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SHP2: A Pleiotropic Target at the Interface of 
Cancer and Its Microenvironment 
Nicole M. Sodir1, Gaurav Pathria2, Joanne I. Adamkewicz3, Elizabeth H. Kelley4, Jawahar Sudhamsu5, 
Mark Merchant1, Roberto Chiarle6,7, and Danilo Maddalo1

ABSTRACT The protein phosphatase SHP2/PTPN11 has been reported to be a key modulator of 
proliferative pathways in a wide range of malignancies. Intriguingly, SHP2 has also 

been described as a critical regulator of the tumor microenvironment. Based on this evidence SHP2 is 
considered a multifaceted target in cancer, spurring the notion that the development of direct inhibi-
tors of SHP2 would provide the twofold benefit of tumor intrinsic and extrinsic inhibition. In this review, 
we will discuss the role of SHP2 in cancer and the tumor microenvironment, and the clinical strategies in 
which SHP2 inhibitors are leveraged as combination agents to improve therapeutic response.

Significance: The SHP2 phosphatase functions as a pleiotropic factor, and its inhibition not only hin-
ders tumor growth but also reshapes the tumor microenvironment. Although their single-agent activity 
may be limited, SHP2 inhibitors hold the potential of being key combination agents to enhance the 
depth and the durability of tumor response to therapy.

INTRODUCTION
The SHP family of phosphatases are represented by two 

members: SHP1 (encoded by PTPN6) and SHP2 (encoded 
by PTPN11). SHP1 and SHP2 share similarities in primary 
sequence (61% sequence identity) and structure, but they dif-
fer in terms of expression and function. SHP1 is expressed in 
a more limited fashion in the hematopoietic system and in 
subsets of epithelial cells (1), whereas SHP2 is ubiquitously 
expressed (2). Importantly, SHP1 and SHP2 play different 
regulatory roles, with SHP1 playing a negative regulatory role 
in downregulating receptor signaling. SHP2, by contrast, is a 
pleiotropic molecule playing both positive and negative regu-
latory roles across multiple signaling nodes. Importantly, 
SHP2 plays a positive regulatory role in mediating growth 

factor receptor tyrosine kinase (RTK) signaling leading to 
the activation of RAS and its effectors (3), therefore rational-
izing a great deal of attention to the therapeutic targeting 
of SHP2.

SHP2: A KEY REGULATOR OF THE MAPK 
PATHWAY IN CANCER

Growing evidence links the activity of SHP2 to cell trans-
formation and cancer development, particularly in the RAS/
MAPK pathway, even if a detailed molecular mechanism of 
action has not been completely refined yet. SHP2 modulates 
the signaling downstream of oncogenic RTKs and is found 
hyperactivated in gastric carcinoma (4), anaplastic large cell 
lymphoma (5), glioblastoma (6), and breast cancer (7), and 
mediates the oncogenic signals of EGFR- and KRAS-driven 
cancers (8, 9). SHP2 acts as a rheostat or regulator of several 
growth factor, chemokine, cytokine, and integrin receptors (2), 
best exemplified by its critical role in modulating pathways 
downstream of RTKs. Active RTKs such as EGFR, MET, and 
HER2 expose phosphotyrosine residues recognized by SHP2 
as docking sites (10, 11). SHP2 is in turn phosphorylated 
at the tyrosine residues 542 and 580 in the protein tyrosine 
phosphatase (PTP) domain and undergoes a conformational 
change, enhancing its phosphatase activity (12). Phosphoryl-
ated SHP2 binds to the GRB2/SOS1 complex via GAB1 (13) 
and increases active RAS-GTP loading by interfering with its 
inactivation mediated by p120 RasGAP (Ras GTPase-activating 
protein; ref.  14). SHP2 dephosphorylates RasGAP, blocking 
its interaction with RAS-GTP at the plasma membrane, thus 
prolonging RAS activation. Mutagenesis studies have shown 
that the SHP2 mutant Y580F but not Y542F can bind GRB2 
even if neither can activate the downstream MAPK cascade, 
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suggesting specific roles for each tyrosine residue (15). Intrigu-
ingly, SHP2 also modulates MAPK activity through other 
substrates. For example, SHP2 dephosphorylates and inacti-
vates Sprouty (16, 17), a negative regulator of RAS (18), thus 
contributing to sustained MAPK activation. In addition, some 
studies have shown that SHP2 promotes the activation of 
Src family kinases (SFK) through the dephosphorylation of 
two substrates: CBP and Paxilin (19). Once dephosphorylated, 
these proteins cannot bind and activate CSK, a negative regula-
tor of SFK, preventing downregulation of the MAPK pathway 
signaling. The Src/RAS pathway plays a crucial role not only in 
cell homeostasis but also in embryonic development, where it 
has been shown that SHP2 deletion results in trophoblast stem 
cells via the proapoptotic factor BIM (20).

STRUCTURE AND ENZYMATIC ACTIVITY 
OF SHP2

Structurally, SHP2 consists of two tandem SH2 domains 
(N-SH2 and C-SH2) followed by a PTP domain and a C-termi-
nal tail containing a bipartite tyrosine motif (Y542 and Y580), 

