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We aimed to review the literature to introduce some effective plant-derived 
antioxidants to prevent and treat COVID-19. Natural products from plants are 
excellent sources to be used for such discoveries. Among different plant-
derived bioactive substances, components including luteolin, quercetin, 
glycyrrhizin, andrographolide, patchouli alcohol, baicalin, and baicalein were 
investigated for several viral infections as well as SARS-COV-2. The 
mechanisms of effects detected for these agents were related to their antiviral 
activity through inhibition of viral entry and/or suppuration of virus function. 
Also, the majority of components exert anti-inflammatory effects and reduce the 
cytokine storm induced by virus infection. The data from different studies 
confirmed that these agents may play a critical role against SARS-COVID-2 via 
direct (antiviral activity) and indirect (antioxidant and anti-inflammatory) 
mechanisms, suggesting that natural products are a potential option for 
management of patients with COVID-19 due to the lower side effects and high 
efficiency. 
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INTRODUCTION 

Severe acute respiratory syndrome coronavirus-2 

(SARS-CoV-2) emerged in Wuhan City, Hubei, China and 

led to coronavirus disease 2019 (Covid-19) pandemic (1). 

This coronavirus has a single-stranded, non-segmented, 

large positive-sense RNA genome which belongs to the 

Coronaviridae family (2, 3). The flue-like manifestations, 

including fever and dry cough, were the frequent 

manifestations among the COVID-19 patients (4). These 

mild symptoms can be changed into severe illness and 

progress as dyspnea, hypoxemia, and acute respiratory 

distress syndrome (ARDS) in one week after the onset of 

the disease. It is responsible for the higher mortality rate of 

COVID-19 followed by multi-organ impairment (5). The 

origin of SARS-COV-2 has a 79.5% similarity of genomic 

sequences to SARS-CoV (6). Structural proteins of the virus 
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including spike (S)-, matrix (M)-, envelope (E)-, and 

nucleocapsid (N)-proteins are translated from this genome. 

To invade the host cells, the S-protein binds to angiotensin-

converting enzyme2 (ACE2) receptor (7).  

There is no specific antiviral agent or vaccine against 

SARS-CoV-2 particularly in severe cases (8). Recently, 

some therapeutic approaches were suggested to develop a 

vaccine or drug including the production of an S-protein-

based vaccine, inhibition of the ACE2 receptor, inhibition 

of transmembrane serine protease 2 activity, and soluble 

ACE2 delivery on large scale (9). Currently, using herbal 

medications for the treatment of patients with COVID-19 

along with chemical medicines attracts clinicians’ attention 

(10). Up to now, China and South Korea have prepared 

guidelines to use traditional medicine to prevent and treat 

SRAS-CoV-2 infection (11).  

In the present study, we aimed to review the literature 

to investigate the effects of antioxidants extracted from 

medical herbs and their underlying mechanisms against 

COVID-19. 

 

SARS-COV-2 INFECTION: PATHOGENIC 
FEATURES  

SARS-CoV-2 can apply the injury through direct and 

indirect pathways: 

Direct mechanisms  
SARS-CoV-2 may bind to cells' ACE2 receptor, a 

monocarboxypeptidase on the host cell via S-protein (12). 

Respiratory diseases are the most common characteristics 

of COVID-19 due to the high concentration of ACE2 in the 

respiratory system (9). The different cell types of the 

respiratory system have been reported to express this 

receptor including type II alveolar epithelial cells, 

epithelial cells of bronchioles, and lung vascular cells 

including endothelium and arterial smooth muscle cells. 

However, the involvement of other organs in critically ill 

patients has been reported. The distribution of this 

receptor in other vital organs may contribute to the 

pathogenesis of the non-respiratory manifestation (12). The 

ACE2 expression was confirmed on other cell types, 

including myocardial cells, epithelial cells of ileum and 

esophagus,  different cell types of the kidney (proximal 

and distal tubular cells, parietal and visceral epithelial cells 

of glomerulus), and urothelium of the bladder (13, 14). 

Furthermore, the vascular components, such as smooth 

muscle cells and endothelium of interlobular arteries were 

revealed to express the ACE2 receptor (15). Serine protease 

ACE2 also can be found in mast cells which converts Ang I 

into Ang II (16). Moreover, mast cells release some serine 

proteases (17), particularly the mast cell-serine protease 

tryptase, which plays an essential role in infection by 

SARS-CoV-2 (18). In addition to ACE2, the serine protease 

type 2 transmembrane serine protease (TMPRSS2) is an 

important factor for invading the host cell by this virus 

(19).  

Indirect mechanisms  
Cytokine storm: Unregulated overexpression of 

chemokines and cytokines following the viral infections 

has been reported resulting in the situation so-called 

“cytokine storm” and subsequent “hyperinflammation 

syndrome”; what is detected as a major leading cause of 

COVID-19 pathophysiology induces multi-organ 

dysfunction in infected patients (20). The direct viral attack 

of the lung epithelial cells, dendritic cells, and 

macrophages leads to the systemic cytokine storm, and 

microcirculation dysfunctions in other organs which 

induce the viral sepsis (21). This complex condition is 

responsible for symptoms of COVID-19 in severe patients 

e.g., ARDS and respiratory failure, renal and hepatic 

dysfunctions, and increasing the risk of death in infected 

patients (12). The higher levels of proinflammatory factors 

including tumor necrosis factor (TNF)-α, interleukins (ILs), 

interferon (IFN)-γ, inducible protein-10, granulocyte-

colony stimulating factor, monocyte chemoattractant 

protein-1, and macrophage inflammatory protein-1α were 

recorded in COVID-19 patients, correlated with the 

severity of disease (22). Inflammasomes complex which 

activates IL-1β by stimulation of caspase-1 (23), has been 

revealed to be important in the progress of viral          

illness (24).  
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Activation of mast cells: Mast cells are migrant cells of 

mucosal and connective tissues containing the histamine 

and heparin-rich granules. The pulmonary mast cells are 

activated and degranulated during the infection and 

provide innate and adaptive immune responses to 

respiratory pathogens. These cells are responsible for 

respiratory pathologic conditions such as asthma, 

pulmonary hypertension, and fibrosis (25). The secretion of 

leukotrienes from these cells leads to bronchoconstriction 

which can be exhausted by mast cells-induced renin-Ang 

generating system activation in the lungs (26). SARS-CoV-2 

activates the mast cells placed in the sub-mucosa of the 

respiratory system by inducing the cross-linking of the IgE-

FcεRI or toll-like receptors signaling pathways (27). In the 

early phases of mast-cell activation, degranulation results 

in releasing histamine and proteases. Lately, activated cells 

produce proinflammatory cytokines, contributing to 

cytokine storm development (22). The over-activation of 

mast cells may involve in pulmonary fibrosis in COVID-19 

which plays an essential role in the induction of chronic 

lung disease in recovered patients (10). 

Oxidative stress: The imbalance between the 

antioxidant system and free radicals, leads to oxidative 

stress (OS) (28). OS  has been presented to be a key player 

in SARS-CoV and SARS-CoV-2 infection (29). Generally, 

viral infections results in enhanced free radicals and an 

antioxidant system depletion (30, 31). The sources of free 

radicals are associated with mitochondrial dysfunction as a 

result of the invasion of the virus into the host cell. Besides, 

the relationship between inflammation and OS has been 

established well (32). The cytokines can induce the nitric 

oxide synthetase (NOs) isoforms and stimulate the 

synthesis of NO (33). Thus, the regulation of OS potentially 

can be investigated as a new therapeutic approach for 

improving the outcomes of COVID-19. 

 

NATURAL ANTIOXIDANTS  
The bioactive components of medical plans are 

suggested to be effective for the prevention and treatment 

of COVID-19. Here, we tried to summarize the effects of 

some famous bioactive components on outcome of SARS-

CoV-2 infection.  

Luteolin 
Luteolin (LUT, 3',4',5,7-tetrahydroxyflavone) is a 

common flavone and biologically active agent (34). It exerts 

therapeutic characteristics including antioxidant, anti-

inflammatory, anticancer, autophagic-regulatory, and 

metabolic effects (35). As a dietary source compound, LUT 

has been demonstrated to be a potential antiviral drug, 

particularly against respiratory viruses such as influenza A 

virus (IAV). LUT inhibits the virus function by blocking 

the virus life cycle in the early phase, inhibiting the 

replication, and regulating host proteins (36).  Moreover, 

LUT extracted from the “heat clearing” class of herbs limits 

the replication of the dengue virus via suppression of the 

proprotein convertase furin (37). LUT was demonstrated to 

play an antiviral role against the Epstein-Barr virus via the 

suppression of the lytic cycle (38). Serine proteases of 

viruses can be targeted by LUT, required for viral 

infectivity (39). Furthermore, the protease activity of 

dengue virus NS2B/NS3 was affected by LUT (40). LUT, 

isolated from Torreya Nucifera, can inhibit the SARS-CoV 

3-chymotrypsin-like cysteine protease (3CLpro) that is 

critical for the life cycle of the virus by regulation of its 

replication (41). Due to the sequence similarity of SARS-

CoV-2 3CLpro to SARS-CoV (42, 43), LUT may have 

antiviral features against SARS-CoV-2. In a study using 

molecular docking, the high affinity of LUT to the main 

protease sites of SARS-CoV-2 was recorded (44). 

Furthermore, the SARS-COV-2-induced cytokine storm can 

be controlled by LUT due to its anti-inflammatory 

responses. Also, LUT can suppress mast cells activation 

(45, 46). Methoxyluteolin, a novel LUT analog, inhibits the 

secretion of the proinflammatory cytokines TNF and IL-1 

as well as the mast cells-derived chemokines such as CCL2 

and CCL5 (47-49).  

Enrichment data from in silico molecular modeling 

method showed that LUT is a potential inhibitor of SARS-

CoV-2 (50). In addition, the results of bioinformatics 

analysis and system pharmacology reported that LUT was 

a practical approach for determining its biological 

mechanism against comorbid asthma in COVID-19 
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patients (51). A discovery on possible drug targets and 

curative mechanisms revealed the anti-inflammatory 

effects of LUT. The elevation of immunity and promotion 

of metabolism were introduced as the main mechanism 

and functions of LUT in treating prostate cancer and 

COVID-19. Furthermore, the computational analysis 

demonstrated that MPO and FOS were core drug targets of  

LUT (52). Taken together, LUT is a potential antiviral agent 

for the management of COVID-19. However, in vivo and in 

vitro studies should be performed to determine the efficacy 

and to establish the mechanism of action. 

Quercetin 
Quercetin (QRT, 3,3′,4′5,7-pentahydroxyflavone) can be 

found in various types of vegetables, seeds, leaves, and 

grains. QRT exerts diverse pharmacological features such 

as anti-oxidant, anti-viral, anti-cancer, antihypertensive, 

anti-allergic, anti-inflammatory, and anti-depressive effects 

(53-56). Studies have found that the antiviral features of 

QRT against different viruses such as Hepatitis C Virus 

(57), Enterovirus (58), IAV (54), and SARS-CoV (59). The 

promising antiviral effects of QRT is associated with 

different mechanisms such as suppression of  DNA and 

RNA polymerases (60), reverse transcriptase (61), proteases 

(62), and binding viral capsid proteins (63). The 

Houttuynia cordata extracted QRT 3-rhamnoside was 

reported to show antiviral effects on influenza A/WS/33 

via suppression of virus replication in the early phase of 

infection (55). Moreover, the finding of enzyme inhibition 

assays confirmed that QRT had inhibitory features against 

SARS-CoV 3CLpro (41). QRT-3β-galactoside may inhibit the 

proteolytic effects of SARS-CoV 3CLpro by attaching to its 

binding sites  (59). QRT was revealed to suppress the 

expression of SARS-CoV 3CLpro in Pichia pastoris (80%), 

suggesting that QRT may also exert anti-SARS-CoV-2 

features (64). According to the molecular modeling and 

Q189A mutation,  this suppression of 3CLpro was related to 

the QRT hydroxyl group which detected that QRT binds to 

the Gln189 site on 3CLpro (59). With lower cytotoxicity and 

a half-effective concentration, QRT also has been 

recognized as a substance capable to inhibit SARS-CoV 

invasion into the host cell (65). QRT may block influenza 

virus strains (including H1N1 and H3N2) entry into the 

host cell via interfering with the hemagglutinin protein 

(68). Recently, hydroxyl groups of QRT were reported to be 

able to bind SARS-CoV-2 3CLpro  (59),  the same Gln189 site 

of SARS-CoV 3CLpro (67). Additionally, QRT exerts anti-

inflammatory properties in viral infections and 

significantly regulates the production of chemokines, 

cytokines, and NO in virus-induced macrophages through 

the calcium-STAT signaling pathway (68). In a review 

article,  the synergistic therapy with QRT and vitamin C 

was recommended to prevent and treat COVID-19, due to 

their overlapping immunomodulatory and antiviral 

features (69). Findings from a pilot clinical trial revealed 

that  QRT was a  potential clinical approach for the 

management of  SARS-CoV-2 infection in the early stage 

(70). In another prospective, randomized, controlled, and 

open-label study, adjuvant QRT was shown to be a 

possible therapeutic approach for the treatment of COVID-

19 patients in the early-stage of the disease (71).  According 

to the findings, QRT is a promising therapeutic approach 

with antiviral and anti-inflammatory effects which can be 

investigated for patients with COVID-19.  However, 

existing evidence on the beneficial effects of QRT in 

treating and preventing SARS-CoV-2 infection is 

inadequate.  

Glycyrrhizin  
Glycyrrhizin (GRZ) is a major ingredient of licorice 

root. It has various biological properties, including anti-

tumor, antioxidant, anti-inflammatory, antiviral, and 

neuroprotective activities (72). Licorice and its derivatives 

were introduced as a promising herbal medication for 

treatment and protection against inflammation-induced 

damage in the lung, particularly following SARS disease 

(73). In a study, the efficacy of usual antiviral drugs (such 

as pyrazofurin, ribavirin, mycophenolic acid, and 6-

aziridine) and GRZ were compared on COVID-19 and the 

findings reported that GRZ had a good antiviral effect via 

inhibition of viral adsorption and penetration (74). GRZ 

was also recorded to suppress virus growth and inactivate 
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the virus particles (75). It seems that GRZ may have anti-

SARS-CoV-2 effects due to its structural similarities to 

SARS-CoV (74). Additionally, GRZ can boost the 

production of IFN-γ by T cells (76). Recent studies have 

shown that GRZ can bind to ACE-2 receptors to suppress 

the SARS-CoV entry into the host cell, suggesting that GRZ 

may have improved COVID-19 consequences (77). In a 

pharmacoinformatics study on the bioactive substances 

from Glycyrrhiza glabra, glycerin-A and GRZ were 

identified as potential and useful agents against SARS-

CoV-2 infection via inhibition of S- protein and Nsp15 (78). 

GRZ may inhibit the progress of cytokine storms and 

development of immune hyperactivation (79). Moreover, 

GRZ and its systemically active metabolite, glycyrrhetinic 

acid (GA), may directly target viral infection by decreasing 

the gene expression of   TMPRSS2, which is required for 

SARS-CoV-2 cell entry (80). In another study, it has been 

reported that the besides exhibiting antioxidant, 

immunomodulatory, and anti-inflammatory properties, 

antiviral effects of GRZ and licorice extract are associated 

with their attachment to viral entry proteins. Thus, it can 

disrupt virus-cell fusion and control the infection (81). In a 

randomized clinical trial, it was shown that the 

combination of GRZ and boswellic acids, an inexpensive, 

safe, immunomodulating, anti-inflammatory, and antiviral 

supplement, was beneficial for the treatment of mild to 

moderate COVID-19 (81). Another open-label randomized 

clinical trial developed a protocol to investigate the effects 

of licorice root extract on the manifestation and laboratory 

findings of moderately ill COVID-19 patients with 

pneumonia (82). Overall, GRZ can be utilized for the 

prevention or treatment of patients with COVID-19 in 

clinical studies.  

Andrographolide  
Andrographolide (AGP), a major active component 

extracted from Andrographis paniculata, is recorded to have 

several pharmacological features e.g., immune regulation, 

anti-cancer, hepatoprotection, anti-hyperglycemia, 

antivirus, anti-parasite, and anti-bacteria (83). Several 

studies have demonstrated APG can inhibit various viral 

infections such as IAV, dengue virus, Chikungunya virus, 

HIV, and Enterovirus D68 via a wide range of mechanisms 

interacting with cellular pathways such as autophagy, OS, 

unfolded protein response pathway, etc. (84). The 

investigations further detected that the anti-dengue virus 

activity of APG is associated with its interaction on 78-kDa 

glucose-regulated protein, a main mediator of unfolded 

protein response (85). Moreover, the anti-H1N1 activity of 

APG is related to the suppression of activated RLRs 

pathways and subsequently improves virus-induced cell 

death (86). Docking of the APG with major targets has 

demonstrated that APG can bind well to S-protein, 3CLpro, 

ACE2, papain-like protease (PLpro), and RNA-dependent 

RNA polymerase (RdRp) indicating that APG has potential 

efficacy against SARS-CoV-2. According to the results of an 

in silico study, APG was proven to have a potency of  

SARS-CoV-2 3CLpro inhibition (87). According to the 

network pharmacology analysis, APG and its derivative, 

14-deoxy-11,12-didehydroandrographolide, can be 

effective in the treatment of COVID-19. These active 

components exhibit immunomodulatory properties via 

targeting chemokine signaling (i.e., Rap1 signaling), 

mitogen-activated protein kinase (MAPK or MAP kinase) 

signaling, cytokine/cytokine receptor interaction, nuclear 

factor kappa B (NF-κB) signaling, p53 signaling, RAS 

signaling, hypoxia-inducible factor-1 (HIF-1) signaling, and 

cytotoxicity mediated by natural killer cell (88).  In 

addition, computational methods have identified APG to 

be a potential component for the inhibition of SARS-CoV-

2-triggered cytokine storm by binding with NFkB1 and 

TNF proteins (89). Findings of an in silico approach 

demonstrated that APG with appropriate solubility, 

pharmacodynamics properties, and target accuracy could 

successfully attach to the binding site of the virus, blocking 

the entry of SARS-CoV-2 entry into the host cell (87). In a 

similar investigation, AGP derivatives could bind the 

active site of SARS-CoV-2, including main protease (Mpro), 

spike glycoprotein (S), PLpro, NSP15 endoribonuclease, and 

RdRp (90). Of note, as a novel herbal source medication 

with wide distribution, low cytotoxicity, and antiviral 
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properties, APG is a good candidate to be used as an anti-

SARS-CoV-2 agent, recommending to be further 

investigated in the clinic.   

