of age, (aRR 2.79, 95%CI 1.45 - 3.02) compared to 

uninfected controls in a model adjusted for maternal social status, gestational age, small for 

gestational age and head circumference [176]. Specific cognitive domains affected included 

coordination, language, social, and to a lesser extent, gross motor, and postural abilities. 

Children with encephalopathy or encephalitis exhibited far lower scores across domains than 

children with milder neonatal disease. Postnatal microcephaly and cerebral palsy were also 

documented, suggesting that perinatal transmission of CHIKV shares features with classical 

TORCH pathogens [176]. Given the importance of preventing intrapartum infection with 

CHIKV, and likely malaria, there is a strong need for vaccines and pharmacotherapeutics 

which can block the perinatal transmission of these pathogens to the fetus and prevent severe 

lifelong brain damage.
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Knowledge Gaps

The impact of non-TORCH infections on child development is greatly understudied and 

several systematic reviews are needed that focus on specific developmental domains 

that include evidence from both TORCH and non-TORCH infections. Although the 

impact of malaria and CHIKV exposure in utero on child neurodevelopment is a major 

knowledge gap in the field, there are many other pathogens that may adversely impact fetal 

neurodevelopment which are currently unknown. Studying the impact of a broad range of 

bacterial infections at different bodily sites and across a wide spectrum of disease severity 

is extremely challenging even in countries with national health databases containing decades 

of data. It also becomes difficult to study the impact of perinatal exposure to a viral or 

parasitic disease on child development when it becomes endemic in large parts of the 

world. Although hundreds of millions of pregnant individuals are at risk for acquiring the 

disease annually, many of these women were exposed once or repeatedly to the pathogen 

from a young age resulting in partial or protective immunity. Complex host responses to a 

pathogen can make the impact of the pathogen on the pregnant woman and her child more 

challenging to study, as it is unclear which individuals are truly susceptible and at greater 

risk for disease or transmission to the fetus. Further, public health investment in research 

typically decreases once a pathogen transitions from a pandemic/epidemic to endemic status 

and it becomes more difficult to set up expensive cohorts of exposed children that will 

require complex developmental domain testing over many years. Overall, determining the 

impact of a perinatal exposure to a pathogen on child development is expensive and requires 

investment in infrastructure to follow the children long-term.

Conclusions

TORCH infections are an important cause of disability worldwide across multiple 

developmental domains. However, there is strong suggestive evidence that non-TORCH 

infections during pregnancy may also increase the risk of motor delay and disability. We 

find moderate evidence that fetal exposure to maternal non-TORCH infections increases 

risk of cognitive delay and disability in the child. Except for perinatally acquired CHIKV 

encephalopathy/encephalitis, we find very little evidence for a causal relationship between 

non-TORCH maternal infections (including malaria) and speech and language and sensory 

disabilities. Larger, well-designed studies of whether and how malaria or CHIKV during 

pregnancy may affect neurodevelopment are needed. Further, research into the role of 

genitourinary tract infections in pregnancy would clarify the importance of these infections 

for fetal development. Information systems that align data from pregnancy care and pediatric 

developmental surveillance with new and reemerging pathogens would greatly facilitate 

long-term studies of neurodevelopmental effects of infection during pregnancy. Lastly, 

pathogen avoidance and vaccine administration continue to be cornerstones of infection 

prevention during pregnancy.

With the possible increased risk for global impairments in fetal and child neurodevelopment, 

prevention of infection during pregnancy continues to be crucial for pregnant women and 

their infants. While the role of malaria in gestation and subsequent neurodevelopment 

remains unclear, continued attention to improving coverage of prevention measures like 
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intermittent prophylaxis, Anopheles mosquito reduction and bed nets [178] are essential. 

Although a malaria vaccine for use in pregnancy is not yet available, other infections and 

their sequelae can be prevented during pregnancy [179-181]. For CHIKV, the mechanism 

of mother-to-child perinatal transmission to the fetus remains elusive and a safe vaccine for 

pregnant women or immunotherapy protocols during labor or soon after birth are needed 

[182]. There is growing early evidence but still no consensus on whether infection with 

SARS-Cov2 during pregnancy increases risk of developmental delay in the child [183,184]. 

However, given the known increased risk of pregnancy complications for both influenza 

and SARS-COV2 during pregnancy and the availability of safe and effective vaccines, 

recommendations for continued vaccination and infection prevention measures for pregnant 

persons is warranted.
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Highlights

• We reviewed the evidence for fetal exposure to non-TORCH maternal 

infections and inflammation on the motor, cognitive, language and sensory 

developmental domains.

• We found strong evidence for increased risk of motor delay and disability 

after exposure to non- TORCH maternal infection or inflammation in utero.

• We also found moderate evidence for increased risk of cognitive delay after 

non-TORCH maternal infection or inflammation in utero.

• There was little evidence for increased risk of language or sensory disability.
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Figure 1. Neonatal Outcomes Associated with TORCH infections.
This figure illustrates the neonatal clinical findings associated with TORCH infections 

during pregnancy. TORCH infections in pregnancy are typically associated with a spectrum 

of congenital anomalies including congenital brain injuries, heart defects, sensorineural 

hearing loss, hepatosplenomegaly, liver dysfunction, conjunctivitis, chorioretinitis, lung 

inflammation and infection.
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Figure 2. Fetal Brain Injury in Response to Non-TORCH pathogens.
This figure illustrates some of the mechanisms through which maternal infections caused 

by “non-TORCH” pathogens may alter fetal brain development. Fetal brain changes may 

be mediated through aberrant neurotransmitter signaling, abnormal growth or death of 

oligodendrocytes, microglial activation, direct neuronal injury or death from cytokines, 

oxidative stress, and toxic metabolites.
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Table 1.

TORCH Pathogens, Transmission Temporality, and Neonatal Outcomes

TORCH
Letter

Pathogen
(disease)

Transmission
temporality

Strong clinical correlates of disease
in neonate

T Toxoplasma gondii 
(toxoplasmosis)

Greatest risk for congenital anomalies with a 
maternal third trimester infection

Intra-uterine growth restriction, jaundice, diffuse 
intracranial/intraparenchymal calcifications, 
chorioretinitis, hepatosplenomegaly, petechiae/
purpura, chorioretinitis

T Treponema pallidum 
(syphilis)

Greater risk of congenital disease with 
acquisition in 2nd trimester or later

Thrombocytopenia, maculopapular rash on 
palms & soles, Hutchinson’s teeth, 
hydrocephalus, hepatosplenomegaly, petechiae/
purpura, chorioretinitis

O Parvovirus B19 (Fifth’s 
Disease)

Greater risk of fetal anemia and non-immune 
hydrops in the 2nd trimester. Fetal acquisition of 
infection ~1-3 weeks after maternal infection.

Subcutaneous edema, hydrops fetalis, myocarditis 
& heart failure, retinal and corneal 
abnormalities, hepatosplenomegaly, petechiae/
purpura, chorioretinitis

O Zika virus (Congenital 
Zika syndrome)

Vertical transmission and fetal microcephaly 
can occur with maternal infection in any 
trimester

Newest “TORCH” pathogen due to complex and 
severe neurological injuries of the fetus

R Rubella virus 
(Congenital Rubella 
Syndrome)

Greatest risk with first trimester infection, 
decreasing risk of vertical transmission as 
gestation progresses

Sensorineural hearing loss, cataracts, patent ductus 
arteriosus, pulmonary artery stenosis, myocarditis, 
microphthalmia, glaucoma, “blueberry muffin 
rash,” hepatosplenomegaly, thrombocytopenia, 
petechiae/purpura

C Cytomegalovirus Equal risk for congenital anomalies with 
maternal infection in any trimester Greater risk 
of congenital disease with primary infection as 
opposed to reactivation

Microcephaly, periventricular calcifications, 
sensorineural deafness, Hepatosplenomegaly, 
petechiae/purpura, chorioretinitis

H Herpes virus simplex Worst outcomes linked to perinatal acquisition 
at the time of birth. Greater risk of congenital 
disease with primary infection as opposed to 
reactivation

Skin-eye-mucus membrane lesions, fever, 
vesicular rash, meningoencephalitis, myocarditis, 
cataracts, hepatosplenomegaly, petechiae/purpura, 
chorioretinitis

This table shows the connection between commonly associated “TORCH” pathogens, risk for vertical transmission depending on the time in 
gestation of maternal infection, and the clinical outcomes observed in the neonate. Abbreviations are shown in the table.
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Table 2.

Developmental Domains Analyzed for Injury by Non-TORCH Pathogens or Infections

Developmental
Domain

Defining Features Example Clinical
Diagnoses in the
Child

Motor Deficits in movement and coordination, typically diagnosed when difficulty with 
motor skills affects activities of daily living

Cerebral palsy

Intellectual/
Cognitive

Permanent limitations of cognition and intelligence, characterized by deficits in 
learning, logical reasoning, problem-solving, interpersonal skills, practical skills 
defined by intelligence quotient of less than 70, or 2 standard deviations below the 
median.

Cognitive impairment

Learning Impairments in academic function that are not due to sensory deficits, where difficulty 
is experienced with reading, writing, or mathematics

Dyslexia, dyscalculia, 
dysgraphia, nonverbal 
learning disorders

Communication Speech Disorders: problems with articulation and fluency when speaking
Language Disorders: difficulty comprehending and using spoken or written language 
(form, content, function)

Speech delay, language delay

Sensory Disorders affecting somatosensory system (processing information related to vision, 
hearing, taste, smell and other special senses)

Sensorineural hearing loss, 
decreased visual acuity

This table shows the definitions of the developmental domains that were assessed for associations with maternal non-TORCH infections. For 
another developmental domain framework example with age-specific milestones, see [185].
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