which may play a role in regulating SHP2 activation (ref. 21; 
Fig. 1A). In its inactive state, SHP2 assumes a closed confor-
mation wherein the N-SH2 and C-SH2 domains bind to and 
autoinhibit the PTP domain (Fig. 1A; Supplementary Video 
S1). Upon the binding of the SH2 domains to phospho- 
peptide ligands, the PTP domain is released from autoinhibi-
tion, where essentially the N-SH2 domain, which shields the 
active site of the PTP domain, undergoes a large conforma-
tional change, allowing the PTP active site and the catalytic 
C459 residue access to substrates, resulting in their dephos-
phorylation (Supplementary Video S2). Therein, this ele-
gant mechanism enables three key features for SHP2, which 
include (i) specific recruitment into signaling complexes 
containing high-affinity SHP2 phospho-peptide ligands, (ii) 
catalytic activation, and (iii) juxtaposition of SHP2 to target 
proteins. In this way, SHP2 efficiently dephosphorylates 
phosphorylated substrates to enable optimal pathway activa-
tion or inhibition. SHP2 activity downstream of RTK acti
vity is characterized by its recruitment to phospho-peptide 
ligands present in RTKs and/or signaling adaptors, such as 
GRB2 and GAB1. Therein SHP2 regulates protein complex 
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Figure 1. Structure and key mutations on SHP2. A, The overall structure of SHP2 contains three well-folded domains: Two tandem SH2 domains (beige, 
light green) followed by the PTP (protein tyrosine phosphatase) domain (left); the structure with the N-SH2 domain facing out shows the N-SH2 domain 
bound on top of the PTP domain, in this view, and shields the active site from access to substrates (middle); right, same view as middle, with the N-SH2 
domain removed for clarity, revealing the active site in the PTP domain, in light blue. B, Residues surrounding catalytic C459 residue, and C367, C333, 
termed “backdoor cysteines,” are in a hydrophobic region of the protein. C, Molecular details of the regions in SHP2 around residues at which GOF (high-
lighted in green) hotspot mutations in leukemias and Noonan syndrome and LOF (highlighted in red) hotspot mutations occur. Top, left: Hotspot mutations 
occur around the interaction site between N-SH2 and PTP domains. Residues in the PTP domain (salmon color) that are around the site of the mutation 
are highlighted in yellow, and residues in the N-SH2 domain (light brown color) that are around the site of the mutation are highlighted in magenta.
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assembly and protein function through its phosphatase activ-
ity, leading to the efficient activation of guanosine nucleotide 
exchange factors, such as SOS1, which in turn activate RAS 
through the exchange of GDP for GTP.

In addition to the catalytic C459, the C333 residue has 
been termed the “backdoor cysteine” and reported to cause 
destabilizing effects compared with other PTPs, in which the 
corresponding residue is a conserved proline. C333, in addi-
tion to C367, surrounded by hydrophobic residues (Fig. 1B) 
around the catalytic C459, has been suggested to provide 
protection to C459 from inactivating oxidation (22).

RECURRENT SHP2 MUTATIONS IN CANCER 
AND OTHER DISEASES

Germline variants on the PTPN11 gene converge on a set of 
developmental abnormalities defined as RASopathies. SHP2 
variants have been associated with Noonan syndrome (NS), 
with loss-of-function (LOF) or gain-of-function (GOF) lead-
ing to distinct pathologic outcomes (23). Typically, variants 
of SHP2 resulting in GOF lead to the impairment of its 
autoinhibitory function, shifting the equilibrium toward a 
constitutively active conformation. Notably, germline LOF are 
associated with  ∼90% NS with multiple lentigines (NSML) 
cases (24). In contrast, GOF mutations associated with NS are 
characterized by facial dysmorphia, shortened stature, bleed-
ing irregularities, and heart and skeletal deformations. On 
the other hand, somatic GOF variants are associated with the 
deregulation of SHP2 activity, leading to hyperactive signaling 
through the RAS/MAPK pathway. This has been associated 
with an increased risk of proliferation and tumorigenesis (25, 
26), including myelodysplastic syndrome (MDS), juvenile mye-
lomonocytic leukemia (JMML; ref. 27), acute myeloid leukemia 
(AML; ref. 28), acute lymphocytic leukemia (ALL; ref. 29), and 
sporadic cases of lung, colon, and skin cancers (30, 31).

Structurally, a large majority of all disease-relevant muta-
tions associated with SHP2 occur in the N-SH2 domain or 
the PTP domain (24), with the hotspot mutations clustering 
at the interface of the N-SH2:PTP domains (Fig.  1C, top, 
left). A closer look at the residues around many of the GOF 
or LOF hotspot mutations helps us rationalize the impact 
of these modifications (Fig.  1C). Molecular environments 
of hotspot mutations in leukemias (at residues D61, A72, 
E76, and Q510) and NS (Q79, N308, and M504) that are 
activating mutations (highlighted in green), and hotspot 
mutations in NSML (Y279, A461, G464, and T468) that are 
inactivating mutations (highlighted in red), are detailed in 
Fig.  1B. An E76K mutation in the N-SH2 domain would 
cause a charge–charge repulsive interaction with R265 in 
the PTP domain, destabilizing the inactive SHP2, resulting 
in the active, open conformation. An A72S mutation, while 
less activating than E76K, would cause a steric clash at the 
interface, shifting the equilibrium to the open-state, basally 
activating SHP2. A D61G mutation would remove a salt-
bridge (positive–negative charge interaction) between R265 in 
the PTP domain and D61 in the N-SH2 domain, also shifting 
SHP2 to the open state. A Q510P mutation would unfold the 
helix that Q510 is a part of and alter the interface between 
N-SH2 and the PTP domain. An N308D mutation would 
introduce a more polar side chain, presumably with a charge 

in the hydrophobic environment, and destabilize the protein 
folding enough to cause a disruption of interaction with 
N-SH2. The M504V mutation would be predicted to reduce 
the hydrophobicity at its location in PTP, altering the confor-
mation of I463, which contacts the N-SH2, destabilizing the 
closed state. The Q79R mutation in N-SH2 would directly 
cause a steric clash as well as a charge repulsion with R265 in 
the PTP domain, very similar to the E76K mutation, stabiliz-
ing the active conformation. For the inactivating mutations 
Y279C, A461T, G464A, and T468M, these are located close to 
the active site residue, C459, and would be expected to alter 
the active site enough to interfere with substrate recognition 
and catalytic activity.

The ability of mutant SHP2 to drive oncogenesis in liquid 
tumors is supported by preclinical work leveraging geneti-
cally engineered mouse models (GEMM; ref.  32). Mice that 
express the GOF mutants D61G, D61Y, or N308D—typically 
associated with leukemia or MDS—all develop a myelopro-
liferative syndrome (23, 30, 31). Likewise, mice expressing 
the E76K PTPN11 mutant, which is the most common and 
most active mutant found in JMML and acute leukemias, 
show aberrant activation of hematopoietic stem cells (HSC) 
and myeloid progenitors, and eventually develop AML or 
T- or B-cell ALL (T-ALL or B-ALL; ref.  33). In addition to a 
cell-autonomous effect, germline PTPN11 activating muta-
tions promote the development and progression of myelo-
proliferative syndromes through a perturbation of HSCs by 
an increased production of chemokines, such as CCL3, by 
the bone marrow microenvironment (34). Together with an 
amplification of the RTK and chemokine signaling, PTPN11 
mutations can also promote genomic instability partly by 
causing centrosome amplification (33). The effect of PTPN11 
GOF mutations on genomic instability was also confirmed by 
the D61G mutant, which causes chromosomal instability and 
increased susceptibility to tumors induced by DNA damage 
(35). SHP2 also localizes to the kinetochore and the centro-
some and GOF mutants hyperactivate PLK1 by enhancing its 
phosphorylation mediated by c-Src kinase (35). In contrast 
to what is observed in liquid tumors, SHP2 activating muta-
tions are relatively rare in solid cancers and are detected at 
low frequency in tumors such as neuroblastoma (28).

OTHER PATHWAYS REGULATED BY SHP2
Although this key role for SHP2 has been the focus for 

therapeutic intervention, SHP2 clearly plays a broader role in 
regulating the phospho-proteome. Recent proteomics stud-
ies have demonstrated that SHP2 affects multiple substrates, 
resulting in complex regulatory effects which span both 
positive and negative regulatory roles, as well as roles in pro-
tecting phosphorylated peptides from dephosphorylation by 
other phosphatases (36, 37).

PI3K Pathway
SHP2 is also involved in the activation and sustained sig

naling of the PI3K pathway (38, 39). Immunoprecipitation 
studies paired with mass spectrometry have shown the direct 
interaction across species between SHP2 and the regulatory 
subunit p85 but not the catalytic subunit p110 (40, 41). The 
SHP2/p85 complex also includes GAB1 (42) or GAB2 (41) 
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and it has been shown that it is essential for KIT signaling in 
myeloproliferative disease (MPD; ref. 43). Consistently, it has 
also been observed that the coinhibition of SHP2 and PI3K 
can correct MPD by disrupting p85/SHP2/GAB2 interaction. 
Moreover, it has been demonstrated that SHP2 also plays a 
critical role in the development of resistance to PI3K inhibi-
tors, as shown in the preclinical models of metastatic breast 
cancer where the combination of PI3K and SHP2 inhibition 
not only results in synergistic tumor growth inhibition but 
also inhibits metastasis formation (44). The role of the PI3K/
SHP2 axis in the regulation of metastatic progression has 
also been demonstrated by overexpression experiments in 
ovarian tumor models (45). Similarly, SHP2 overexpression 
has been shown to increase cell migration in HeLa and SiHa 
cells while SHP2 knockdown reduces cell motility through a 
mechanism of action involving AKT (46).

JAK/STAT Pathway
SHP2 both enhances and inhibits signaling in the JAK/

STAT signaling pathway, and different JAK/STAT pathways 
may be differentially regulated by SHP2 depending on the 
nature of the extracellular signals (47). The JAK1/STAT1 
and the STAT3 pathways can be suppressed by SHP2. Sup-
pression and inhibition of the STAT3 activity pathway by 
SHP2 in hepatocellular carcinoma highlight a tumor-sup-
pressive role of SHP2 in certain tissues (47, 48). Conversely, 
some SHP2 mutants may enhance JAK2/STAT5 activation in 
hematopoietic cells and can activate the JAK/STAT pathway 
in other contexts (49). Besides mutations and receptor-medi-
ated activation, additional mechanisms can enhance SHP2 
activity in some cancers. An example is given in pancreatic 
cancer, where a germline variation of the long intergenic 
noncoding RNA LINC00673 can increase SHP2 stability by 
interfering with its degradation mediated by the PRPF19 
ubiquitin ligase (50).

Hippo Pathway
SHP2 can also modulate the activity of the transcription 

factor YAP/TAZ, revealing a distinct role of the phosphatase 
in the nucleus [defined here as nuclear SHP2 (nSHP2)]. For 
example, the nuclear colocalization of SHP2 and YAP has 
been correlated with poor patient survival in non–small cell 
lung cancer (51), strongly suggesting the pro-oncogenic func-
tion of the SHP2/YAP axis. In addition, it has been shown 
that SHP2 binds YAP/TAZ and that this interaction modu-
lates its translocation into the nucleus (52). Mechanistically, 
nSHP2 dephosphorylates parafibromin and stimulates TCF/
LEF- and TEAD-regulated genes. Intriguingly, the SHP2/YAP 
axis seems to play opposite roles depending on the cellular 
context. For example, in the liver, it has been shown that 
SHP2 can inhibit YAP-mediated organ regeneration (53) as 
well as cholangiocarcinoma progression (54), thus function-
ing as a tumor suppressor. More detailed studies are certainly 
needed to better understand the interplay between SHP2 and 
YAP/TAZ even if a partial explanation to these conflicting 
reports is probably due to the complexity of the cross-talk, 
the variability in experimental conditions such as cell den-
sity, and other players not yet completely characterized. We 
can, however, speculate that this axis indicates that the role 
and localization of SHP2 are not limited to the membrane 

and that its phosphatase activity can modulate transcription 
factor activity. These observations and the recent develop-
ment of TEAD inhibitors as combination agents (55) could 
provide the rationale for additional preclinical studies to 
investigate how concomitant inhibition of both pathways 
could benefit efficacy.

SHP2 AT THE INTERFACE BETWEEN CANCER 
AND ITS MICROENVIRONMENT

In addition to its vital role in altering the function and fate 
of cancer cells themselves, SHP2 has multiple immunosup-
pressive properties in the tumor microenvironment (TME; 
Fig. 2). This is largely mediated via its modulation of various 
signaling pathways in immune cells such as macrophages 
and T lymphocytes and triggered through a complex mix of 
tumor intrinsic and extrinsic effects (56). Immune phenotypes 
associated with selective deletion or suppression of SHP2  
in tumor cells and/or immune microenvironment using vari-
ous genetic approaches have been well described. However, 
the relatively recent success in developing selective, allosteric 
inhibitors of SHP2, tested alone or in combination with vari-
ous targeted therapies such as immune checkpoint blockade, 
has further elucidated and advanced our understanding of 
the complex role and mechanism(s) of action of SHP2 in the 
context of tumor immunoregulation and established SHP2 
as a promising immune-modulatory target.