Patchouli alcohol 
Patchouli alcohol (PA, C15H26O), a natural constituent 

from the Pogostemon (patchouli) leaves and oils is a 

tricyclic sesquiterpene (91). Several pharmacological and 

biological properties including anti-inflammatory, 

antioxidant, antiviral, anti-bacterial, immunomodulatory, 

and antitumor activities were reported for PA (91, 92). In 

an in vitro study, PA was found to show an anti-IAV effect 

while the most sensitive virus to PA was influenza virus 

H1N1 (93). In an in vitro study, the plaque-forming assay 

was used to investigate the anti-influenza virus H1N1  

effects; findings indicated that administration of  PA 

reduced the number of plaques dose-dependently (94). 

Moreover, the anti-IAV effect of PA was found to be 

related to the intracellular ERK/MAPK and PI3K/Akt 

pathways; PA significantly suppresses the in vitro 

proliferation of different IAVes recommending that PA can 

block IAV infection by directly interfering with some early 

stages of life cycle after viral adsorption and disturbing the 

viral particles (95). The anti-H2N2 activity of PA was 

reported to be associated with the suppression of 

neuraminidase functions due to the spatial and energetic 

criteria (96). PA also promoted the protection against IAV 

via attenuating pulmonary and systemic inflammation and 

enhancing host immune responses, confirming that PA can 

protect the human against viruses via both antiviral and 

anti-inflammatory mechanisms in mice models (97). Based 

on molecular interaction studies, patchouli alcohol, 

ergosterol, and shionone were reported to introduce as 

novel drug choice for the treatment of SARS-CoV-2 (98). 

Molecular docking and molecular dynamics simulation 

studies reported that PA exhibited a high affinity for 

SARS-CoV-2 enzymes, including PLpro, 3CLpro, and NSP15, 

inhibiting the virus to invade host cells (99). Accordingly, 

PA may have a beneficial protective effect as anti-

inflammatory and antiviral agent for SARS-CoV-2 

infection. 

Baicalin 
Baicalin (BC, baicalein7-O-β-D-glucuronic acid) is the 

most abundant compound of Scutellaria baicalensis Georgi 

(100). It is well-known to exhibit beneficial biological 

properties e.g., anti-oxidative, anti-tumor, anti-

inflammatory, antiviral, sensitization, and anti-apoptotic 

activities (101). The anti-HIV-1 effects of BC were shown to 

be applied via two mechanisms at the levels of cell entry by 

interfering with cellular receptors and inhibiting of viral 

reverse transcriptase (102). The anti-IAV effects of BC were 

shown to be related to the inhibition of viral replication via 

stimulation of the IFN type I signaling pathway (103). BC 

also could suppress influenza virus H1N1 (A/PR/8/34) 

replication via stimulation of IFN-γ production in major 

IFN-γ producing cells, such as natural killer cells and 

cytotoxic and helper T cells via activation of the 

JAK/STAT-1 pathway (104).  

The anti-SARS-CoV activity of BC has been proven 

using plaque reduction assays (102). It seems that BC may 

also play an anti-SARS-CoV-2 effect due to its high 

sequence similarities to SARS-CoV. Furthermore, the 

inhibitory activity of BC in vitro against the ACE was 

evaluated via UV spectrophotometry: ACE was 

suppressed via this bioactive substance (105). Based on 

isothermal titration calorimetry data, BC was detected as a 

noncovalent and nonpeptidomimetic inhibitor of SARS-

CoV-2 3CLpro with high efficiency to bind specifically to 

proteases (106). In an in vitro study, the inhibitory effects of 

BC on the SARS-CoV-2 proteases including 3CLpro, PLpro, 

and RdRp, were proven. In addition, the pathway analysis 

showed that the antiviral effects of BC were associated 

with signaling pathways of proinflammatory mediator, 

e.g., chemokine and cytokine (107). BC with lower 

cytotoxicity can be developed as an efficient therapeutic 

substance to prevent or treat COVID-19 via further 

investigations.  

