Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Jul;90(3):1214–1220. doi: 10.1104/pp.90.3.1214

Transient Accumulation of Nitrite Reductase mRNA in Maize following the Addition of Nitrate

Vance Kramer 1, Kristine Lahners 1, Eduard Back 1,1, Laura S Privalle 1, Steven Rothstein 1,2
PMCID: PMC1061867  PMID: 16666874

Abstract

Expression of the gene coding for nitrite reductase (NiR) is induced upon the addition of nitrate. We have analyzed this induction process in hydroponically grown maize (Zea mays L.) seedlings where the level of nitrate in the medium can be easily manipulated. There is a rapid induction of NiR mRNA upon addition of nitrate, increasing first in the roots and then in the leaves. The rapidity of the response depends on the nitrate concentration and the growth medium. However, the general pattern of expression is the same: the mRNA level increases, reaches a maximum, and then decreases, despite the fact that the nitrate concentration in the medium remains constant. This decline in mRNA level can be quite rapid, particularly in root tissue. If the nitrate is given as a pulse, the mRNA levels decrease even more rapidly. It is clear that the NiR mRNA is short-lived, with a half-life in the roots of less than 30 minutes. The NiR protein level, on the other hand, increases gradually somewhat after the increase in mRNA and remains at high levels at least for 24 hours after the addition of nitrate.

Full text

PDF
1217

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arst H. N., Jr, Cove D. J. Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 2;126(2):111–141. doi: 10.1007/BF00330988. [DOI] [PubMed] [Google Scholar]
  2. Back E., Burkhart W., Moyer M., Privalle L., Rothstein S. Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrate induction. Mol Gen Genet. 1988 Apr;212(1):20–26. doi: 10.1007/BF00322440. [DOI] [PubMed] [Google Scholar]
  3. Calza R, Huttner E, Vincentz M, Rouzé P, Galangau F, Vaucheret H, Chérel I, Meyer C, Kronenberger J, Caboche M. Cloning of DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductases from higher plants. Mol Gen Genet. 1987 Oct;209(3):552–562. doi: 10.1007/BF00331162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cove D. J. Genetic studies of nitrate assimilation in Aspergillus nidulans. Biol Rev Camb Philos Soc. 1979 Aug;54(3):291–327. doi: 10.1111/j.1469-185x.1979.tb01014.x. [DOI] [PubMed] [Google Scholar]
  5. Crawford N. M., Campbell W. H., Davis R. W. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8073–8076. doi: 10.1073/pnas.83.21.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jackson W. A., Flesher D., Hageman R. H. Nitrate Uptake by Dark-grown Corn Seedlings: Some Characteristics of Apparent Induction. Plant Physiol. 1973 Jan;51(1):120–127. doi: 10.1104/pp.51.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kruijer W., Cooper J. A., Hunter T., Verma I. M. Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature. 1984 Dec 20;312(5996):711–716. doi: 10.1038/312711a0. [DOI] [PubMed] [Google Scholar]
  8. Lahners K., Kramer V., Back E., Privalle L., Rothstein S. Molecular cloning of complementary DNA encoding maize nitrite reductase: molecular analysis and nitrate induction. Plant Physiol. 1988 Nov;88(3):741–746. doi: 10.1104/pp.88.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ryder T. B., Cramer C. L., Bell J. N., Robbins M. P., Dixon R. A., Lamb C. J. Elicitor rapidly induces chalcone synthase mRNA in Phaseolus vulgaris cells at the onset of the phytoalexin defense response. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5724–5728. doi: 10.1073/pnas.81.18.5724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shah D. M., Hightower R. C., Meagher R. B. Complete nucleotide sequence of a soybean actin gene. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1022–1026. doi: 10.1073/pnas.79.4.1022. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES