Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Jul;90(3):1077–1083. doi: 10.1104/pp.90.3.1077

b-Type Cytochromes in Higher Plant Plasma Membranes 1

Han Asard 1,2, Mireille Venken 1,2, Roland Caubergs 1,2, Willem Reijnders 1,2, Fred L Oltmann 1,2, Jan A De Greef 1,2
PMCID: PMC1061846  PMID: 16666854

Abstract

The composition and characteristics of b-type cytochromes from higher plant plasma membranes, purified using aqueous two-phase partitioning, were investigated. At least three different cytochromes were identified by their wavelength maxima and redox midpoint potentials (E0′). Cytochrome b-560.7 (E0′ from + 110 to + 160 millivolts) was present in zucchini (Cucurbita pepo) hypocotyls and bean (Phaseolus vulgaris L.) hooks, although in different concentrations. The main component in cauliflower (Brassica oleracea L.) inflorescences (cytochrome b-558.8) is probably functionally similar to this cytochrome. The plasma membrane generally contains two to three cytochrome species. However, the occurrence and concentrations were species dependent. The high potential cytochrome can be reduced by ascorbate but not NADH, and may be involved in blue light perception.

Full text

PDF
1077

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPELMANS F., WATTIAUX R., DE DUVE C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955 Mar;59(3):438–445. doi: 10.1042/bj0590438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Goldenberg H. Plasma membrane redox activities. Biochim Biophys Acta. 1982 Oct 20;694(2):203–223. doi: 10.1016/0304-4157(82)90025-9. [DOI] [PubMed] [Google Scholar]
  3. Grinspon D., Basso N., Ruiz P., Mangiarua E., Taquini A. C. Vascular renin-like activity in aorta and mesenteric artery of the rat. Arch Int Physiol Biochim. 1986 Apr;94(1):1–6. doi: 10.3109/13813458609069099. [DOI] [PubMed] [Google Scholar]
  4. Hendry G. A., Houghton J. D., Jones O. T. The cytochromes in microsomal fractions of germinating mung beans. Biochem J. 1981 Mar 15;194(3):743–751. doi: 10.1042/bj1940743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ishimaru A., Yamazaki I. The carbon monoxide-binding hemoprotein reducible by hydrogen peroxide in microsomal fractions of pea seeds. J Biol Chem. 1977 Jan 10;252(1):199–204. [PubMed] [Google Scholar]
  6. Leong T. Y., Briggs W. R. Partial purification and characterization of a blue light-sensitive cytochrome-flavin complex from corn membranes. Plant Physiol. 1981 May;67(5):1042–1046. doi: 10.1104/pp.67.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lord J. M., Kagawa T., Moore T. S., Beevers H. Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J Cell Biol. 1973 Jun;57(3):659–667. doi: 10.1083/jcb.57.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  9. Parkos C. A., Allen R. A., Cochrane C. G., Jesaitis A. J. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest. 1987 Sep;80(3):732–742. doi: 10.1172/JCI113128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Poole R. J., Briskin D. P., Krátký Z., Johnstone R. M. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles. Plant Physiol. 1984 Mar;74(3):549–556. doi: 10.1104/pp.74.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pupillo P., Valenti V., De Luca L., Hertel R. Kinetic characterization of reduced pyridine nucleotide dehydrogenases (duroquinone-dependent) in cucurbita microsomes. Plant Physiol. 1986 Feb;80(2):384–389. doi: 10.1104/pp.80.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ray P. M. Auxin-binding Sites of Maize Coleoptiles Are Localized on Membranes of the Endoplasmic Reticulum. Plant Physiol. 1977 Apr;59(4):594–599. doi: 10.1104/pp.59.4.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rich P. R., Bendall D. S. Cytochrome components of plant microsomes. Eur J Biochem. 1975 Jul 1;55(2):333–341. doi: 10.1111/j.1432-1033.1975.tb02167.x. [DOI] [PubMed] [Google Scholar]
  14. Rich P. R., Cammack R., Bendall D. S. Electron paramagnetic resonance studies of cytochrome P-450 in plant microsomes. Eur J Biochem. 1975 Nov 1;59(1):281–286. doi: 10.1111/j.1432-1033.1975.tb02453.x. [DOI] [PubMed] [Google Scholar]
  15. Schmidt W., Thomson K., Butler W. L. Cytochrome b in plasma membrane enriched fractions from several photoresponsive organisms. Photochem Photobiol. 1977 Oct;26(4):407–411. doi: 10.1111/j.1751-1097.1977.tb07506.x. [DOI] [PubMed] [Google Scholar]
  16. Van Wielink J. E., Oltmann L. F., Leeuwerik F. J., De Hollander J. A., Stouthamer A. H. A method for in situ characterization of b- and c-type cytochromes in Escherichia coli and in complex III from beef heart mitochondria by combined spectrum deconvolution and potentiometric analysis. Biochim Biophys Acta. 1982 Aug 20;681(2):177–190. doi: 10.1016/0005-2728(82)90021-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES