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INTRODUCTION
During normal development, pluripotent stem cells progres-

sively lose plasticity as they commit to one of many diverse 
mature cell states (1). Such cell fate determination is ensured 
by chromatin variants, corresponding to segments of the 
genome that change chromatin state during cellular differen-
tiation (2–4). Chromatin variants identify distinct classes of 
DNA elements contributing to cellular identity, inclusive of 
transcribed genes, their regulatory elements, and anchors of 
chromatin interactions (5–12). In pluripotent stem cells, chro-
matin variants at regulatory elements in nonrepetitive DNA 
reveal binding sites for pluripotent transcription factors, 
namely NANOG, OCT4 (POU5F1), and SOX2, while chro-
matin variants from somatic cell states relate to lineage-spe-
cific transcription factors (2, 3, 13–16). Similarly, chromatin 
variants from transcribed regions capture cell state–specific 
gene expression patterns (17, 18). Collectively, finding and 

characterizing chromatin variants across cell states reveal the 
regulatory processes that impact cell fate determination.

Oncogenesis is also governed by chromatin variants (8, 
19–24). For instance, prostate cancer is characterized by 
chromatin variants that reveal regulatory elements serv-
ing as binding sites for pro-oncogenic transcription factors 
including the androgen receptor (AR), FOXA1, and HOXB13 
(25–29). These chromatin variants are also enriched for muta-
tions and risk variants of prostate cancer (28, 30–34). From 
recent advances in genome analysis, chromatin variants are 
revealing new insights across repetitive DNA sequences that 
constitute over half of the human genome (4). For example, 
chromatin variants repress the expression of endogenous 
retroviral sequences in prostate and other cancer types to 
prevent the activation of the viral mimicry response (35–37). 
Chromatin variants are also reported at repeat DNA that 
reveal the co-option of transposable elements (TE) as “regula-
tory TEs” promoting oncogene overexpression (38–40). While 
the latter aligns with promoter, enhancer, or anchor of chro-
matin interaction functions for TEs in normal development 
(41), whether such regulatory TEs rely on a transcriptional 
machinery shared or not with nonrepetitive DNA sequences 
is unknown. In this study, we identified and characterized 
repetitive DNA serving as regulatory TEs across normal and 
prostate cancer cell states to report a role for AR and FOXA1 
at TEs active in prostatic epithelium compared with pluripo-
tent stem cells, and a switch in primary prostate tumors for 
AR toward a subset of regulatory TEs active in pluripotent 
stem cells that contribute to oncogenic growth.

RESULTS
Pluripotent Stem Cells to Mature Cell and  
Tissue States Harbor Distinct Regulatory TEs

Pluripotent stem cells give rise to diverse somatic tissue 
states. To systematically evaluate the enrichment for TE fami-
lies with regulatory properties in pluripotent stem cells and 
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somatic tissue states, we looked for enrichment of TE families 
within H3K27ac chromatin immunoprecipitation sequencing 
(ChIP-seq) data generated in 339 individual samples from 
32 different cell and tissue states (ENCODE project released 
data; Supplementary Fig.  S1A; Supplementary Table  S1). 
H3K27ac is a feature of chromatin states that typifies active  
regulatory elements and is characteristic of chromatin vari-
ants defining cell state identity (5, 7, 42). Of all repetitive 
DNA, we focused on 971 phylogenetically defined families 
of TEs (43), excluding simple repeats, satellites, short nuclear 
RNA (snRNA)/rRNA, and repeats of unknown subfamilies 
from our analysis. Using ChromVAR adapted to TE families 
(bioRxiv 2021.02.16.431334), we compared pluripotent stem 
cells to each individual cell/tissue state. We observed a higher 
number of TE families enriched within H3K27ac chromatin 
variants in pluripotent stem cells when compared with any of 
the non-extraembryonic mature cell or tissue states (Fig.  1A; 
Supplementary Tables S2 and S3). We also found 92 TE fami-
lies enriched only within H3K27ac chromatin variants from 
a single mature cell or tissue state (Fig.  1B; Supplementary 
Table S4). In comparison, 23 TE families were defined as “regu-
latory TEs” based on being uniquely enriched in H3K27ac 
chromatin variants of pluripotent stem cells, across all pairwise 
comparisons between pluripotent stem cells with mature cell/
tissue states (Fig.  1B; Supplementary Table  S4). By grouping 
TE families into TE superfamilies according to Repbase (see 
Methods), we observed that regulatory TE families found in 
mature cell and tissue states are not restricted to a single super-
family but rather members of ERV, LINE, solo LTR, SINE, 
and Transposon superfamilies (Fig. 1C). For instance, adrenal 
glands harbor chromatin variants enriched for TEs from the 
MER65A family, part of the ERV1 superfamily (q = 5.86e-07, 
Fig. 1D). Similarly, TEs of the L1MC3 family, part of the LINE1 
superfamily, are enriched in the chromatin variants from 
keratinocytes (q = 0.006, Fig. 1D). Finally, TEs of the AluSq4 
family, part of the SINE1 superfamily, are preferentially found 
in chromatin variants from neutrophils (q =  0.004, Fig.  1D). 
In contrast, the 23 regulatory TE families in pluripotent stem 
cells belong solely to the ERV1 superfamily (Fig. 1C), exempli-
fied by the LTR7 TE family (q ≤0.0085, Fig. 1D; Supplementary 
Table  S4), known to control expression of the pluripotent 
stem cell–specific ERVH noncoding RNA (44, 45). Collectively, 
from assessing the enrichment of TE families over regulatory 
elements identified from H3K27ac ChIP-seq, we discovered 
families of regulatory TEs specific to pluripotent stem versus 
mature cell and tissue states, whereby pluripotent stem cell 
specificity is skewed toward TEs of the ERV1 superfamily.

Mature Cell States Are Defined by Regulatory TEs 
for Lineage-Specific Transcription Factors

We next assessed whether regulatory TEs could serve as dock-
ing sites for transcription factors. Using the ReMap atlas of 

1,185 transcription factor cistromes (46), we specifically meas-
ured the propensity of transcription factors to bind to families 
of regulatory TEs from pluripotent stem cell state. From the 
regulatory TE families specific to pluripotent stem cells, we 
found an enrichment for the cistrome of the pluripotency fac-
tors NANOG, SOX2, OCT4 (POU5F1), and KLF4 (Fig. 1E), in 
agreement with previous reports (47, 48). Next, we specifically 
focused on prostate tissue, where transformation into local-
ized prostate cancer and subsequent progression to advanced 
stages of the disease are typified by an initial expansion of chro-
matin variants across nonrepetitive DNA sequences related to 
lineage-specific transcription factors (25, 26, 29), followed by a 
transition toward chromatin variants linked to primitive cell 
states (28). Comparing H3K27ac ChIP-seq data from benign 
prostate (n = 13) and pluripotent stem cell (n = 25) samples, 
regardless of all other somatic tissues, identified 97 regulatory 
TE families enriched in benign prostate samples and 315 regu-
latory TE families enriched in pluripotent stem cells (q ≤0.01, 
Fig.  2A–C; Supplementary Table  S5). Regulatory TE families 
from benign prostate belong to the LINE5, SINE, ERV2, and 
solo-LTRs superfamilies (Fig. 2C). Regulatory TE families from 
pluripotent stem cells, compared with benign prostate, are 
members of the ERV1, Transposon and SINE1, and LINE1 
superfamilies (Fig. 2C).

We next examined which transcription factors could bind to 
the 97 regulatory TE families from benign prostate as opposed 
to the 315 from pluripotent stem cells. Using the ReMap 
atlas of transcription factor cistromes, we discovered that 
CHD7, NANOG, SOX2, OCT4 (POU5F1), TEAD4, GATA6, 
and TRIM28 were among the top 5% of transcription factors 
prone to bind to the largest number of regulatory TE families 
in pluripotent stem cells (Fig. 2D; Supplementary Table S6). In 
comparison, the top 5% of transcription factors in benign pros-
tate included CTCF, AR, XBP1, FOXA1, RELA, GRHL3, and 
hypoxia-inducible factor-1α (HIF1A; Fig.  2E; Supplementary 
Table S7). We specifically reported enrichment of the top 5% 
transcription factor cistromes for at least 17 of the 97 regula-
tory TE families from benign prostate (Fig. 2E). Noteworthy, 
compared with other mature cell and tissue states originating 
from the endoderm germ layer and pluripotent stem cells, 
the AR cistrome was uniquely enriched across the regulatory 
TE families in benign prostate, together with ERG, STAG1, 
TFAP2C, FOXA2, NFYA, and ZFX (Fig.  2E; Supplementary 
Fig.  S1B–S1D). The FOXA1 cistrome was found to prefer-
entially occupy regulatory TE families in prostate, liver, and 
pluripotent stem cells. This observation is in agreement with 
previous studies reporting essential FOXA1 functions in liver 
development and pluripotent stem cell identity (refs. 49, 50; 
Fig. 2D and E; Supplementary Fig. S1B–S1D; Supplementary 
Tables S8–S10).

The specific enrichment of AR and FOXA1 cistromes at 
benign prostate regulatory TE families was prominent at 

Figure 1. The landscape of TE families in active regulatory elements of pluripotent stem cells (PSC) and somatic tissues. A, Bar plot showcasing the 
number of TE families differentially enriched between PSCs and each individual tissue state. Note that the number of TE families enriched is always 
higher compared with somatic tissues. GastroS, gastric sphincter; Mem, memory; Mon, monocyte; Nervs, nerves and neural connections. B, Frequency 
plot of TE families enriched across the different number of somatic tissues and consistently enriched in PSCs. Note that TE families are mostly enriched 
in one somatic tissue state and a set of 23 TE families is always enriched in PSCs. C, Comparison of the number of PSC- and tissue-specific TE families. 
Colors correspond to the tissue state showing enrichment of a given number of TE families (left) or to TE superfamilies (right). Note that PSC-specific TE 
families are populated only by ERV1. D, Examples of tissue state–specific TE families. Box plots show differential deviation Z-scores in PSCs and in all 
somatic tissue states. E, Number of PSC-specific regulatory TE families (rTE) bound by pluripotency factors NANOG, SOX2, POU5F1 (OCT4), and KLF4.
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Figure 2. Distinct TE families populate the active regulatory 
elements of pluripotent stem cells (PSC) and benign prostate tissue. 
A, Heat map displaying the deviation (Dev) Z-scores of TE families 
differentially enriched in H3K27ac-positive chromatin between 
PSCs and benign prostate (rows, q-value ≤0.01). B, Volcano plot 
showing median difference in deviation Z-scores for each TE family 
enriched in H3K27ac-positive chromatin between PSCs and benign 
prostate tissue state vs. the −log10 q-value for that difference. The 
gray dashed line corresponds to −log10(q-value) = 2 (q-value = 0.01). 
The number of TE families enriched in H3K27ac-positive chro-
matin in PSCs or benign prostate is reported at the top. n.s., not 
significant. C, Direct comparison of PSCs vs. benign prostate. Y-axis 
shows all TE superfamilies with enriched TE families in H3K27ac-
positive chromatin; individual points denote distinct TE families. The 
LINE1, ERV2, LTR (no ERVs), and Transposon families are enriched 
in benign prostate, whereas the ERV1, ERV3, and SINE1 families 
are enriched in PSCs (left). Number of TE families enriched in 
H3K27ac-positive chromatin in PSCs or benign prostate, divided by 
TE superfamily (right). TE superfamilies ordered from most highly 
enriched in H3K27ac-positive chromatin in PSCs to benign prostate. 
(continued on following page)

elements from the L1PA6 and LTR5B families [L1PA6: AR 
q  =  0.011, LogOR (lgOR)  =  1.79 and FOXA1 q  =  2.94e-05, 
lgOR = 2.16; LTR5B: AR q = 5.68e-06, lgOR = 2.57 and FOXA1: 
q = 3.23e-07, lgOR = 2.84; Fig. 2F and G]. We further validated 
these observations by computing the cistrome enrichment over 
regulatory TEs using an independent approach relying on the 
GIGGLE tool (51). Our analysis reveals GIGGLE scores for the 
enrichment of AR and/or FOXA1 cistromes across 18 and 20 
of the 97 regulatory TE families from benign prostate, respec-
tively (Fig. 2H; Supplementary Tables S11 and S12), most nota-
ble for the L1PA6 and LTR5B regulatory TE families (Fig. 2H; 
Supplementary Tables  S11 and S12). In parallel, sequence 
analysis identified enrichment for the DNA recognition motifs 
for AR and FOXA1, namely the androgen responsive elements 
(ARE) and the forkhead motifs (FKH), respectively, among 
motifs present within L1PA6 and LTR5B elements (Fig.  2I; 
Supplementary Fig.  S1E). Collectively, these results suggest 

that mature benign prostate harbors regulatory TE families 
that can be bound by the lineage-specific transcription factors 
AR and FOXA1 (52, 53), revealing that regulatory elements in 
repetitive DNA relate to the same transcriptional machinery 
active over nonrepetitive DNA (25, 26, 29).

Regulatory TEs Define a Reprogrammed and 
Constant Prostate Cancer Subtype

Cell state transition leading normal cells to transform into 
cancer cells is accompanied by gains and losses of chromatin 
variants (23). In localized prostate cancer, chromatin variants 
found at nonrepetitive DNA sequences enable lineage-specific 
transcription factors, such as AR and FOXA1, to drive oncogene 
expression (25, 26, 29). We therefore assessed how transfor-
mation to localized prostate cancer could impact regulatory 
properties of TEs. Using H3K27ac ChIP-seq data from two 
independent cohorts of localized prostate tumors [CPC-GENE 
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(25, 27, 54), n  =  48, and Porto, n  =  92 (26); Supplementary 
Fig. S1A] to score the enrichment of TE families in regulatory 
elements, we revealed two subgroups of prostate tumors based 
on unsupervised hierarchical clustering (Fig.  3A and B). We 
labeled a subgroup “constant” because it showed no significant 
enrichment for regulatory TE families (Fig. 3C and D; Supple-
mentary Tables  S13 and S14). We labeled the other subgroup 
“reprogrammed,” being composed of localized prostate tumors 
enriched for regulatory TE families (191 and 357 families for 
the CPC-GENE and Porto cohorts, respectively; Fig.  3C and 
D; Supplementary Tables  S13 and S14). Comparing regula-
tory TE families found in the reprogrammed subgroup across 
both prostate tumor cohorts identified 186 shared regulatory 
TE families, corresponding to 97% and 52% of regulatory TE 
families from the CPC-GENE and Porto cohorts, respectively 
(Fig.  3E). Individual elements belonging to AluJb, HAL1, and 
Tigger3a families exemplify reprogrammed specific regulatory 
TEs (Supplementary Fig.  S2A). A third subgroup of localized 
prostate tumors was also detected in the Porto cohort, being 
similar to the “reprogrammed” subgroup but with lower levels 
of enrichment score for regulatory TE families (Fig. 3B; Supple-
mentary Table S15). Accordingly, this “intermediate” subgroup 
had 205 significantly enriched regulatory TE families, and all 
of them were in common with the “reprogrammed” subgroup 
(Supplementary Fig.  S2B). We observed that 164 of the 186 
(88%) regulatory TE families were shared with those found 
in pluripotent stem cells (164/315, 52%; Fig.  3F). Only 22 of 
the 186 (12%) regulatory TE families from the reprogrammed 
subgroup were shared with those found in the benign prostate 
(22/97, 23%; Fig.  3F). The 164 TE families shared with pluri-
potent stem cells showed a repartition into TE superfamilies 
very similar to pluripotent stem cells, with TE families mostly 
belonging to the ERV1, Transposon and SINE1, LINE1, and 
ERV3 superfamilies (Supplementary Fig. S2C). This suggests a 
high degree of similarity between prostate tumors of the repro-
grammed subgroup with pluripotent stem cells. In agreement, 
our “reprogramming score” based on the 186 regulatory TE 
families shared between the CPC-GENE and Porto cohort pros-
tate tumours (see Methods) is enriched in the reprogrammed 
prostate tumor subgroup, while the intermediate prostate 
tumor subgroup partially enriches and the constant prostate 
tumor subgroup is depleted for this signature (Fig. 3G and H). 
We also found pluripotent stem cells to rank high for the repro-
gramming score, while benign prostate samples were depleted 
for this score (Fig. 3I). Assessing the enrichment of TE families 
in accessible chromatin, using the Assay of Transposase Accessi-
ble Chromatin (ATAC) data previously generated from prostate 
adenocarcinoma (PRAD) samples [The Cancer Genome Atlas 
(TCGA) cohort; ref.  55; Supplementary Fig.  S1A)], stratified 
tumors into two subgroups (Supplementary Fig. S2D; Supple-
mentary Table S16). One subgroup of PRAD tumors enriched 
for 139 regulatory TE families, while the second subgroup was 
deprived of any enrichment (Supplementary Fig.  S2E; Sup-
plementary Table S16). We labeled the first TCGA subgroup as 
“reprogrammed” because 108 of the 139 (78%) regulatory TE 
families from these tumors were shared with the reprogrammed 
tumors from the CPC-GENE and Porto cohorts (108/186: 58%; 
Supplementary Fig. S2F). A total of 102 of the 108 regulatory TE 
families (102/108: 94%) were shared with pluripotent stem cells 
(102/315: 33%), while only six (6/108: 6%; 6/97: 6%) were shared 

with benign prostate (Supplementary Fig. S2G). Furthermore, 
the reprogrammed TCGA tumors were assigned a higher repro-
gramming score compared with the other TCGA tumors we 
labeled as “constant” (Supplementary Fig. S2H). We next investi-
gated whether individual reprogrammed elements were involved 
in onco-exaptation, which has been previously linked to onco-
gene expression. A total of 13 individual elements from nine 
of the 164 regulatory TE families in reprogrammed prostate 
tumors (CPC-GENE and Porto) were shown to be onco-exapted 
in primary prostate tumors (ref. 39; Supplementary Table S17). 
These 13 individual elements correspond to two elements from 
the AluJb, AluSp, AluSx, and AluSz TE families, as well as one ele-
ment from the AluJr, AluSc8, AluSx1, L1MB3, and MER41A TE 
families (Supplementary Table S17). While onco-exaptation was 
linked to oncogene expression (39), only seven of the 13 onco- 
exapted elements classify as regulatory elements in tumors from 
the CPC-GENE and Porto cohorts (four in CPC-GENE tumors 
and three in Porto tumors; Supplementary Fig. S2I). Collectively, 
our results show how localized prostate tumors differ from each 
other based on regulatory TE families by stratifying to constant 
or reprogrammed subgroups. We further show similarities from 
the families of TEs with regulatory properties between the repro-
grammed subgroup and pluripotent stem cells, as opposed to 
benign prostate tissue.

Stratifying prostate tumors from the CPC-GENE and Porto 
cohorts based on the H3K27ac ChIP-seq data over the non-
repetitive genome does not cluster tumors into the repro-
grammed and constant subgroups (Supplementary Fig. S3A 
and S3B). Furthermore, we could not observe a relationship 
between the mutational status of prostate cancer driver genes, 
such as TP53, PTEN, SPOP, CHD1, RB1, NKX3-1, CDKN1B, and 
MYC, and the reprogrammed and constant subgroup stratifi-
cation (Fig. 3J). This result also applied to the TMPRSS2–ERG 
translocation, previously linked to distinct H3K27ac signal dis-
tribution over nonrepetitive DNA in primary prostate tumors 
(refs. 25, 26; Fig. 3J; Supplementary Fig. S3C). Expanding this 
analysis to clinical (time to biochemical recurrence, Gleason 
score, age at diagnosis) and molecular features [AR expres-
sion, hypoxia score, genomic instability (percentage of genome 
altered score), pretreatment PSA, and neuroendocrine score] 
also failed to find any correlation with tumor stratification from 
regulatory TEs (Supplementary Fig. S3D–S3J; Supplementary 
Tables S18 and S19). However, we observed a higher AR activity 
score in reprogrammed patients compared with constant ones 
(Supplementary Fig.  S3H). Collectively, these results suggest 
that a subset of tumors harbor a pluripotent stem cell–like 
biology based on regulatory TE families and that these account 
for a distinct mechanism controlling prostate cancer cell state 
identity compared with nonrepetitive regulatory elements.

Regulatory TEs in Prostate Tumors from the 
Reprogrammed Subgroup Are Binding Sites for 
the Lineage-Specific Transcription Factor AR

We next assessed how the 164 regulatory TE families from 
the “reprogrammed” subgroup of localized prostate tumors  
could impact transcriptional processes. We first used the 
ReMap atlas of transcription factor cistromes to find tran-
scription factors prone to bind to the largest number of 
regulatory TE families from the reprogrammed subgroup. 
This identified 39 and 34 transcription factors from the 
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Figure 3. TE families are reprogrammed in a subset of patients with prostate cancer. A and B, Heat maps displaying the deviation (Dev) Z-scores of TE 
families differentially enriched in H3K27ac-positive chromatin between pluripotent stem cells and benign prostate tissue state across H3K27ac profiles 
of CPC-GENE patients (A; n = 48) or Porto patients (B; n = 92). BCR, biochemical recurrence; NE score, neuroendocrine score; Neg, negative; Pos, positive; 
REP score, reprogramming score. C and D, Volcano plots showing median difference in deviation Z-scores for each TE family enriched in H3K27ac-positive 
chromatin between reprogrammed (REP) and constant (CONST) patients (CPC-GENE patients in C, Porto patients in D) vs. the −log10 q-value for that dif-
ference. The gray dashed line corresponds to −log10(q-value) = 2 (q-value = 0.01). The number of TE families enriched in reprogrammed or constant patients 
is reported at the top. n.s., not significant. E, UpSet plot showing the intersection of TE families enriched in reprogrammed CPC-GENE and Porto patients. 
Note that the vast majority of TE families are commonly enriched. F, UpSet plot showing the intersection of TE families enriched in pluripotent stem cells 
(PSC), benign prostate, and reprogrammed prostate cancer patients. Note that 164 TE families are commonly enriched in patients with reprogrammed 
prostate cancer and PSCs, corresponding to reprogrammed TE families, while 22 TE families are shared between patients with prostate cancer and benign 
prostate. Red font highlights the set of TE families described in the corresponding results section (more precisely, 164 TE families common to prostate 
cancer patients and pluripotent stem cells and 22 TE families common to prostate cancer patients and benign prostate epithelium). G–I, Box plot displaying 
the reprogramming score in reprogrammed and constant CPC-GENE (G) and Porto patients [with intermediate (INT) patients; H], and in pluripotent stem cells 
and benign prostate (I). P value results of Wilcoxon test are showcased on the box plot. J, Breakdown of common prostate cancer genetic aberrations called 
from whole-genome sequencing data in each of the 48 CPC-GENE samples separated by TE-based clustering (left). Comparison of the frequency of genetic 
aberrations using Fisher exact test (right). The red dashed line corresponds to −log10(P) = 1.3 (P = 0.05) threshold. Note that no genetic aberration tested was 
found significantly different between reprogrammed and constant patients. NA, not available.

REP score
Group
Gleason score
BCR status
T2E status
Dataset

NE score
AR act score
REP score
Group
Gleason score
BCR status
T2E status
Dataset

Dev
Z-score

10

5

7.5

EC 191

357

A

B

G H JI

D F

5

151

75

In
te

rs
ec

tio
n 

si
ze

164

22

CPC–GENE
REP

Porto REP

Prostate
CPC–GENE
& Porto REP

PSCs

300 0
Set size

300 0
Set size

171
186

150

100

50

0

200

150

100

50

0

5.0

–L
og

10
 (
q

-v
al

ue
)

–L
og

10
 (
q

-v
al

ue
)

In
te

rs
ec

tio
n 

si
ze

2.5

0.0

10

5

0
0 5 10

Median Z-score difference
(REP – CONST)

15 20

0 5
Median Z-score difference

(REP – CONST)

10

n.s.

Reprogrammed

Constant

n.s.

Reprogrammed

Constant

0

–5

–10

Dev
Z-score

REP score Group Gleason score BCR T2E Dataset NE score AR act score

10

5

0

–5

–10

10 Reprogrammed 6 Neg
Pos

Neg Kron et al. 0.4 10

–0.4

40

30

20

10

0–10

0

10

20

–20

T2E

PSCs & prostatePorto cohortCPC-GENE cohort

P-val
0.0002

P-val
81e-13

P-val
7.2e-15

P-val
1.2e-14

P-val
1.7e-06

Genetic alteration Absent

Constant Reprogrammed –Log10
(P)

0 2

Present NA

TP53 loss

PTEN loss

SPOP loss

CHD1 loss

RB1 loss

NKX3–1 loss

CDKN1B loss

MYC gain

Mazrooei et al.
This study
Stelloo et al.

Pos
ERG high
ERG low

7
8
9

Constant
Intermediate

–5

10

5

0

–5

–10
REP CONST REP CONST INT PSCs Prostate

R
ep

ro
gr

am
m

in
g 

sc
or

e 



Grillo et al.RESEARCH ARTICLE

2478 | CANCER DISCOVERY NOVEMBER  2023	 AACRJournals.org

Figure 4. Reprogrammed TE families act as binding sites for AR. A and B, UpSet plot showing the intersection of transcription factor cistromes found 
in the top 5% most frequent cistromes enriched over reprogrammed TE families in reprogrammed or constant patients (CPC-GENE in A and Porto in B).
Red font highlights the sets of transcription factor cistromes of interest (unique to reprogrammed CPC-GENE or Porto prostate cancer patients). C, UpSet 
plot showing the intersection of transcription factors commonly found in the top 5% most frequent cistromes enriched over reprogrammed TE families in the 
reprogrammed subgroup (CPC-GENE and Porto) but absent in the constant subgroup. Red font highlights the sets of transcription factor cistromes of interest 
(transcription factor cistromes common to reprogrammed CPC-GENE and Porto prostate cancer patients). The six factors labeled in red are then used for D 
and E. D, Frequency of transcription factor cistromes (TF) enriched at reprogrammed TE families in reprogrammed CPC-GENE and Porto patients. The top 
5% most frequently enriched transcription factor cistromes specific to reprogrammed patients is shown. E, Overview of essentiality scores of TFs in D 
across all cancer types available in DepMap with more than five cell lines, based on RNAi data. The distribution of the essentiality scores of each transcrip-
tion factor calculated in prostate cancer cell lines was compared with the distribution of the same transcription factor calculated in each other cancer state 
cell line. Rectangle inner color corresponds to median essentiality score, while border color corresponds to pairwise t test Benjamini–Hochberg–corrected 
P values (Padj). NS, nervous system; n.s., not significant. F, Individual AR cistromes enriched over reprogrammed TE families with enrichment of AR cistrome 
shown in B. Box plots showing enrichment GIGGLE scores of individual AR cistromes profiled in cell lines derived from prostate, mammary, or other tissue 
state in CPC-GENE (top) or Porto (bottom) reprogrammed patients. Note that the Tigger3a, L1ME4b, and LTR5_Hs TE families are the top three TE families 
for enrichment of AR cistromes. G, Enrichment of AR cistromes profiled in reprogrammed (REP), intermediate (INT), and constant (CONST) Porto patients 
at the Tigger3a and L1ME4b TE families. H, Enrichment of AR DNA recognition sequences within Tigger3a and L1ME4b TE families. Bars represent −log10 
(q-value) for CPC-GENE or Porto reprogrammed patients. The red dashed line corresponds to −log10(q-value) = 1.3 (q-value = 0.05) threshold; q-values cor-
respond to Benjamini-corrected P values.
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CPC-GENE and Porto cohorts, respectively (Fig.  4A and B; 
Supplementary Tables S20 and S21). Repeating this analysis 
considering elements from the 164 regulatory TE families 
with H3K27ac ChIP-seq signal in prostate tumors of the “con-
stant” subgroup identified 34 and 33 transcription factors 
in the CPC-GENE and Porto cohorts, respectively (Fig.  4A 
and B; Supplementary Tables  S22 and S23). Fourteen and 
22 were common to the two analyses (Fig. 4A and B), while 
25 and 12 transcription factors were unique to the repro-
grammed subgroup from the CPC-GENE and Porto cohorts, 
respectively, with six found in both cohorts (Fig. 4A–C; Sup-
plementary Tables S20–S23). These include the AR, GTF3C2, 
MLLT1, RBFOX2, TLE3, and ZNF335 transcription factors 
(Fig. 4D). Although the 164 regulatory TE families from the 
reprogrammed subgroup were common to pluripotent stem 
cells, no pluripotent stem cell factors were identified from the 
cistrome enrichment analysis, arguing that regulatory TEs 
unique to pluripotent stem cells are biased to those relevant 
to the recruitment of pluripotent stem cell factors. In con-
trast, the 164 regulatory TE families acted as binding sites for 
prostate cancer oncogenic factors, such as AR, and other tran-
scription factors that could be implicated in prostate cancer 
oncogenesis. Using the RNAi-based essentiality screen results 
from the Cancer Dependency Map (DepMap) project (56) 
revealed a negative median essentiality score for all six tran-
scription factors in prostate cancer cell lines (Fig. 4E). Note-
worthy, AR was the only transcription factor significantly 
more essential in prostate cancer cell lines compared with cell 
lines from other cancer states (Fig. 4E). The dependency on 
AR in tumors of the reprogrammed subgroup could not be 
justified from its expression levels (Supplementary Fig. S3J). 
From the GIGGLE analysis, we observed consistent high 
enrichment scores for AR cistromes generated mainly in sam-
ples originating from prostate, inclusive of cancer cells, across 
regulatory TE families identified from the ReMAP analysis 
from the CPC-GENE or Porto cohort (Fig. 4F). The Tigger3a, 
LTR5_Hs, and L1ME4b regulatory TE families had the high-
est median GIGGLE score in CPC-GENE or Porto cohort 
toward AR cistromes (Fig.  4F). Taking advantage of previ-
ously published matched H3K27ac and AR ChIP-seq data 
from localized prostate tumors of the Porto cohort (26), we 
validated our observations in vivo by detecting a higher enrich-
ment of the AR cistrome in the reprogrammed subgroup over 
nine of the 16 TE families in reprogrammed compared with 
constant and intermediate subgroup samples, including the 
Tigger3a and L1ME4b TE families (Fig.  4G; Supplementary 
Fig. S4A). AR directly binds to a DNA homodimer known as 
ARE that consists of two 6-bp-long “half-sites,” spaced by 3 bp 
(57). AR also has strong binding capacities for the AR “half-
site” (58); therefore, we investigated the enrichment of both 
ARE and AR half-sites within TE families enriched for the 
AR cistrome. DNA recognition motif analysis detected a sig-
nificant enrichment for ARE and AR half-site motifs, respec-
tively, within Tigger3a and L1ME4b regulatory TEs from the 
reprogrammed subgroup (Fig. 4H; Supplementary Fig. S4B). 
As a whole, these results suggest that regulatory TEs found 
in tumors from the reprogrammed subgroup can serve as 
docking sites for AR, supportive of an AR-dependent func-
tion over repetitive DNA sequences in a subset of localized  
prostate tumors.

Regulatory TEs Essential for the Growth of 
Reprogrammed Subgroup Prostate Tumors

To investigate the role of AR at regulatory TE families, 
we first determined whether AR dependency for growth was 
correlated with the reprogrammed subgroup stratification. 
We used H3K27ac ChIP-seq data generated across a panel 
of prostate cancer cell lines to quantify the enrichment of 
TE families at H3K27ac regions (Supplementary Fig.  S1A). 
This assigned LNCaP, C42B, 22Rv1, and VCaP to the repro-
grammed subgroup (Fig. 5A). The PC3 and DU145 prostate 
cancer cell lines were assigned to the constant subgroup 
(Fig. 5A). Combining these results with AR essentiality scores 
collected from the DepMAP data (59–61) revealed low essen-
tiality scores corresponding to a high dependency for AR 
in the reprogrammed subgroup prostate cancer cell lines 
(Fig.  5A and B; Supplementary Fig.  S5A–S5D). In contrast, 
high scores defining low dependency were observed in the 
constant subgroup prostate cancer cell lines (Fig. 5A and B; 
Supplementary Fig.  S5A–S5D). To further investigate the 
process of TE reprogramming in primary prostate cancer, we 
assessed the enrichment of reprogrammed TEs in chromatin 
regions marked by the repressive H3K9me3 modification (62) 
in benign-like and prostate cancer cell lines (Supplementary 
Fig. S1A). Focusing on the 186 regulatory TE families shared 
between the CPC-GENE and Porto cohort prostate tumors, 
we scored the enrichment over H3K9me3-modified chroma-
tin (see Methods). The enrichment of TE families in repres-
sive H3K9me3 chromatin was observed in the “constant” 
prostate cancer cell line model (DU145) and in benign-like 
prostate cell lines (Supplementary Fig.  S5E). In contrast, 
limited enrichment was observed for H3K9me3 across TE 
families for two of three reprogrammed prostate cancer cell 
lines (LNCaP and VCaP; Supplementary Fig.  S5E). Hence, 
regulatory TE families in reprogrammed prostate cancer 
cell lines are depleted of H3K9me3 modifications, while the 
absence of regulatory TE families in constant prostate cancer 
cells is linked to the enrichment for the repressive H3K9me3 
modification (Supplementary Fig.  S5E). These results link 
AR-dependent growth properties in prostate cancer to the 
chromatin variants over repetitive DNA sequences, defining 
regulatory TEs specific to the reprogrammed subgroup.

We next assessed the requirement for reprogrammed TE 
families toward prostate cancer cell growth, using the CRISPR/
dCas9-KRAB (CRISPRi) chromatin editing technology, to 
induce chromatin state changes to repress regulatory TEs 
without affecting their underlying DNA sequence (4, 63, 64). 
The 22Rv1 and LNCaP cell lines showed the highest enrich-
ment for Tigger3a with H3K27ac ChIP-seq data among all 
reprogrammed subgroup prostate cancer cell lines, while the 
constant subgroup DU145 cell lines showed a depletion for 
Tigger3a elements across its H3K27ac ChIP-seq data (Fig. 5C). 
Using the H3K9me3 ChIP-seq data, we saw a depletion for 
the Tigger3a TE family in the repressive chromatin of repro-
grammed subgroup prostate cancer cell lines (Supplementary 
Fig.  S5F). This is in contrast to the enrichment of the Tig-
ger3a TE family in H3K9me3 chromatin of constant subgroup 
prostate cancer cell lines (Supplementary Fig.  S5F). Next, we 
designed a six guide RNA (gRNA) combo against the Tig-
ger3a elements (5,317 individual genomic regions) using the 
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Repguide tool (40, 65) to maximize on-target while limiting 
off-target effects. Unfortunately, we failed to design gRNAs 
for other regulatory TE families of interest, such as L1ME4b. 
As a negative control, we used a combination of six scram-
ble gRNAs (66). From transiently nucleofecting Tigger3a or 
control gRNA combos in three independent 22Rv1 CRISPRi 
prostate cancer cell line clones (32) (Supplementary Fig. S5G), 
we first assessed the recruitment of CRISPRi to Tigger3a ele-
ments from CUT&RUN sequencing (CUT&RUN-seq) experi-
ments (67). Comparing the CRISPRi CUT&RUN-seq signal 
intensity revealed its preferential binding at Tigger3a elements, 
as opposed to Tigger3b or Charlie7 TEs, with the latter corre-
sponding to off-target controls from the same TE superfamily 
(Fig. 5D; Supplementary Fig. S6A–S6K). As an additional con-
trol, we compared the CRISPRi CUT&RUN-seq signal inten-
sity over Tigger3a elements to the signal over the flanking 
1.5 kb. While the top 25% of Tigger3a elements were more 
significantly bound by CRISPRi than flanking sequences, the 
opposite was found at the bottom 25% of Tigger3a elements 
(Fig. 5D; Supplementary Figs. S6D, S6E, S6L–S6Q), suggesting 
a preferential recruitment of CRISPRi to a subset of the 5,317 
Tigger3a TEs. In agreement, CUT&RUN-seq for H3K27ac 
in 22Rv1 was stronger over the top 25% compared with the 
bottom 25% of CRISPRi-bound Tigger3a elements (Fig.  5E; 
Supplementary Fig.  S6R and S6S). Furthermore, performing 
H3K27ac CUT&RUN-seq assays in the 22Rv1 CRISPRi clones 
revealed a significant loss of H3K27ac signal at the majority 
of the top 25% Tigger3a elements in cells nucleofected with 
the target as opposed to control gRNAs (Fig. 5E and F; Sup-
plementary Fig.  S6R–S6U). In contrast, no changes in the 
H3K27ac CUT&RUN-seq signal was observed over the bottom 
25% Tigger3a elements under all conditions (Fig. 5E; Supple-
mentary Fig. S6R and S6S). Extending our analysis to Tigger3b 
and Charlie7 elements in the top 25% for CRISPRi CUT&RUN 
signal intensity revealed no significant changes in H3K27ac 
signal except for a weakly significant drop at Tigger3b ele-
ments in two of three experiments (Supplementary Fig. S6V–
S6X). Collectively, these results argue for the ability to target 

CRISPRi to Tigger3a preferentially with our gRNA combo and 
the resulting decrease in H3K27ac signal reflective of active 
chromatin editing over targeted repetitive DNA sequences. 
Having established the specificity and efficacy of our chro-
matin editing strategy, we next investigated the functional 
impact of targeting Tigger3a on AR binding to the chromatin. 
CUT&RUN for AR in 22Rv1 CRISPRi clones revealed a signifi-
cant loss of AR signal over top 25% CRISPRi-bound Tigger3a 
elements in cells nucleofected with the Tigger3a gRNA combo 
compared with control gRNA combo (Fig.  5G; Supplemen-
tary Fig.  S7A and S7B). In parallel, we observed a significant 
downregulation of genes from the androgen response pathway 
upon Tigger3a chromatin editing in two of three experiments 
(Fig.  5H; Supplementary Fig.  S7C and S7D; Supplementary 
Table S24). Genes belonging to the E2F targets and MYC tar-
gets V1 pathways (68, 69), which are known to be implicated 
in cell-cycle progression and cell growth, were also signifi-
cantly downregulated under the same conditions (Supplemen-
tary Fig.  S7C–S7E; Supplementary Table  S24). In agreement,  
CRISPRi chromatin editing at Tigger3a elements decreased 
growth of reprogrammed prostate cancer model cell lines 
(LNCaP and 22Rv1) by at least 20% compared with control con-
ditions (Fig. 5I). In contrast, growth of constant prostate cancer 
model cell lines (DU145) was not altered by CRISPRi chromatin 
editing at Tigger3a elements (Fig. 5I; Supplementary Fig. S5G). 
Collectively, these results support a direct role for Tigger3a TEs 
as regulatory elements for AR to control its downstream target 
genes and in controlling growth of prostate cancer cells.

DISCUSSION
Cell fate commitment relies on transitions in the dependency 

for pluripotency to lineage-specific transcription factors that 
forge cell state–specific expression patterns. In this study, we 
show how repetitive DNA engages across physiologic cell states 
as regulatory elements. We specifically observed that “regula-
tory TEs” from chromatin states in pluripotent stem cells are 
biased toward the ERV superfamilies and define binding sites 

Figure 5. Tigger3a elements are essential regulatory elements for prostate cancer cell growth. A, Heat map displaying the deviation (Dev) Z-scores of 
TE families differentially enriched in H3K27ac-positive chromatin between pluripotent stem cells and benign prostate across H3K27ac profiles of prostate 
cancer cell lines (publicly available or newly generated). B, AR essentiality mediated through RNAi across various cell lines. Each dot indicates a prostate can-
cer cell line. Prostate cancer lines included in A are labeled with the name of the cell lines and color coded according to similarity to patients with prostate 
cancer. The red dashed line corresponds to essentiality score = 0 threshold. C, Tigger3a enrichment across H3K27ac profiles of prostate cancer cell lines. 
Box plots show differential deviation Z-scores in prostate cancer cell lines. D, Violin plot showcasing the dCas9-KRAB signal intensity over top 25% Tigger3a 
elements compared with matched flanking 1.5-kb regions in clone 2 dCas9-KRAB 22Rv1 (upstream, −1.5 kb; downstream, +1.5 kb; right). P value results of 
Wilcoxon test are showcased on the violin plot. PCa, prostate cancer. E, Violin plot showcasing the H3K27ac signal distribution in clone 2 dCas9-KRAB 22Rv1 
cells nucleofected with control (gray) or Tigger3a (purple) gRNA combinations over Tigger3a elements with high dCas9-KRAB signal (top 25%) or low dCas9-
KRAB signal (bottom 25%). P value results of Wilcoxon test are showcased on the violin plot. Note that H3K27ac signal significantly decreases between 
control and Tigger3a conditions for top 25% Tigger3a elements, while it does not decrease significantly for bottom 25% Tigger3a elements. Interestingly, 
H3K27ac signal drops significantly also between Control conditions between top 25% and bottom 25% Tigger3a elements. P value results of Wilcoxon test 
are showcased on the violin plot. F, H3K27ac signal over top 25% dCas9-KRAB bound Tigger3a elements in clone 2 dCas9-KRAB 22Rv1 cells nucleofected 
with control or Tigger3a gRNA combinations. Every dot corresponds to one Tigger3a element; the x-axis represents the log2 of the normalized H3K27ac 
signal intensity in two independent nucleofections with control gRNA combination, while the y-axis represents the log2 normalized H3K27ac signal intensity 
in two independent nucleofections with Tigger3a gRNA combination. G, Violin plot showcasing the AR signal distribution in clone 2 dCas9-KRAB 22Rv1 
cells nucleofected with control (gray) or Tigger3a (purple) gRNA combinations over Tigger3a elements with high dCas9-KRAB signal (top 25%). P value 
results of Wilcoxon tests are showcased on the violin plot. Note that AR signal significantly decreases between control and Tigger3a conditions for top 25% 
Tigger3a elements. H, Gene set enrichment analysis enrichment plots showcasing significant depletion of androgen response in clone 2 dCas9-KRAB cells 
nucleofected with Tigger3a gRNA combination compared with control combination. P value results of weighted Kolmogorov–Smirnov test are showcased on 
the plots. I, Relative cell viability upon dCas9-KRAB mediated chromatin repression at Tigger3a elements (combinations of 6 individual gRNAs targeting Tig-
ger3a elements or scramble) in clonal 22Rv1 and LNCaP (32) and DU145 stably expressing dCas9-KRAB. Every dot represents an independent nucleofection 
reaction using guides targeting Tigger3a elements or negative control (scramble). Error bars, SD. P values were generated by two-sided t test. J, Graphi-
cal representation of the main discoveries of this study showcasing the dynamic of the enrichment of TEs and transcription factors in H3K27ac-positive 
chromatin in the progression from pluripotent stem cells to benign tissue and to localized primary prostate cancer. Despite the strong similarity between 
pluripotent stem cells and prostate cancer tissues, TEs act as binding sites for AR in primary prostate cancer. This figure was created with BioRender.com.
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for pluripotency transcription factors such as NANOG and 
OCT4, in alignment with previous reports (Fig.  5J; bioRxiv 
2021.02.16.431334; refs. 47, 48, 70–75). Beyond LTR7 and 
ERVH regulatory TE families (44, 45, 47, 76), we identify LTR8 
and MER4CL34 families as regulatory elements for the pluripo-
tency factors NANOG, OCT4, and SOX2. In contrast, we found 
92 lineage-restricted regulatory TE families across 32 mature 
cell and tissue states, reinforcing the tissue-specific regulatory 
potential of TEs. These observations emphasize the distinct 
role of TE families in pluripotent stem cells and mature tissues. 
Focusing on benign prostate epithelium, we report the role of 
regulatory TEs as docking sites for lineage-specific transcrip-
tion factors, including AR and FOXA1 (Fig.  5J; refs. 52, 53). 
Collectively, our work supports a model whereby transitions 
in transcription factor dependencies align with changes in the 
set of TE families serving as regulatory elements along cell fate 
commitment. Moreover, the set of TE families differentially 
enriched between pluripotent stem cells and benign prostate 
epithelium represents a reference set of regulatory TEs to study 
when characterizing the role of regulatory TEs in cancer.

Cancer arises through the accumulation of genomic varia-
tions that alter the function of DNA sequences, such as chro-
matin variants found in repetitive DNA (4, 77–79). For instance, 
some ERV superfamily members are found in repressive chro-
matin variants in cancer that block their expression to pre-
vent double-stranded RNA production, which would otherwise 
induce cell growth arrest through the viral mimicry response 
(20, 35, 36). In contrast, inducing the expression of LINE1 TEs 
leads to novel insertions across the genome, thereby increasing 
the load of somatic genetic variants in cancer (80, 81). Similarly, 
TEs can be co-opted as regulatory elements in cancer to favor 
oncogene overexpression (39, 40, 82). Focusing on prostate can-
cer, we show how TEs are hijacked by lineage-specific transcrip-
tion factors to favor oncogenesis. We specifically report on 186 
regulatory TE families in primary prostate cancer, including 
164 common with pluripotent stem cells. Despite similarities 
with pluripotent stem cells, regulatory TE families in primary 
prostate cancer serve as docking sites for lineage-specific tran-
scription factors, such as AR, instead of pluripotency tran-
scription factors (Fig. 5J). Collectively, our results suggest that 
cancer arises from the attrition of pluripotent stem cell regula-
tory TE families, which parallels a reliance on lineage-specific as 
opposed to pluripotency transcription factors.

Chromatin states can distinguish the plethora of DNA ele-
ments that populate the human genome, including transcribed 
versus silent genes and active versus inactive regulatory elements 
(5, 6, 8, 9, 11, 15, 83). While prior studies using CRISPR/Cas9 
genome editing have established the oncogenic contribution of 
individual TEs (39, 40), we used CRISPRi to demonstrate that 
the role of TEs in prostate cancer also relies on their chromatin 
state. We specifically show how altering the chromatin states 
at hundreds of Tigger3a TEs disrupts AR binding to the chro-
matin, interferes with the expression of AR target genes, and 
blocks the growth of AR-dependent prostate cancer cells. Our 
results agree with the role of chromatin states in regulating the 
function of nonrepetitive DNA sequences (63, 84), as well as TEs 
that control the growth of cancer cells in acute myeloid leukemia 
(40). Taken together, our results support a direct role for TEs 
toward oncogenesis and identify options to negate their func-
tion using approaches altering their chromatin state.

METHODS
ChIP-seq

H3K27ac and AR in Primary Tissues.  Samples from all CPC-GENE 
patients were obtained with written informed consent with Research 
Ethics Board ethical approval (UHN 11–0024). Data from H3K27ac 
ChIP-seq were added to the previously published data (25, 27) based on 
patient samples being processed exactly as described in ref. 25 using the 
same antibody (Abcam, ab4729). Sequencing libraries were prepared 
using 0.5 to 10 ng of ChIP or input DNA with the Rubicon ThruPLEX 
FD Kit (Takara) using the manufacturer’s recommended protocol. 
Libraries were then size selected in the range of 240 to 360 bp using a 
Caliper LabChIP XT DNA 750 Kit (PerkinElmer). Size-selected libraries 
were sequenced on an Illumina HiSeq 2000 with single-end 50-bp reads 
or paired-end 100-bp reads. Alignment (human genome - hg38) and 
peak calling were performed with the same parameters and workflow 
as described in ref. 85. The same parameters were used for alignment 
(human genome - hg38) and peak calling for H3K27ac and AR data 
profiled in the Porto cohort patients (26). The only exception for AR 
profiling was the peak-calling significance threshold, from q <0.005 for 
H3K27ac to q <0.01 for AR. Our approach to map peaks of H3K27ac 
to repetitive sequences relies on single-ended reads, therefore limiting 
our ability to call peaks restricted to highly repetitive sequences, such as  
evolutionary young repetitive sequences.

H3K27ac in Prostate Cancer Cell Lines.  Approximately 2  ×  106 
LNCaP or DU145 cells were used to perform H3K27ac (Abcam, 
ab4729) ChIP-seq as described in ref. 25. Alignment (human genome - 
hg38) and peak calling were performed following ENCODE pipeline 
(https://github.com/ENCODE-DCC/chip-seq-pipeline2) to ensure 
comparability with ENCODE samples.

H3K9me3 in Prostate Cancer Cell Lines.  Approximately 2  ×  106 
PWR1E, RWPE1, 22Rv1, LNCaP, VCaP, DU145, and PC3 cells were 
used to perform H3K9me3 (Abcam, ab8898) ChIP-seq as described in 
ref. 25. Libraries were generated using the Rubicon ThruPLEX FD Kit 
(Takara) using the manufacturer’s recommended protocol. Libraries 
were then size-selected in the range of 150 to 360 bp using AMPure 
XP beads (Beckman Coulter, A63881) and sequenced with paired-end 
50-bp reads to reach 45 million total mapped reads per replicate as 
recommended by ENCODE guidelines. Alignment (human genome - 
hg38) was performed by using Bowtie2, while peak calling was per-
formed using MACS2 with q ≤0.05 significance threshold.

ATAC Sequencing on PRAD TCGA
Bam files corresponding to PRAD ATAC data were downloaded 

from the Genomic Data Commons Data Portal, and peaks were 
called using MACS3 with the following parameters: –shift -75 –ext-
size 150 –nomodel –call-summits –nolambda –keep-dup all -p 0.01, 
and a nonoverlapping peak set was produced as described in ref. 55. 
narrowPeak files were used for TE enrichment as described below.

TE Families and Superfamilies
Bed files of repeats classified as TE families (excluding simple 

repeats, satellites, sn/rRNA, and repeats of unknown subfamilies) 
(n = 971) in the hg38 human genome build were downloaded from the 
UCSC Genome Browser. Families were classified into superfamilies 
according to Repbase (https://www.girinst.org/repbase/; refs. 86, 87).

TE Enrichment Analysis
Enrichment of TE families was performed using ChromVAR within 

mappable H3K27ac, ATAC, or H3K9me3 peaks (88) with the modifica-
tions described in bioRxiv 2021.02.16.431334. Briefly, we computed 
the presence/absence of H3K27ac, ATAC, or H3K9me3 peaks, found 
in at least one sample/patient, in each sample of interest (H3K27ac: 

https://github.com/ENCODE-DCC/chip-seq-pipeline2
https://www.girinst.org/repbase/
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ENCODE samples, CPC-GENE or Porto patients’ samples, and 
ENCODE cancer cell lines; ATAC: TCGA PRAD; H3K9me3: data gen-
erated in this study on prostate cell lines) to generate the first binary 
matrix. The same peaks of interest were used to assess the overlap with 
each individual TE family, generating the second binary matrix. Chrom-
VAR was then run with default parameters computing a bias-corrected 
deviation Z-score. We used nonparametric two-sided Wilcoxon signed 
rank test to compare Z-scores between samples assigned to predefined 
groups or to groups defined on the basis of TE families differentially 
enriched between pluripotent stem cells and the benign prostate tissue 
state (as reported in Figs. 3A and B and 5A; Supplementary Fig. S2D). 
Heat maps were plotted truncating deviation Z-scores to minimum 
and maximum values of −10 and 10, respectively, and clustering was 
based on Euclidean distance. To generate the “reprogramming score,” 
we combined all TEs commonly enriched in pluripotent stem cells, 
reprogrammed TEs (enriched in reprogrammed CPC-GENE and Porto 
patients), or commonly enriched in benign prostate tissue state, repro-
grammed CPC-GENE and Porto patients (benign prostate TEs) in 
separate .bed files and calculated the Z-score over reprogrammed TEs 
and benign prostate TEs separately. To combine both Z-scores, we used 
the Stouffer method with equal weights of the reprogrammed Z-score 
and the inverse benign prostate Z-score (bioRxiv 2021.02.16.431334). 
To generate the “repressive score,” we followed the same exact steps as 
the “reprogramming score” but using H3K9me3 chromatin regions, as 
opposed to H3K17ac or ATAC-based ones.

Clinical Features and Time to Biochemical 
Recurrence Analysis

Clinical features including time to biochemical recurrence data 
were provided with all the rest of patients’ clinical data when avail-
able. Survival analysis was performed using the Kaplan–Meier esti-
mate method. P values comparing Kaplan–Meier survival curves 
were calculated using the log-rank (Mantel–Cox) test. Hypoxia score 
was computed as described in ref. 89 for both CPC-GENE (only for 
patients included in this study) and Porto patients.

Transcription Factor Cistrome and Motif 
Enrichment Analysis

The enrichment of transcription factor cistromes or motifs was 
assessed at the 97 TE families enriched in benign prostate compared 
to pluripotent stem cells (Fig. 1A; Supplementary Table S5), at the 315 
enriched in pluripotent stem cells compared with benign prostate, and at 
the 164 reprogrammed TE families (Figs. 2A and B and 3F). Each TE fam-
ily was analyzed individually, restricting the analysis to elements overlap-
ping the consensus set of H3K27ac peaks of interest (e.g., for a TE family 
enriched in benign prostate, we inquired transcription factor cistromes 
and motifs enriched at the elements overlapping with the H3K27ac 
peaks catalog of the benign tissue state). Enrichment of transcription 
factor cistromes was performed using the Bioconductor package LOLA 
(https://bioconductor.org/packages/release/bioc/html/LOLA.html; 
ref.  90), version 1.20.0. A total of 1,135 transcription factor cistromes 
were obtained from ReMap (remap2020; http://remap.univ-amu.fr/). 
Enriched transcription factor cistromes at each individual TE family were 
called using as background all elements belonging to all 971 TE families 
overlapping with the consensus set of H3K27ac peaks used to select the 
elements of interest in the previous step (e.g., for each TE family enriched 
in benign prostate, our background was all the elements belonging to 
the 971 TE families overlapping with the H3K27ac peaks catalog of the 
benign tissue state; q-value  <0.05, logOR  >1.5). The top 5% enriched 
transcription factor cistromes for benign prostate, pluripotent stem cells, 
and reprogrammed CPC-GENE or Porto patients TEs are shown in Figs. 
1E, 2D and E, and 4D and Supplementary Fig. S1B. For each set of TE 
families, we performed analysis as negative controls. More precisely, for 
benign prostate tissue state TEs, we assessed the enrichment of transcrip-
tion factor cistromes at elements belonging to TE families enriched in 

benign prostate tissue state overlapping with endoderm H3K27ac peaks 
(intestine, liver, or lung with matched backgrounds as explained above; 
Fig. 2D; Supplementary Fig. S1B). For reprogrammed TEs, we assessed 
the enrichment of transcription factor cistromes at reprogrammed TE 
family elements overlapping with constant CPC-GENE or Porto patients 
(Fig. 4A and B). The enrichment of motifs was computed using HOMER 
motif discovery tool (findMotifsGenome.pl) version 4.7. Enriched motifs 
within individual TE families were carried out as explained above for 
transcription factor cistromes (Benjamini q-value <0.05).

GIGGLE scores were calculated using the Web form on the follow-
ing website: http://dbtoolkit.cistrome.org/. In the section entitled 
“What factors have a significant binding overlap with your peak set?”, 
we selected the following parameters: Species - Human hg38, Data 
type in Cistrome - Transcription factor, chromatin regulator, Peak 
number of Cistrome sample to use - All peaks in each sample.

Enrichment of Matched AR ChIP-seq
To assess the enrichment of matched AR cistromes over TE families 

observed to be bound by AR in cancer cell lines (Fig. 4D), we used AR 
ChIP-seq profiled in Porto patients (for which we have H3K27ac data), 
described in ref. 26. Alignment (human genome - hg38) and peak call-
ing were performed with the same parameters and workflow described 
above, with the difference that peaks were called using a q-value <0.01. 
Enrichment of transcription factor cistromes was performed using the 
Bioconductor package LOLA (mentioned above). We generated three 
individual catalogs of peaks by merging peaks called in reprogrammed, 
constant, or intermediate patients. Enriched reprogrammed, constant, 
and intermediate AR cistromes at each individual TE family element, 
overlapping with non–patient-specific reprogrammed Porto H3K27ac 
regions, were called using as background all elements belonging to 
all 971 TE families overlapping with non–patient-specific H3K27ac 
regions found in all Porto patients. logOR enrichment scores for the 
three groups of patients at individual TE families tested are showcased 
in Fig. 4G and Supplementary Fig. S4A.

Essentiality Scores
Essentiality scores were obtained from the Broad Institute project 

Achilles (DepMap; ref.  56). CRISPR (Avana 21Q1) and combined 
RNAi genetic dependencies data were downloaded from the “Down-
load” page of the website https://depmap.org/portal/achilles/.

Generation of DU145 dCas9-KRAB Clonal Cell Lines
DU145 cells were transduced with lentiviral particles as described in 

ref. 32. Briefly, lentiviral particles were collected from 293FT (Thermo 
Fisher Scientific) cotransfected with the pMDG.2 and psPAX2 packag-
ing plasmids (Addgene; #12259 and #12260, a gift from Didier Trono, 
School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 
Lausanne, Switzerland) together with the Lenti-dCas9-KRAB-blast plas-
mid (Addgene #89567, a gift from Gary Hon, Laboratory of Regulatory 
Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sci-
ences, Division of Basic Reproductive Biology Research, Department of 
Obstetrics and Gynecology, University of Texas Southwestern Medical  
Center, Dallas, TX). After being transduced for 48 hours with equal 
amount of virus, DU145 cells were exposed to selection using media 
containing blasticidin (7.5 μg/mL). Upon selection, we perform single-
cell seeding into 96-well plates containing selection media. The expres-
sion of dCas9-KRAB was then assessed by Western blot analysis, and 
three clones were selected for validations.

Cell Culture
PWR1E and RWPE1 were cultured in Keratinocyte SFM medium, 

naive LNCaP and 22Rv1 cells were cultured in RPMI medium, while 
naive DU145 and PC3 cells were cultured in DMEM, with both RPMI 
and DMEM media supplemented with 10% FBS and 1% penicillin–
streptomycin, at 37°C in a humidified incubator with 5% CO2. These 

https://bioconductor.org/packages/release/bioc/html/LOLA.html
http://remap.univ-amu.fr/
http://dbtoolkit.cistrome.org/
https://depmap.org/portal/achilles/
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prostate cancer cells originated from ATCC. LNCaP and 22Rv1 dCas9-
KRAB clonal cell lines were cultured in RPMI medium (as described 
above) with the addition of blasticidin (7.5 μg/mL for LNCaP cells, 6 μg/
mL for 22Rv1 cells; ref. 32). DU145 dCas9-KRAB clonal cell lines were 
cultured in DMEM (as described above) with the addition of blasticidin 
(7.5 μg/mL). All cells are regularly tested for Mycoplasma contamination. 
The authenticity of these cells was confirmed through short tandem  
repeat profiling.

Design of gRNAs Targeting TEs
gRNAs targeting Tigger3a TE family were designed using Repguide 

(https://tanaylab.github.io/repguide/; ref.  65), which ensures high 
targeting efficiency while minimizing off-targets. To identify gRNAs 
(addGuides function), we used default parameters and we picked the 
combination of six gRNAs that grants the maximum number of 
Tigger3a elements targeted with predicted off-targets on Tigger3b ele-
ments and, to a lesser extent, on other Tigger3 TE families. Six negative 
control gRNAs (scramble) were obtained from ref. 66 and were used as 
the negative control combination of gRNAs for both the proliferation 
assay and genomic and transcriptomic profiling. Sequences of gRNAs 
used in this study can be found in Supplementary Table S25.

Dcas9-KRAB–Mediated Chromatin Repression at TEs
Chromatin repression at TEs was carried out using three of the clonal 

22Rv1 and LNCaP dCas9-KRAB cell lines described in ref.  32. gRNA 
duplexing was performed according to the manufacturer’s protocol 
(Integrated DNA Technologies) by mixing equal amounts of CRISPR 
RNA (crRNA) and trans-activating CRISPR RNA (tracrRNA) to reach 
the concentration of 50 μmol/L. For each reaction, 1 or 1.5 μL (for the 
proliferation assay or for genomic and transcriptomic profiling, respec-
tively) of each of the six Tigger3a or control gRNAs (crRNA–tracrRNA 
duplexes) were pooled into a single tube. Prior to nucleofection, 1 μL 
(100 μmol/L) of electroporation enhancer (Integrated DNA Technolo-
gies) was added to the mix. The nucleofection reaction was performed 
into 350,000 cells for the proliferation assay and into 1.5 million cells 
for genomic and transcriptomic profiling, through SF Solution 4D 
Nucleofector (Lonza), with the program number EN120. We used 
16-well nucleocuvette strips for the proliferation assay and 100 μL 
nucleocuvette vessels for genomic and transcriptomic profiling (Lonza). 
Cells were then harvested 72 hours after nucleofection for the prolifera-
tion assay or genomic and transcriptomic profiling.

Cell Proliferation Assays
Cells were maintained as described above and seeded in 24-well 

plates after nucleofection with Tigger3a or control gRNA combina-
tions. Cell viability was assessed using crystal violet as previously 
described (20). Results presented in Fig.  5G represent the median 
of six independent nucleofection reactions. P values were obtained 
performing a two-sided t test.

