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The rapid spread of the severe acute respiratory syndrome coronavirus 2 led to a global overextension 
of healthcare. Both Chest X‑rays (CXR) and blood test have been demonstrated to have predictive 
value on Coronavirus Disease 2019 (COVID‑19) diagnosis on different prevalence scenarios. With the 
objective of improving and accelerating the diagnosis of COVID‑19, a multi modal prediction algorithm 
(MultiCOVID) based on CXR and blood test was developed, to discriminate between COVID‑19, Heart 
Failure and Non‑COVID Pneumonia and healthy (Control) patients. This retrospective single‑center 
study includes CXR and blood test obtained between January 2017 and May 2020. Multi modal 
prediction models were generated using opensource DL algorithms. Performance of the MultiCOVID 
algorithm was compared with interpretations from five experienced thoracic radiologists on 300 
random test images using the McNemar–Bowker test. A total of 8578 samples from 6123 patients 
(mean age 66 ± 18 years of standard deviation, 3523 men) were evaluated across datasets. For the 
entire test set, the overall accuracy of MultiCOVID was 84%, with a mean AUC of 0.92 (0.89–0.94). For 
300 random test images, overall accuracy of MultiCOVID was significantly higher (69.6%) compared 
with individual radiologists (range, 43.7–58.7%) and the consensus of all five radiologists (59.3%, 
P < .001). Overall, we have developed a multimodal deep learning algorithm, MultiCOVID, that 
discriminates among COVID‑19, heart failure, non‑COVID pneumonia and healthy patients using both 
CXR and blood test with a significantly better performance than experienced thoracic radiologists.

Abbreviations
DL  Deep learning
CXR  Chest X-rays
AUC   Area under the receiver operating characteristic curve
COVID-19  Coronavirus disease 2019
RT-PCR  Reverse-transcription polymerase chain reaction
SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2
HF  Heart failure
NCP  Non-COVID pneumonia

The outbreak of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), stroke the worldwide population with more than 200 million cases and 4.5 million deaths by 
August 2021. The rapid spread of the pandemic led to a global overexertion of health care and research facilities 
in order to counteract the growing rate of infection. However, a collapse of the sanitary system was imminent 
and inevitable worldwide, and new technologies were needed to speed up the diagnostic process.

The reference for COVID-19 diagnosis is the detection of SARS-CoV-2 viral RNA by real-time polymerase 
chain reaction (RT-PCR). However, the massive requests for sample processing at the beginning of the pandemic 
caused serious delays to obtain results.
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As lung involvement is one of the main causes of morbidity and mortality in SARS-CoV-2 infection, a quick 
identification of characteristic findings in chest imaging can support the diagnosis and speed up the identifica-
tion of COVID-19 positive patients at the emergency units.

Several studies have shown that implementation of deep learning (DL) tools to detect chest X-rays (CXR) 
findings typically associated with SARS-CoV-2 infection, deliver comparable results to those acquired by inter-
pretation of radiologists. However, most of the trained models have a drop in their prediction performance when 
tested over external  datasets1. In addition, one of the main hurdles to overcome when training an algorithm to 
detect Sars-CoV-2 infection in CXR is the similarity of findings with other entities like bacterial pneumonias 
or heart  failure2. On the other hand, models based on laboratory results of peripheral blood also give predictive 
results on  diagnosis3 and  prognosis4.

A key fact to highlight is how the incursion of COVID-19 caused a dramatic drop in the emergency room 
consultations of other pathologies. Later on, after the initial peak, the decline of the COVID-19 prevalence made 
the non-COVID diseases emerge once again at the hospitals. This is relevant due to the challenge of performing 
an efficient differential diagnosis with selected pathologies during a pandemic. It is well known that the predic-
tive value of a diagnostic test is conditioned by the prevalence of the disease and that of COVID varies widely 
throughout the different waves of the  pandemic5. A multicategory approach that takes into account differential 
diagnoses that are more stable in their prevalence could reduce this variability.

With the objective of improving and accelerating the diagnosis of COVID-19, we developed a tool to assist 
physicians in reaching a diagnosis. This tool is a multi-modal prediction algorithm (MultiCOVID) based on CXR 
and blood test with the ability to discriminate between COVID-19, Heart Failure (HF), Non-COVID Pneumonia 
(NCP) and healthy (Control) samples.

Materials and methods
Dataset
We retrospectively collected CXR images and hemogram values from 8578 samples from 6123 patients and 
healthy subjects (mean age 66 ± 18 years of standard deviation, 3523 men) from Parc Salut Mar (PSMAR) Con-
sortium, Barcelona, Spain. Four cohorts were designed: (i) 1171 samples from patients diagnosed with COVID-
19 by RT-PCR from March to May 2020; (ii) 1008 samples of patients who suffered an episode of heart failure 
between 2012 to 2019; (iii) 490 samples of patients diagnosed with non-COVID pneumonia (NCP) from 2018 
to 2019; (iv) 5909 samples of standard preoperatory studies of healthy subjects from 2017 to 2019 (Fig. 1). HR 
and NCP diagnosis were selected as defined by the International Classification of Diseases, Tenth Revision (ICD-
10) code. All the CXR images from groups i-iii were validated by two independent radiologists (MB and JM).

Figure 1.  Flowchart for sample selection and patient inclusion in the study and breakdown of training, 
validation, and hold-out test data sets. Around 25,000 entries were obtained using both CXR images and blood 
test in a time wise manner. The whole dataset totals 8822 entries of paired CXR and blood test data. Samples 
with low completeness (less than 80% of blood test data available) were discarded for the model building.
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Acquisition of blood sample and image data
We included CXR images performed in a period ranging from 1 day before the patient’s diagnosis to 7 days after. 
The images were filtered to include only frontal projections regardless of the quality and the radiography system 
used. Blood sample results were collected within a range of 2 days before or 7 days after the CXR acquisition date 
using PSMAR lab record system, except for control samples whose measurements ranged for 2 weeks. If two or 
more blood test results were collected, measurements were averaged.

CXR images and blood test results were combined in the same dataset and split into train/validation set (90%), 
and hold-out test (10%) set. For training/validation split, we divided the dataset in training (80%) and validation 
(20%) sets with 5 different random seeds. We ensured that there were no cross-over patients between groups.

Deep learning models
Detailed description of the models, training policy and image preprocessing are provided in Supplementary 
Material. In brief, segmentation model is based on a U-Net  architecture6. The CXR-only classification model 
consists of a validated Convolutional neural network (CNN) resnet-34  architecture7. Tabular only-model is an 
Attention-based network (TabNet)8. Joint model is a multi-modal deep learning algorithm which merges the 
CXR-only and the Blood-only models and uses both CXR image and blood tests as input values. It uses Gradi-
ent Blending in order to prevent overfitting and improve  generalization9. MultiCOVID model is an ensemble 
predictor of 5 different Joint models that would classify independently between the different classes. Then it uses 
majority vote to assign a final classification. The whole pipeline development and training was performed using 
fastai deep learning  API10.

Comparison with thoracic radiologist interpretations
Hold-out test dataset consisting of 300 samples (ensuring no patient overlap with training or validation sets) was 
used for expert interpretation. Each sample consisted of a CXR with matched blood results. Expert interpreta-
tions were independently provided by five board-certified thoracic radiologists (FZ, SC, LdC, DR, AG) with 2–30 
years post-residency training experience. Radiologists were able to check both non segmented images and blood 
test results without any other additional information in a platform created ad-hoc for prediction. They provided 
a classification for each image in one of the four categories (COVID-19, control, HF and NCP). A consensus 
interpretation for the radiologist was obtained by the majority vote for each paired CHX-blood test analyzed.

Statistical analysis
A two-tailed t-test P value was reported when clinical and population blood test differences were assessed. 
McNemar–Bowker test was used to compare model performance against radiologist majority vote using FDR 
correction. Plotting and statistical analyses were performed using the packages ggplot, ggpubr and rcompanion 
in R, version 3.6 (R Core Team; R Foundation for Statistical Computing).

Ethical approval
The study was designed to use radiology images and associated clinical/demographic/ laboratory patient infor-
mation already collected for the purpose of performing clinical COVID-19 research by Hospital del Mar. The 
study was conducted in accordance with the relevant institutional guidelines and regulations. The experimental 
protocols, data acquisition and analysis were approved by the Parc de Salut Mar Clinical Research Ethics Com-
mittee (2020/9199/I). Informed consent was obtained, when possible, from patients or legal representatives or 
waived by the local Parc de Salut Mar Clinical Research Ethics Committee (2020/9199/I) if informed consent 
was not available due to the pandemic situation.

Results
Patient characteristics
A total of 8578 samples were evaluated across datasets. Patient characteristics and blood test parameters are 
shown in Table 1. A highly significant difference in age was found between the cohort of patients with heart 
failure (82.8 ± 10 years) and the other three cohorts (66.0 ± 16 years for COVID-19 samples, 63.2 ± 18 years for 
control samples and 67.8 ± 17 years for NCP samples, P < 0.001 for each comparison) and was not considered as 
a valid variable for further classification.

Whole CXR models learn spurious characteristics for classification
Previous studies have demonstrated that deep learning (DL)-based algorithms should be rigorously evaluated 
due to their ability to learn non relevant features in order to increase its prediction  accuracy1. For this reason, we 
first developed a segmentation algorithm able to segment lung parenchyma at a 95%-pixel accuracy. Then, after 
segmentation, we evaluated the accuracy of the algorithms for three complementary datasets: non-segmented 
images, segmented regions and excluded regions. After a few training epochs the three different models achieved 
nonrandom accuracies between 67 and 74% (Fig. 2A). However, attention map exploration on the images showed 
that the different models based their predictions not only inside but also outside of the lung parenchyma (Fig. 2B).

These observations showed that, although there are important features outside the lung parenchyma that may 
help the model to classify between the different entities (eg. heart size), there are other elements (eg. oxygen nasal 
cannulas or intravenous (IV) catheters) that might confound the model. Thus, we decided to first segment all 
the CXR before training our models for prediction of diagnosis. In order to accomplish this task, we generated a 
785-radiology level lung segmentation dataset and trained a U-net model to regenerate the whole CXR dataset 
keeping only the lung parenchyma.
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Performance of single and multimodal models
In order to evaluate the prediction capacity of both segmented CXR and blood sample data, we built different 
DL models using both sources alone or in combination. Metrics comparison of all the single vision (CXR-only) 
and tabular (Blood-only) models are detailed in Supplementary Material. As expected, CXR-only models had 
a more robust prediction of all 4 categories tested compared to Blood-only models (Fig. 3). This difference is 
stronger in the classes with less samples (HF, and NCP) where CXR-only models could identify features in the 
CXR images which are characteristic of these two entities whereas this was not possible with Blood-only models.

Table 1.  Patient characteristics. COVID-19, coronavirus disease 2019; HF, heart failure; NCP, non-COVID 
pneumonia; MHC, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; 
P-LCR, platelet-large cell ratio; PDW, platelet distribution width; RDW, red cell distribution width; MCV, Mean 
corpuscular volume; MPV, mean platelet volume.

Characteristic Overall COVID-19 Control HF NCP

n 8578 1171 5909 1008 490

Age, mean (SD) [Years] 66.128
(18.353)

66.013
(16.612)

63.165
(18.281)

82.823
(10.731)

67.786
(17.011)

Sex, n (%)
H 5023

(58.557)
677
(57.814)

3598
(60.890)

460
(45.635)

288
(58.776)

M 3555
(41.443)

494
(42.186)

2311
(39.110)

548
(54.365)

202
(41.224)

% basophils [%] 0.300
[0.200,0.525]

0.200
[0.100,0.300]

0.400
[0.200,0.600]

0.333
[0.200,0.500]

0.300
[0.175,0.500]

Total basophils [×  103/µL] 0.030 [0.020,0.050] 0.010
[0.010,0.020]

0.040
[0.020,0.055]

0.030
[0.020,0.050]

0.030
[0.017,0.060]

% eosinophils [%] 0.700
[0.100,1.900]

0.000
[0.000,0.300]

0.950
[0.175,2.150]

0.900
[0.200,2.100]

0.600
[0.000,2.200]

Total eosinophils [×  103/µL] 0.060
[0.010,0.160]

0.000
[0.000,0.020]

0.080
[0.020,0.180]

0.070
[0.020,0.160]

0.060
[0.005,0.200]

MCH [pg] 29.650
[28.300,30.900]

29.400
[28.300,30.550]

29.800
[28.433,31.050]

29.200
[27.387,30.700]

29.600
[28.500,30.700]

Hematrocrit [%] 38.000
[33.100,42.250]

40.000
[36.600,43.300]

38.500
[33.600,42.700]

35.200
[31.400,39.200]

32.025
[28.512,36.100]

Red Blood Cells [×  106/µL] 4.290
[3.710,4.809]

4.550
[4.080,4.935]

4.360
[3.743,4.860]

3.930
[3.494,4.370]

3.630
[3.160,4.070]

Hemoglobin [g/dL] 12.600
[10.800,14.150]

13.300
[12.000,14.433]

12.900
[11.067,14.400]

11.300
[10.000,12.700]

10.500
[9.200,12.100]

Leukocytes [×103 /µL] 9.020
[6.771,12.100]

6.420
[5.060,8.860]

9.450
[7.260,12.655]

8.660
[6.894,11.072]

10.950
[7.700,14.781]

% lymphocytes [%] 15.350
[8.333,25.100]

14.900
[9.475,21.900]

16.800
[8.400,27.600]

12.700
[8.200,18.912]

10.100
[5.763,17.850]

Totallymphocytes [×  103/µL] 1.310
[0.800,2.010]

0.930
[0.688,1.270]

1.525
[0.920,2.240]

1.070
[0.740,1.560]

1.140
[0.605,1.680]

MCHC [g/dL] 33.233
[32.200,34.167]

33.000
[32.100,33.900]

33.467
[32.500,34.400]

32.300
[31.300,33.200]

32.717
[31.600,33.750]

% monocytes [%] 7.100
[5.300,8.900]

6.500
[4.400,9.000]

7.100
[5.400,8.800]

8.000
[6.237,9.812]

6.300
[4.308,8.600]

Total monocytes [×  103/µL] 0.635
[0.442,0.840]

0.415
[0.290,0.600]

0.660
[0.480,0.870]

0.690
[0.510,0.890]

0.690
[0.440,0.890]

% neutrophils [%] 75.200
[63.600,84.400]

77.000
[69.100,84.600] 73.467 [60.900,84.100] 76.800 [69.183,82.900] 81.050 

[70.925,89.100]

Total neutrophils [×  103/µL] 6.450 [4.400,9.650] 4.870
[3.470,7.095]

6.673
[4.520,10.080]

6.470
[4.950,8.654]

8.418
[5.500,12.360]

P-LCR [%] 30.700
[25.167,36.900]

30.800
[25.300,36.300]

30.317
[24.950,36.500]

32.858
[26.992,38.400]

32.300
[24.000,40.413]

PDW [fL] 12.600
[11.100,14.400]

12.600
[11.075,14.200]

12.500
[11.100,14.300]

13.000
[11.400,14.900]

12.850
[10.800,15.400]

Platelets [× 10^3/µL] 222.333
[173.000,281.000]

201.000
[157.500,267.000]

227.000
[178.000,280.333]

215.500
[168.000,269.000]

229.500
[161.250,373.625]

RDW-CV [%] 13.900
[13.050,15.300]

13.300
[12.600,14.100]

13.750
[13.000,15.100]

15.325
[14.350,17.100]

14.800
[13.813,16.275]

RDW-SD [fL] 45.100
[41.700,49.650]

43.200
[40.600,46.225]

44.600
[41.337,48.850]

49.833
[46.300,54.975]

48.100
[45.100,52.425]

MCV [fL] 89.000
[85.221,92.700]

88.800
[85.700,92.300]

88.800
[85.000,92.400]

89.950
[85.300,94.263]

90.250
[86.806,93.681]

MPV [fL] 10.700
[10.000,11.500]

10.700
[10.100,11.450]

10.667
[10.000,11.400]

11.000
[10.300,11.700]

10.900
[9.950,11.950]
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Model interpretability of Blood-only models by analyzing feature importance using Shapley Additive 
 explanations12 showed that patient classification was related to two different axes: the immune compartment 
and the red blood cell (RBC) compartment, respectively (Fig. 4A). The first axis seems to be strongly associated 
with COVID-19 classification and shows a specific signature looking at the blood counts (Fig. 4B-top). However, 
the second axis seems to subdivide patients between COVID-19/Control and HF/NCP, although COVID-19 
blood counts seems to be statistically different from Control samples, too (Fig. 4B-bottom).

The combination of CXR and blood tests using multimodal models that combine inputs from tabular and 
image data to perform a global prediction, slightly increased the prediction capacity of the single models even 
when DL tabular models are worse than machine learning (ML—XGBoost) models alone (Supplementary 
Table 1). This underpins the concept that adding new sources of information to the data could increase the 
ability of the models to generate better predictions 13. Moreover, the joint approach used for building Multi-
COVID algorithm resulted on an improved performance in the majority of the metrics analyzed (Fig. 3 and 
Supplementary Table 1).

Comparison with expert thoracic radiologists
Finally, we compared the performance of MultiCOVID algorithm with the interpretation of expert chest radi-
ologists. This comparison was performed with 300 CXR randomly selected from the hold-out test set that were 
independently reviewed by 5 radiologists together with the blood test results. The independent results from 
radiologists showed an accuracy ranging from 43.7 to 58.7%. This value rose to 59.3% (178/300) when the 
consensus interpretation of all 5 radiologists based on the majority vote was considered. Of note, the overall 
accuracy achieved by MultiCOVID was 69.6% (209/300) that was significantly higher than consensus interpreta-
tion (P < 0.001). In addition, for COVID-19 prediction individually, MultiCOVID showed similar sensitivity to 
the radiologists’ consensus but with a much higher specificity, leading to significantly better performance when 
discerning between COVID-19 versus Control and COVID-19 vs HF patients (P < 0.05 for both comparisons; 
Fig. 5).

Figure 2.  Performance of visual models on whole CXR images. (A) Confusion matrix and overall accuracy 
using whole image, segmented and inverse segmented images, respectively for each category tested. (B) Raw 
image and Grad-CAM heatmap representation of an image for each category and model trained.
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Figure 3.  Performance of different models on the entries from hold-out test datasets. Means for precision 
(green), sensitivity (blue), F1 score (yellow), AUC (red) and accuracy (black diamond) for each model type and 
category assessed, respectively. CXR-only models use only CXR images for 4 category classification. Blood-
only models use blood test a source of information. Joint model uses both CXR and blood test as input for 
classification and MultiCOVID is the majority vote of 5 different Joint models.

Figure 4.  Blood-only model interpretability by SHAP analysis. (A) Summary plot showing the mean absolute 
SHAP value of the ten most important features for the four classes. (B) Blood test values of the different features 
identified by SHAP analysis. RDW-CV: red cell distribution width; MCHC: Mean Corpuscular Hemoglobin 
Concentration; RBC: red blood cells.
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Discussion
Diagnosis of COVID-19 is an evolving challenge. During the beginning of the pandemic and the successive peaks 
with high prevalence rates, a prompt and effective diagnosis was critical for proper patient isolation and evalua-
tion. However, since the prevalence of the COVID-19 cases oscillated, showing fewer cases between waves, and 
more non-COVID cases, it was important to differentiate patients with other diseases than COVID-19 presenting 
similar visual characteristics in the CXR.

During patient assessment in the emergency room, clinicians take into account different inputs for a proper 
diagnosis. First, the anamnesis, symptoms, vitals and physical findings guide the physician to an initial assump-
tion. Based on this information, additional tests are requested (CXR, blood test, ECG and SARS-CoV-2 detec-
tion). The integration of these results allows the team to diagnose a patient accurately. However, this process is 
time consuming and sometimes findings are difficult to interpret, leading to misdiagnosis.

To improve this diagnostic process, we have developed and trained a multimodal deep learning algorithm 
based in a multiple input approach combining CXR images together with blood sample data to identify COVID-
19 diagnosis with high sensitivity. This way we were able to manage the increased complexity of the dataset. These 
data from multiple sources are somehow correlated and complementary to each other and could reflect patterns 
that are not present in single models  alone13.

Hence, MultiCOVID is fed by two of the most common and fast clinical tests requested in the emergency 
room (CXR and Blood test) and can predict the presence of three different diseases (COVID-19, heart failure 
and non-COVID pneumonia) with similar CXR characteristics.

Analysis of single models shows the importance of model interpretation. While CXR-only models could 
identify patterns outside the lung parenchyma that could diminish its generalization  capacity9, Blood-only models 
could point to interesting population of cells that are differently represented in COVID-19 patients, leveraging 
its prediction capacity. In this context, the immune compartment plays an important role in the COVID-19 
response, and it has been already published that COVID-19 patients present fewer overall leukocytes counts 
and, more concretely, eosinophil  counts14, 15. Furthermore, oxygen transport seems to be somehow affected, 
modulating the red cell population. In this regard, in our work we found significant differences in the erythrocyte 
count and the hemoglobin concentration. Although most of the studies correlate the reduction of this values 
to severe COVID-19  patients16, this is the first dataset to compare them in these four different categories at the 
time of diagnosis.

Moreover, although a huge amount of literature about COVID-19 diagnosis and prognosis has been published 
using only blood  tests17–20 or  CXR21–28 this is the first study that combines both parameters and compares its 
prediction capacity at diagnosis. Of note, only one previously published study integrates both blood test and CXR 
severity scores in order to determine in-hospital death of COVID-19  patients29. Hence, it is clear that merging 
both sources of data leads to a better prediction performance when compared with the two single models alone 
and that this difference is more pronounced where the number of cases is scarce. It is important to stress that 

Figure 5.  Comparison of the performance of MultiCOVID model with consensus expert radiologist 
interpretations on random sample of 300 images from the test set. The receiver operating characteristic (ROC) 
curves for each category (COVID-19 – blue; Control – green; Heart Failure (HF) – red and Non-COVID 
Pneumonia (NCP) – magenta) are shown for MultiCOVID (DL) and for the consensus interpretation of 
radiologists (majority vote). Sensitivity (Sens) and specificity (Spec) are also plotted for each category assessed. 
DL: deep learning.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18761  | https://doi.org/10.1038/s41598-023-46126-8

www.nature.com/scientificreports/

this combination of data sources addresses the variable prevalence of COVID-19 cases during the pandemic, 
which is an issue that could not be solved in previous  studies23, 24.

Our study has several limitations. First, the algorithm was evaluated on a single center; thus, there was likely 
some degree of bias. Additionally, the sample collection was performed in different time periods for each group of 
patients, which could present some kind of differences in the CXR image acquisition although this was partially 
solved using the lung segmentation model which removes the noise signal present outside the lung parenchyma. 
And finally, model performance could be influenced by potential shifts in the disease landscape due to COVID-19 
variants and vaccination efforts, which could influence the generalizability and interpretation of our findings.

Conclusions
We have developed a multimodal deep learning algorithm, MultiCOVID, that discriminates among COVID-19, 
heart failure, non-COVID pneumonia and healthy patients using both CXR and blood test with a significantly 
better performance than experienced thoracic radiologists.

Our approach and results suggest an innovative scenario where COVID-19 prediction could be identified 
from other similar diseases and facilitate triage within the emergency room in a COVID-19 low prevalence 
situation.

Data availability
Our code base is provided on GitHub at https:// github. com/ Tato14/ Multi COVID, including weights for each of 
the individually trained neural network architectures and respective model weights for the weighted ensemble 
model. The datasets used and analyzed during the current study will be available from the corresponding author 
on reasonable request. In order to correct samples  bias11, additional metadata information present in the DICOM 
image headers from the CXR would be also available upon request.
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