Baicalein 
Baicalein (BE, 5,6,7-trihydroxyflavone) similar to BC is 

a principal component found in Scutellaria baicalensis 

Georgi roots (108). BE has effective biological features e.g., 
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antioxidant, anti-inflammatory, anti-apoptotic, and anti-

excitotoxicity effects. It can protect the mitochondria and 

promote cytoprotection (109). The derivatives of S. 

baicalensis have exhibited a wide range of antiviral 

activities against viral infections (110). Among six 

compounds including apigenin, BE, biochanin A, 

kaempferol, LUT, and naringenin, BE exerts  the best 

potency as anti-H5N1 by interfering with virus replication 

and virus-induced cytokine expression (inhibition of IL-6 

and IL-8) (111).  

In mice-infected models of IAV strain FM1, the BE 

could improve the lung index, survival, and inflammatory 

alterations with high doses (112). In cell culture, BE was 

reported to inhibit the A/FM1/1/47 (H1N1) in a dose-

dependent manner via interaction with mRNA synthesis in 

the mid-late phase (113). The synthetic analogs of BE were 

demonstrated to have more antiviral potency against 

H1N1 Tamiflu-resistant (114). Low-dose of BE could 

suppress the neuraminidase enzymatic function in 

seasonal IAV and H1N1(115). Oral administration of BE 

dose-dependently exerts anti-influenza H1N1 

(A/FM1/1/47) effects and increases the mean time to 

death in a mice model via reducing the lung viral titer and 

inhibiting the lung consolidation (116). Recently, in an in 

vitro study using BE at microM concentration, the major 

components of Scutellaria baicalensis was recorded to 

suppress the SARS-CoV-2 3CLpro and viral replication 

(117). Cell-based and biochemical studies showed that BE 

could directly inhibit SARS-CoV-2 RdRp; however, it was 

less effective compared with BC (118). In a preclinical 

study, BE was reported to suppress SARS-CoV-2-induced 

cell injury in Vero E6 cells.  

In addition, BE reversed the body weight loss, 

suppressed viral replication, and improved lung tissue in 

transgenic mice expressing human ACE2 (hACE2) infected 

with SARS-CoV-2. Furthermore, BE relieved the 

respiratory dysfunction, suppressed infiltration of 

inflammatory cells into the lung tissue, and reduced the 

serum levels of IL-1β and lipopolysaccharides (LPS)-

induced acute lung injury (ALI) in mice (119). BE also was 

recognized to suppress SARS-CoV-2 replication by 

affecting oxidative phosphorylation in mitochondria in a 

mPTP dependent manner (120). In another research, 

Scutellaria baicalensis extract and BE were illustrated to 

suppress viral replication and block SARS-CoV-2 enzyme  

3CLpro activity (117) Given efficiency, the development of 

clinical trials to investigate BC anti-SARS-CoV-2 effects is 

suggested.    

 

CONCLUSION 
Natural substances extracted from plants serve as a 

good source of biodiversity for developing novel and 

effective strategies against SARS-CoV-2. Many herbal 

ingredients including LUT, quercetin, GRZ, APG, PA, BC, 

and BE have been observed to demonstrate antiviral 

activities against respiratory viruses suggesting that their 

discoveries can further help develop therapeutic 

approaches. Considering the aforementioned, the natural 

products are safe and inexpensive agents that can mainly 

apply their effects against SARS-CoV-2 via three main 

pathways: 1) Direct inhibition of viral replication and 

cytotoxicity, 2) Direct suppression of viral entry into the 

host cell via high affinity for SARS-CoV-2 enzymes (i.e. 

3CLpro, RdRp, and PLpro), and 3) immunomodulatory 

and anti-inflammatory activity via blockage of cytokine 

storm . 

Further studies also should be conducted to evaluate 

the probability of natural agents’ combination therapies 

with chemical drugs to the synergy risk of generating 

drug-resistant viruses. It seems that natural products will 

continue to increase the efficiency of co-treatment and 

decrease the adverse effects of chemical agents. Taken 

together, natural products alone or combined with other 

approaches could play a critical role and contribute to the 

development of antiviral drugs against SARS-CoV-2 

infection. 
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