CUT&RUN
Pulldown for Cas9, AR, and H3K27ac was performed using a previ-

ously described CUT&RUN protocol (67) in biological duplicates (two 
independent nucleofections) of 22Rv1 clonal cell lines stably expressing 
dCas9-KRAB 3 days after nucleofection with combinations of gRNAs 
targeting Tigger3a elements (Tigger3a) or negative control (scramble). 
Cas9 and H3K27ac pulldowns were performed in the same nucleo-
fection reactions in cells nucleofected with combinations of gRNAs 
targeting Tigger3a elements, while AR pulldown was performed on 
different nucleofection reactions. Cells nucleofected with the combi-
nation of negative control (scramble) gRNAs were used to generate 
AR or H3K27ac pulldowns. Cells that were not used for Cas9 and/
or H3K27ac pulldown were used to extract RNA for RNA sequencing 
(RNA-seq; see below). This procedure ensures genomic and transcrip-
tomic profiling in the same nucleofection reaction. A total of 250,000  

cells per pulldown were collected, resuspended in nuclear binding 
buffer [20 mmol/L HEPES-KOH (pH 7.9), 10 mmol/L KCl, 1 mmol/L 
CaCl2, 1 mmol/L MnCl2], and incubated for 10 minutes, rotating 
at room temperature, with 10 μL of Concanavalin A Beads (Bangs 
Laboratories, BP531) to promote cell–bead binding. Bead-bound cells 
were resuspended in antibody buffer [20 mmol/L HEPES (pH 7.5), 
150 mmol/L NaCl, 0.5 mmol/L spermidine, 0.01% digitonin, 2 mmol/L 
EDTA] supplemented with protease inhibitor combination (cOmplete, 
EDTA-free Protease Inhibitor combination, Roche), with 5 μg of anti-
Cas9 antibody (Diagenode, C15200229), 3 μg of anti-AR antibody (Epi-
Cypher, 13–2020), or 3 μg of anti-H3K27ac antibody (Abcam, ab4729) 
and incubated overnight, rotating at 4°C. The next day, beads were 
washed once in wash buffer containing digitonin (as antibody buffer 
without EDTA) and then incubated with pAG-MNase (NEB, 40366S) 
in digitonin-containing wash buffer for 1 hour, rotating at 4°C. The 
MNase was activated by adding 2 mmol/L CaCl2 (final concentra-
tion), and exposed DNA was digested for 30 minutes at 0°C (ice bath). 
DNA digestion was inactivated by adding STOP buffer (200 mmol/L 
NaCl, 20 mmol/L EDTA, 4 mmol/L EGTA, 0.01% digitonin, 50 μg/mL  
RNaseA, 40 μg/mL glycogen, 2 pg/mL Saccharomyces cerevisiae heterolo-
gous DNA). Chromatin fragments released from beads were promoted 
by incubating beads at 37°C for 10 minutes. Finally, DNA was extracted 
using the MinElute Kit (Qiagen). Libraries were generated using the 
Rubicon Thruplex FD Kit (Takara) using the manufacturer’s recom-
mended protocol. Libraries were then size selected in the range of 150 
to 360 bp using AMPure XP beads (Beckman Coulter, A63881) and 
sequenced with paired-end 75-bp reads to reach up to 40 million read 
pairs per sample.

CUT&RUN Analysis
For dCas9-KRAB, H3K27ac, and AR pulldowns, reads were aligned 

to the human genome (hg38) using the bowtie2 settings described 
in ref.  67 (q -I 10 -X 700 –local –very-sensitive-local –no-mixed –no-
discordant –no-unal –phred33). Spike-in Saccharomyces cerevisiae DNA 
was aligned with the following parameters -q -I 10 -X 700 –local –very-
sensitive-local –no-mixed –no-discordant –no-overlap –no-dovetail –
no-unal –phred33. Spike-in calibrated peaks were called using SEACR 
(v13; ref.  91). For each individual clone, spike-in calibrated dCas9-
KRAB signal was quantified over Tigger3a (main target), Tigger3b 
(secondary target), and Charlie7 (negative control) TE families and 
1.5-kb adjacent regions using deeptools (92) as described in the follow-
ing tutorial for CUT&RUN analysis (Zheng and colleagues; Protocol.
io). Tigger3a elements were classified into quartiles based on dCas9-
KRAB CUT&RUN signal. The top 25% and bottom 25% quartiles were 
used for downstream analyses. We further validated the specificity for 
dCas9-KRAB CUT&RUN signal over Tigger3a elements by comparing 
the signal against the 1.5-kb adjacent regions. Similar comparisons 
were done to assess signal differences for the H3K27ac data. To do so, 
we ran DESeq2 on Tigger3a elements overlapping H3K27ac peaks. We 
specifically analyzed top and bottom 25% Tigger3a elements based on 
dCas9-KRAB signal and evaluated global levels of normalized spike-in 
calibrated H3K27ac signal comparing Tigger3a versus control gRNA 
combinations. The top 25% Tigger3a elements based on dCas9-KRAB 
signal showing a loss of H3K27ac signal were defined as “repressed 
Tigger3a elements.” Similarly, we assessed the potential loss of AR 
binding over the top 25% Tigger3a elements. We ran DESeq2 on Tig-
ger3a elements overlapping AR peaks, and we evaluated global levels 
of normalized spike-in calibrated AR signal comparing Tigger3a versus 
control gRNA combinations.

RNA Extraction, RNA-seq, and Analysis
RNA-seq was performed in a part of the same clonal dCas9-KRAB 

22Rv1 nucleofected with combinations of Tigger3a or negative control 
(scramble) gRNAs (biological duplicates; two independent nucleofec-
tions). After isolating cells for CUT&RUN pulldowns (see above), the 

https://tanaylab.github.io/repguide/
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RNeasy Plus Mini Kit (Qiagen, 74136) was used to collect whole RNA 
from cells as per manufacturer’s instructions. RNA was delivered to the 
Princess Margaret Genomics Centre (PMGC). The PMGC performed 
ribosomal RNA depletion using the Ribo-Zero Gold rRNA Removal 
Kit (Illumina). Libraries were sent for 100-bp paired-end sequencing 
to reach 60 million read pairs per sample. Reads were first processed 
using Kallisto to obtain transcript abundances, and then DESeq2 
was used to obtain normalized read counts per gene. DESeq2 output 
was used to perform gene set enrichment analysis (GSEA) on each 
clone individually. “HALLMARK” pathways were obtained using the 
package “msigdb” (Bioconductor), and their enrichment was assessed 
using the “fgsea” pakcage (Bioconductor). The “Androgen response” 
pathway was always reported together with pathways significantly 
different in all three dCas9-KRAB 22Rv1 cells (Tigger3a vs. control; 
Fig. 5H; Supplementary Fig. S7C–S7E).

Protein Extractions and Western Blot Analysis
DU145 dCas9-KRAB cell lines were recovered and lysed in modified 

RIPA (10 mmol/L Tris-HCl, pH 8.0; 1 mmol/L EDTA; 140 mmol/L 
NaCl; 1% Triton X-100; 0.1% SDS; 0.1% sodium deoxycholate) con-
taining protease inhibitor combination (cOmplete, EDTA-free Pro-
tease Inhibitor combination, Roche). Lysates were sonicated for 5 
cycles of 30 seconds on, 30 seconds off using a Diagenode Bioruptor 
300. Cell debris was removed by centrifugation at 4°C for 10 minutes 
at 15,000 rpm, followed by protein quantification using the BCA 
Protein Assay Kit (Thermo Fisher Scientific). Twenty micrograms of 
protein per sample were resuspended in 2X Laemmli containing 5% 
β-mercaptoethanol, boiled for 5 minutes at 95°C, and resolved on 
precast 5% to 20% gradient gels (Bio-Rad). After transfer, membranes 
were blocked using 5% skim milk in PBS-Tween 0.05% and incubated 
overnight with anti-Cas9 antibody (Diagenode, C15200229; 1:2,000 
dilution) resuspended in 1% BSA PBS-Tween 0.05%. As a loading 
control, we incubated the membrane with anti–α-tubulin (Sigma 
Aldrich, T5168 Sigma-Aldrich, T5168; 1:2,000 dilution) for 1 hour at 
room temperature. Membranes were then washed and incubated with 
IRDye 680RD donkey anti-mouse (LI-COR; 1:5,000), resuspended 
in 1% skim milk in PBS-Tween 0.05%, and incubated for 1 hour at 
room temperature, covered from light. Membranes were imaged using 
ODYSSEY CLx (LI-COR), and images were analyzed using Image 
Studio (LI-COR).

Research Reproducibility and Code Availability
Code for data processing, analysis, and plotting can be found on 

CodeOcean (https://codeocean.com/capsule/5158405/tree). The ana-
lytical pipeline is also available on the CoBE platform (www.pmcobe.ca).

Data Availability
All data generated in this study are deposited in the Gene 

Expression Omnibus (GEO) database under the accession num-
ber GSE224687, including H3K27ac regions profiled in CPC-GENE 
patients and in six additional benign prostate epithelium sam-
ples. Porto patient H3K27ac and AR regions were obtained from 
Stelloo and colleagues (26) and processed as specified in the Meth-
ods section. H3K27ac regions profiled in pluripotent stem cells 
and mature cell and tissue states were downloaded from ENCODE 
(https://www.encodeproject.org/) using the access numbers provided 
in Supplementary Table S1.
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