SHP2 in Macrophages
SHP2 is involved in multiple signaling pathways in tumor-

associated macrophages (TAM), with a tumor-promoting role. 
Upon stimulation by CSF1, SHP2 binds to the CSF receptor 
(CSF1R)/GRB2/GAB2 complex on the inner membrane of 
TAMs and consequently activates the downstream RAS–ERK 
signaling pathway promoting the proliferation and the polar-
ization of TAMs to immunosuppressive M2-like phenotype, 
thus favoring the survival, proliferation, and migration of 
tumor cells (57). SHP2 activity also modulates the function 
of the surface proteins CD47 and CD24. Known as a “don’t 
eat me signal,” CD47 is expressed on the surface of tumor 
cells and forms a signaling complex with SIRPα, an adaptor 
protein that is highly expressed on the membrane of myeloid 
cells. Consequently, SIRPα recruits specific substrates for 
dephosphorylation by SHP2 to inhibit intracellular signal-
ing, thus enabling tumor evasion from macrophage-medi-
ated phagocytosis (58, 59). Known as heat-stable antigen 
or small-cell lung carcinoma cluster 4 antigen, the tumor-
expressed CD24 binds to the inhibitory receptor Siglec-10 
on the surface of TAMs, eliciting an inhibitory signaling cas-
cade and tumor evasion from phagocytosis triggered by the 
recruitment of SHP2 (and/or SHP1) to the immunoreceptor 
tyrosine-based inhibition motif (ITIM) of the cytoplasmic tail 
of Siglec-10 (60). Myeloid-selective ablation of SHP2 inhib-
ited B16 melanoma growth in mice through potentiating 
CXCL9 production in macrophages and facilitating CXCL9-
mediated attraction of effector T cells, promoting antitumor 
adaptive immunity (61). In a recent study, myeloid-specific 
depletion of SHP2 diminished B16-F10 melanoma and 
MC17-51 fibrosarcoma growth in mice and the immunosup-
pressive capacity of myeloid-derived suppressor cells (MDSC); 
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further RNA-sequencing analysis of PMN-MDSC or TAMs 
from C17-51 tumors demonstrated the presence of enriched 
gene-expression profiles of enhanced differentiation, activa-
tion, and expression of immunostimulatory molecules (62). 
Myeloid-specific deletion of SHP2 alone or in combination 
with PD-1 depletion enhanced bone marrow GM-CSF–medi-
ated phosphorylation of the transcription factors HOXA10 
and IRF8, which induce myeloid differentiation and mono-
cyte/dendritic cell lineage commitment, respectively (62). 
Moreover, SHP2 deficiency in macrophages confers protec-
tion from colitis and colitis-driven colon carcinogenesis in 
mice through promoting the IL10/STAT3 signaling and its 
dependent anti-inflammatory response (63). Dual inhibition 
of CSF1R and SHP2 using self-assembled dual-inhibitor-
loaded nanoparticles (DNT) skewed the activation states of 
TAMs toward a more M1 phenotype, while simultaneously 
enhancing the phagocytic index (64). Together, these findings 
demonstrate that SHP2 promotes macrophage proliferation 
and M2-type polarization and that targeting SHP2 in mac-
rophages increases antitumor immunity, providing evidence 
for the nonautonomous role of SHP2 on tumor progression.

SHP2 in T Lymphocytes
SHP2 plays a crucial role in the regulation of T-cell func-

tion via binding to regulatory receptors that contain tandem 
phosphorylated ITIM and immunoreceptor tyrosine-based 
switch motif (ITSM) domains, including immune-suppres-
sive receptors such as PD-1. Upon stimulation by its PD-L1 
ligand, PD-1 becomes phosphorylated by Src kinases at both 
ITIM and ITSM motifs located in its cytoplasmic tail. Phos-
phorylated ITSM interacts with C-terminal SH2 domain 
of SHP2, thereby recruiting SHP2 to PD-1 with high affin-
ity while phosphorylated ITIM binds the N-terminal SH2 
domain, displacing it from the catalytic pocket and activating 
its phosphatase activity (65). When recruited by PD-1, SHP2 
directly dephosphorylates the costimulatory molecules CD28 
and CD226, and consequently limits T-cell activation (66, 
67). In addition, SHP2 promotes the dephosphorylation of 
critical proteins in the T-cell receptor (TCR) signaling com-
plex such as ZAP70 kinase, CD3ζ, PKC-θ, and PLCγ2, leading 
to inhibition of the downstream PI3K–AKT and RAS–ERK 
signaling and ultimately reduction in TCR-mediated IL2 
production and T-cell proliferation (68). However, in a T-cell–
confined SHP2 knockout (KO) mouse model, SHP2 was 
found to be dispensable for PD-1 signaling in T cells and for 
establishing T-cell exhaustion: The control of immunogenic 
tumors was not significantly improved and the response to 
anti–PD-1 checkpoint blockade therapy was not altered (69). 
This apparent discrepancy could be due to the emergence of 
compensatory mechanisms such as recruitment of alternative 
phosphatases to direct intracellular signaling. It was recently 
reported that PD-1 converges with the inhibitory receptor 
TIGIT through distinct mechanisms to disrupt the activation 
of the costimulatory receptor CD226 on T cells. Although 
PD-1 inhibits the phosphorylation of CD226 via recruitment 
of SHP2, TIGIT restricts CD226 costimulation by block-
ing interaction with their shared ligand PVR (CD155) and 
impairs its function by directly disrupting CD226 homodi-
mer formation. Because TIGIT and PD-1 can independently 
regulate CD226, dual blockade of both inhibitory receptors 

was required to fully restore CD226 signaling and to obtain 
an optimal CD8+ cytotoxic T-cell response (70, 71). These 
investigations will elucidate mechanistically how the phos-
phatase activity of SHP2 modulates T-cell signaling and sug-
gest unanticipated benefits of combining SHP2 inhibition 
with novel targets for immune modulation.

SHP2 in Natural Killer Cells
Although most studies focus on macrophages and T 

lymphocytes, the role of SHP2 in the regulation of natural 
killer (NK) cells in the TME has been reported even if the 
exact mechanism of action has not been fully elucidated yet. 
SHP2 negatively regulates NK cell development and func-
tions through its interaction with some inhibitory receptors 
on the surface of NK cells via the ITIM motif (72). More 
specifically, SHP2 inhibits the activation of human NK cells 
upon recruitment to killer cell Ig-like receptors (KIR), with 
the overexpression of a catalytically inactive SHP2 mutant 
shown to reverse KIR-mediated inhibition of NK cells (73). 
In addition, SHP2-deficient NK cells had elevated cytolytic 
activity and IFNγ production when targeting tumor cells, but 
in a KIR-independent process (74). In a relatively more recent 
study using mice conditionally deficient for SHP2 in the NK 
lineage, it was shown that SHP2 is largely dispensable for NK 
cell education. However, SHP2-deficient NK cells have reduced 
proliferation and survival when treated with high-dose IL15, 
elucidating an essential role for SHP2 in orchestrating NK 
cell metabolic activity following exposure to IL15 (75). More 
research is needed to further elucidate the role of SHP2 in 
modulating NK cells among other immune cells in the TME.

SHP2 and Other Components of the TME
In addition to its major role in altering the tumor immune 

microenvironment, SHP2 is shown to modulate other com-
ponents of the TME such as endothelial cells and stro-
mal fibroblasts. Studies have shown that SHP2 supports 
endothelial cell survival and growth in the remodeling of 
tumor vasculature; SHP2 inhibition by SHP099, alone or in 
various combinations, impaired angiogenesis, reduced tumor 
vascularity and tumor growth, and promoted remodeling 
of the stroma in various syngeneic and orthotopic tumor 
models (76, 77). In addition, the selective SHP2 deletion 
in tumor endothelial cells through the use of inducible 
and endothelial-cell-specific SHP2 KO mice inhibited tumor 
growth and angiogenesis while promoting the normalization 
of tumor vasculature (78). Studies have also shown that SHP2 
promotes TGFβ1-induced epithelial–mesenchymal transition 
(EMT) in lung epithelial A549 cells (79) and is required for 
EMT stimulated by IL6 in breast cancer cells (80). SHP2 
also acts as a molecular checkpoint of TGFβ-induced JAK2/
STAT3 signaling to regulate fibroblast activation and tissue 
fibrosis; genetic or pharmacologic inactivation of SHP2 in 
fibroblasts reduced JAK2/STAT3 signaling, inhibited TGFβ-
induced profibrotic effects manifested through various 
changes such as decrease in α-SMA levels, collagen release, 
and formation of stress fibers, and ameliorated or protected 
from experimental fibrosis induced in various mouse models 
(81). All these studies provided compelling evidence on the 
involvement of SHP2 in stroma remodeling; however, this 
remains an immature area of research, and more work is 
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needed to dissect the mechanism of action of SHP2 in the 
TME, especially with its role in activating and reprogram-
ming cancer-associated fibroblasts (CAF), a key component 
of the tumor stromal compartment with distinct molecular 
and functional subtypes across various malignancies such as 
pancreatic ductal adenocarcinoma (PDAC), and with poten-
tial pro- and antitumorigenic dichotomy (82).

SHP2 Inhibitors to Reshape the TME
Given the complexity of the function of SHP2 in several 

components of the TME, studies utilizing targeted SHP2 
allosteric inhibitors have been key to understanding its pleio-
tropic activity. For example, it has been shown that the 
inhibition of SHP2 by SHP099 delayed tumor growth by trig-
gering antitumor immunity mediated by cytotoxic T cells and 
synergized with PD-1 blockade in syngeneic models of colon 
cancer. Notably, SHP099 treatment resulted in a significant 
increase in the number of NK1.1+IFNγ+ cells, indicating a role 
of SHP2 in tumor growth retardation (83). Studies involving 
other allosteric inhibitors, RMC-4550 and TNO155, demon-
strated that SHP2 inhibition reverses immune suppression 
in syngeneic tumor mouse models through the modulation 
of both innate and adaptive immunity (68, 84, 85). More 
specifically, RMC-4550 caused an increase in CD8+ T-cell 
tumor infiltrates in addition to class I MHC and PD-L1 
expression on tumor cells; it also drove a direct and selective 
depletion of protumorigenic M2 macrophages via attenu-
ation of CSF1R signaling and increased M1 macrophages. 
The antitumor effects of RMC-4550 were additive with either 
anti–PD-L1 and anti-CTLA4 immune checkpoint inhibitors 
or an anti-CSF1R antibody, consistent with the pleiotropic 
function of SHP2 (84). Similar to RMC-4550, TNO155 effec-
tively inhibited immunosuppressive M2 macrophages and 
showed combination activity with PD-1 blockade (85). A 
recent study leveraging KRAS- and EGFR-mutant non–small 
cell lung carcinoma (NSCLC) GEMMs showed that SHP2 
inhibition by SHP099 depleted alveolar and M2-like mac-
rophage populations, induced tumor-intrinsic secretion of 
CCL5 (RANTES) and CXCL10 (IP10) chemokines with key 
roles in T-cell recruitment and activation, and increased B 
and T lymphocyte infiltration in tumors. However, it also  
promoted the accumulation of immunosuppressive granu-
locytic MDSCs (gMDSC) that was attributable to NFκB-
induced secretion of CXCR2 ligands largely in tumor cells, 
but with some expression in CAFs (77). Combined treatment 
of SHP099 with the CXCR1/2 inhibitor SX682 blocked the 
infiltration of a specific cluster of S100a8/9hi gMDSCs, gen-
erated Klrg1+ CD8+ effector T cells with high cytotoxic and 
proliferative capability, and improved survival of KRAS- and 
EGFR-mutant models (77). This asserts the beneficial effect 
of testing the combinations of SHP2 and CXCR1/2 inhibi-
tors in the clinic. It would also be fair to speculate that SHP2 
inhibition could affect not only immune cells but also stroma 
survival and that combination with emerging inhibitors of 
KRASG12D in PDAC, where stroma plays a key supportive role, 
may turn out to be beneficial even if no experimental evidence 
has been generated yet.

Tumor stroma is highly dynamic and plays an essen-
tial role in providing a supportive microenvironment for 
tumor epithelial cell growth and progression. Gaining a  

comprehensive view and a deeper understanding of the com-
plexity, functionality, heterogeneity, and robustness of the 
immune context together with other nonimmune compo-
nents of the tumor stroma could identify new therapeu-
tic vulnerabilities and combinatorial strategies with SHP2 
inhibition; this would also necessitate more detailed stud-
ies to evaluate long-term efficacy, safety, and tolerability of 
such combination therapies. Developing methods and tools 
that allow the identification and quantification of variability 
and perturbations in the microenvironment in real time 
remains a challenge. Most preclinical studies of SHP2 have 
used syngeneic tumor models implanted in the subcutaneous 
space. Although proven invaluable, these models provide an 
incomplete or even ambiguous picture on the SHP2 inhibitor 
(SHP2i) mode of action because, as shown in various studies, 
vascularization and sensitivity to antitumoral treatments are 
dependent upon the site of implantation. Efforts in ascertain-
ing the best ways of generating preclinical models that can 
faithfully unveil the effect of targeting of SHP2 in combina-
tion with specific functional nodes in the complex cross-talk 
between cancer cells and TME components and are thus good 
indicators of therapeutic efficacy in humans are vital for  
medical advancement.

SHP2: A THERAPEUTIC TARGET IN CANCER
Because of its pleiotropic role, SHP2 has emerged as an 

appealing target in cancer therapy. Molecules targeting SHP2 
can be distinguished between catalytic and allosteric inhibi-
tors based on their mechanism of action. Catalytic inhibitors 
have been designed to target the PTP domain, and despite 
the significant activity in vitro, their poor selectivity against 
SHP1 has limited their clinical development (86). Allosteric 
inhibition of SHP2 was first reported by Novartis in 2015 (87) 
with the identification of a hitherto unknown pocket formed 
between the N-SH2, C-SH2, and PTP domains when SHP2 
is in the autoinhibited state and demonstrated that selec-
tive and potent allosteric inhibition of SHP2 was possible 
(Supplementary Fig. S1). This finding unlocked a wealth of 
subsequent allosteric inhibitors inspired by SHP099 (1, Sup-
plementary Fig. S1). This original molecule and all subsequent 
allosteric inhibitors share the same general pharmacophore 
(2, Supplementary Fig. S1) of an elaborated amino piperidine 
ring (green) attached to a heterocyclic ring (blue, commonly 
amino pyrazine or pyrazolopyrazine), which is connected to 
an aromatic moiety, either directly or via a heteroatom (red). 
Novartis’s ultimate clinical candidate, TNO155 (3, Supple-
mentary Fig. S1; ref. 88), maintains the aminopyrazine core 
of SHP099, with additional elaboration of the piperidine ring 
to a highly potent spirocyclic amine. Variations of this novel 
motif are contained in many subsequently reported SHP2 
allosteric inhibitors, including RMC-4550 (4, Supplementary 
Fig. S1; ref. 89), clinical molecule GDC-1971(5, Supplemen-
tary Fig. S1; ref. 90), and patented molecules from Jacobio (6, 
Supplementary Fig. S1; ref. 91). All SHP2 allosteric inhibitors 
to date bind the same pocket, trapping SHP2 in an inactive 
configuration (Supplementary Fig. S2)

Targeting of SHP2 in cancer has paved a new way in cancer 
therapy for at least three reasons. First, SHP2 has been one 
of the first examples of a nonkinase target within the RAS 
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pathway in cancer and was the first tyrosine phosphatase 
for which an oncogenic role was demonstrated (27) and 
function inhibited. Second, SHP2 is usually not a driver in 
cancer; rather, it cooperates with other key factors for path-
way modulation. Third, although SHP2i have very limited 
activity as single agents, they are expected to improve the effi-
cacy of a wide range of inhibitors within the MAPK pathway 
and beyond.

As blocking SHP2 disrupts SOS1-mediated RAS-GTP 
loading, SHP2i are expected to show an antiproliferative 
activity in tumors where RAS cycling is at least partially 
intact and to have no effect when RAS is locked in an active 
state, as in the Q61 mutants (92). Based on this rationale, 
SHP2i are combined with the recently discovered KRASG12C 
inhibitors to enhance their activity as they covalently bind 
to the KRAS GDP-bound form. In addition to enhancing 
target alkylation, SHP2 inhibition represents a valid strat-
egy in KRASG12C patients where resistance to treatment has 
emerged through RTK-mediated bypass mechanisms facili-
tating the reactivation of MAPK signaling (93).

Moreover, SHP2 represents an appealing combination agent 
with RTK inhibitors to prevent and/or delay MAPK reactiva-
tion through an alternative RTK as a mechanism of resistance. 
Notably, as this mechanism of resistance overlaps across all 
the RTKs such as EGFR (94), ALK (95), RET (96), ROS1 (97), 
NTRK1 (98), and FLT3 (99), it suggests that SHP2i can be in 
principle combined across receptors. Consistent with this 
hypothesis, inhibition of SHP2 is shown to overcome resist-
ance mediated through alternative RTK-mediated bypass  
signaling (100, 101).

Although an explicit cotargeting of individual RTKs con-
ferring resistance to the inhibition of the driver RTKs is a 
rational therapeutic approach that is being explored (102, 
103), other RTKs may still serve as escape routes to any such 
combinations. Supporting this idea, Ryan and colleagues 
showed combined SHP2 and KRASG12C inhibition as a more 
effective approach to suppress RTK-mediated MAPK sig
naling rebound and in vivo tumor growth over a KRASG12C 
inhibitor and anti-EGFR combination (104). This is consis
tent with the idea that it would be more effective blocking a 
central node of RTK signaling by inhibiting SHP2. In such 
cases, SHP2 can be considered a key player in cancer plastic-
ity, and subsequently SHP2i are ideal combination partners 
for all RTK-blocking agents.

In addition, SHP2i are expected to show antitumor activ-
ity in cancers where the RAS–MAPK pathway is generally 
deregulated either at the RTK level (through amplifications) 
or immediately downstream. In particular, SHP2 may be 
considered a key target for tumors that do not carry a spe-
cific mutation on a typical oncogene but rather show the 
loss of multiple tumor suppressor genes regulating MAPK 
activation. Some evidence is provided in studies leveraging an 
animal model of NSCLC driven by the concomitant loss of 
the two GTPase-activating proteins (GAP) NF1 and RASA1 
(105), detected in roughly 2% of patients with NSCLC with no 
known driver mutations (106). In addition, it has been shown 
in preclinical models of small-cell lung cancer that the loss 
of the epigenetic modificatory KTMD2 activates ERBB2 and 
EGFR and that the combined inhibition of SHP2 and ERBB2 
results in tumor regression (107). Moreover, SHP2 inhibition 

has been shown to be an effective combination strategy in 
hepatocellular carcinoma in combination with an mTOR 
inhibitor (108). The studies collectively show that the inhibi-
tion of SHP2 in cancer would represent a solid strategy to 
treat, prevent, and delay resistance mechanisms to currently 
available targeted therapies.

CLINICAL DEVELOPMENT OF SHP2i
Currently, 15 small-molecule SHP2i have been reported to 

be in clinical development (Table 1), with all trials conducted 
in solid tumor oncology indications. Although the earliest 
first-in-human studies generally enrolled all tumor genotypes, 
some of the later studies have taken a more targeted approach 
by enrolling mutant genotypes thought to be most sensitive 
to SHP2 inhibition, such as ALK- or ROS1-positive NSCLC, 
BRAFV600E colorectal cancer, or NF1-mutant or BRAF class 
3–mutant solid tumors (e.g., PF-07284892 in NCT04800822; 
ref.  109). Another interesting strategy is the exclusion of 
known activating mutations in RAS or BRAF, which may 
render tumors resistant to SHP2 inhibition (e.g., TNO155 in 
NCT03114319). Yet despite the known activating mutations 
in PTPN11 found in JMML and NS, clinical studies of SHP2i 
in these disease areas have not been initiated to date.

Emerging efficacy data from the first SHP2 allosteric inhib-
itors to reach the clinic, RMC-4630 and TNO155, have shown 
that this mechanism of action is not highly effective on 
its own as an antitumor agent (110). Aside from one com-
plete response (NF1 LOF uterine carcinoma) and one par-
tial response (KRASG12C-mutant NSCLC), both treated with 
RMC-4630, the best tumor responses reported have stable 
disease (111). This lack of tumor shrinkage was seen despite 
pharmacodynamic evidence of MAPK pathway suppression, 
and despite the single-agent efficacy of SHP2i in preclinical 
xenograft models of KRASG12C and EGFR-amplified tumors. 
These human clinical data confirm the biological role of 
SHP2 as a signal integration node rather than a driver onco-
gene in most tumor types.

Encouraging preclinical combination data, informed by 
biological and mechanistic insights and a growing under-
standing of the tumor and its microenvironment, have war-
ranted the rapid clinical evaluation of SHP2i in treatment 
combinations (Table 2 and Figs. 3 and 4). The current treat-
ment approaches in combination with SHP2i can be grouped 
into two main strategies: (i) combination of SHP2 with tar-
geted therapy (Fig. 3); (ii) combination of SHP2 with immu-
notherapy (Fig. 4).

In the context of combinations with targeted therapy, the 
most common strategy aims at a vertical combination of 
the MAPK pathway to increase single-agent activity, prevent 
MAPK-mediated resistance, and ultimately inhibit the path-
way at multiple nodes.

KRASG12C Inhibitors
Small-molecule compounds that target oncogenic KRASG12C  

via covalent reaction with the cysteine residue are able to 
attack RAS only in its inactive GDP-bound form. SHP2i are 
a particularly attractive combination partner for these drugs, 
as SHP2 acts downstream of RTKs and upstream of SOS1/2  
in the RAS signaling pathway and its phosphatase activity 
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Table 2. Current combinations with SHP2i

Compound name Drug combination partner Partner drug MoA Trial ID
BBP-398 Nivolumab Anti–PD-1 mAb NCT05375084
BR790 Tislelizumab Anti–PD-1 mAb NCT05505877
ERAS-601 Sotorasib KRASG12C inhibitor NCT04959981

Cetuximab Anti-EGFR mAb NCT04670679
GDC-1971 GDC-6036 KRASG12C inhibitor NCT04449874

Atezolizumab Anti–PD-L1 mAb Forthcoming
JAB-3068 JS001 (toripalimab) Anti–PD-1 mAb NCT04721223
JAB-3312 JAB-21822 KRASG12C inhibitor NCT05288205

Sotorasib KRASG12C inhibitor NCT04720976
Osimertinib Mutant EGFR inhibitor
Pembrolizumab Anti–PD-1 mAb
Binimetinib MEK1/2 inhibitor

PF-07284892 Lorlatinib ALK inhibitor NCT04800822
Binimetinib MEK1/2 inhibitor
Cetuximab + encorafenib Anti-EGFR mAb + BRAFV600mut

RMC-4630 Sotorasib KRASG12C inhibitor NCT05054725
Adagrasib KRASG12C inhibitor NCT04418661
Pembrolizumab Anti–PD-1 mAb
Osimertinib Mutant EGFR inhibitor NCT03989115
Cobimetinib MEK1/2 inhibitor
LY3214996 ERK1/2 inhibitor NCT04916236

TNO155 Adagrasib KRASG12C inhibitor NCT04330664
JDQ443 KRASG12C inhibitor NCT04699188
JDQ443 + tislelizumab KRASG12C inhibitor + anti–PD-1 mAb
Nazartinib Mutant EGFR inhibitor NCT03114319
Spartalizumab Anti–PD-1 mAb NCT04000529
Ribociclib CDK4/6 inhibitor
Lorlatinib ALK inhibitor NCT04292119
Sotorasib KRASG12C inhibitor NCT04185883
Dabrafinib + LTT462 BRAFV600mut inhibitor + ERK1/2 inhibitor NCT04294160
Dabrafinib + trametinib BRAFV600mut inhibitor + MEK1/2 inhibitor
LY3537982 KRASG12C inhibitor NCT04956640

has been shown to inhibit several negative regulators of KRAS 
(112). SHP2 inhibition increases the occupancy of the 
KRASG12C-GDP state, enhancing the ability of KRASG12C 
inhibitors to couple to mutant KRAS. On the basis of this 
improved efficacy in preclinical studies, multiple KRASG12C/
SHP2 inhibitor pairs are being evaluated in clinical trials of 
G12C-mutated cancers (Table 2 and Fig. 3). Indirect target-
ing of KRAS via SHP2 establishes a deeper target alkyla-
tion and constitutes a form of vertical inhibition of this 
signaling pathway.

Tyrosine Kinase Inhibitors
The mechanism of resistance to inhibitors targeting the 

RTK/RAS/MAPK pathway is commonly associated with 
bypass signaling at the level of RTKs. Combination strategies 
using SHP2i acting downstream of these RTKs aim to block 
or prevent resistance and pathway reactivation by interrupt-
ing bypass RTK/RAS activation and combat tumor plas-
ticity driving therapeutic adaptation. Preclinical data have 

shown synergy between SHP2i and tyrosine kinase inhibitors 
(TKI) in tumors driven by RTK overexpression or activation, 
and suggested that SHP2i can reverse some mechanisms of 
TKI resistance. This therapeutic hypothesis is being tested 
via a combination of SHP2i with both EGFR TKIs (osi-
mertinib and nazartinib) and an ALK inhibitor (lorlatinib). 
In addition, multiple trials are investigating the combina-
tion of SHP2i with cetuximab, an anti-EGFR monoclonal 
antibody approved for the treatment of RAS/RAF wild-type 
colorectal carcinoma.

Additional Vertical Combinations
Given the role of SHP2 as a key regulator that can orches-

trate the initiation and progression of signaling cascades 
involved in cell proliferation, differentiation, and survival, 
it is not surprising that multiple signaling inhibitors of the 
MAPK pathway are being tested in combination with SHP2i. 
These combination therapies are generally superior to sin-
gle agents in prolonging responses to oncogenic pathway 
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inhibition and in combating tumor heterogeneity and the 
emergence of preexisting therapy-refractory tumor clones. 
Based on this rationale, SHP2i are currently tested in various 
malignancies with the MEK1/2 inhibitors binimetinib or 
cobimetinib (113) as well as in PDAC with the ERK inhibitor 
LY3214996 (114). Similarly, SHP2i have been integrated into 
already established combination therapies in colorectal can-
cer in an attempt to improve patient survival. In one instance, 
SHP2i are being tested together with the double combination 
cetuximab/encorafenib (EGFR/BRAFV600E) based on what has 
been shown by the BEACON trial (115, 116). Another set of 
triple combination trials including SHP2 aim at prevent-
ing RTK-mediated resistance. In this case, instead of tar-
geting only EGFR, the general RTK signaling is tackled by 
SHP2i. Currently, two trials are testing this hypothesis: the 
triple combination TNO155/dabrafenib/trametinib (SHP2/
BRAFV600E/MEK1/2; ref.  117) and the triple combination 
TNO155/dabrafenib/LTT462 (SHP2/BRAFV600E/ERK).

Orthogonal Combinations
SHP2i are also combined with targeted therapies beyond 

the MAPK pathway. An example is given by the combination 
of TNO155 with the CDK4/6 inhibitor ribociclib. The ration-
ale in this case is provided by the observation that CDK4/6 
inhibitors impair G1 to S phase cell-cycle progression driven 
by D-type cyclins, which are a convergent node of the MAPK 
pathway (118).

Combination of SHP2 with Immunotherapy
In addition to its critical role in regulating the RAS–MAPK 

pathway, SHP2 is an integral downstream effector of immune 
signaling responses. Thus, SHP2i can reshape the TME by 
inducing cytokine release, promoting T-cell activation and 
macrophage polarization to M2 (proinflammatory). These 
alterations in the TME present a therapeutic opportunity for 
targeting SHP2 in combination with anti–PD-1/PD-L1. Pre-
clinical studies supported the synergistic effect of SHP2 inhibi-
tion in modulating immune cell functions and demonstrated 
that SHP2i and anti–PD-1/PD-L1 combinations confer a 
substantial therapeutic benefit. Most of the SHP2i brought 
to the clinic to date have initiated combination studies with 
anti–PD-1/PD-L1 antibodies (Table 2 and Fig. 4). These trials 
are generally in indications where the checkpoint inhibitors 
have demonstrated efficacy, such as NSCLC and head and 
neck squamous cell carcinoma. These studies will test the 
hypothesis that SHP2 inhibition can reduce the immuno-
suppressive myeloid population and enhance cytotoxic T-cell 
activity. Preliminary support for this hypothesis was provided 
by limited tumor biopsy data from patients receiving single-
agent TNO155 or RMC-4630 (119), showing an increase in 
tumor-infiltrating T cells and a decrease in transcripts or 
cell markers associated with M2 macrophages. In addition, 
a triple combination approach to inhibit KRASG12C, SHP2, 
and PD-1 aims at synergizing cell-autonomous and non–cell-
autonomous activity of the SHP2i to enhance the durability  
of response.

Resistance to SHP2i
Although no mechanism of resistance to SHP2i has emerged 

yet from the clinic, some experimental evidence has helped 

refine inclusion/exclusion criteria for patients with specific 
on-target and/or on-pathway mutations. For example, the 
mutations detected in leukemia on the SH2-domain E76K, 
D61Y and A72V keep SHP2 in an open, active conformation 
and are insensitive to SHP099, as opposed to the mutation 
E69K where the inhibitor is still effective (120–122). In addi-
tion, mutations on the PTP domain such as the double muta-
tion T253M/Q257L (TM/QL; ref. 87) or the mutation P491Q 
(113) confer drug resistance by interfering with the docking 
of the drug into the target while keeping the enzyme catalyti-
cally active. Moreover, on-pathway/off-target mutations may 
significantly reduce the activity of SHP2i. A genome-wide 
CRISPR screen has identified that loss of INPPL1, MAP4K5, or 
LZTR1 genes results in resistance to SHP2 inhibition in vitro 
and in vivo by MAPK reactivation (123), as well as that RAS/
RAF mutant neuroblastoma cells do not respond to SHP099 
as SHP2 activity is not required in this genetic context (124).

The Future Ahead
The ongoing and future trials with SHP2i will help us 

understand a few key questions. An important aspect is to 
dissect if SHP2 inhibition in combination with other targets 
would result in a deeper response rate compared with the sin-
gle agent or in a general improvement of durability. Another 
open question is related to the chronic tolerability of such 
combination therapies. The adverse events associated with 
most of the SHP2i deriving from on-target off-cancer target 
inhibition include gastrointestinal tract toxicity such as diar-
rhea, decreased platelets and neutrophils, increased blood 
creatine phosphokinase, peripheral edema, and acneiform 
dermatitis (110). Because these side effects partially overlap 
with the typical toxicity related to inhibitors of the MAPK 
pathway, they may potentially affect the combinability of these 
agents. For this reason, combination strategies including 
alternate scheduling (on/off administration of the SHP2i) or 
dosing regimens (acute high dose versus chronic lower dose) 
have been designed to balance efficacy and toxicity. The spe-
cific design as well as other features such as pharmacokinetics 
and potency will probably be a major differentiator among 
the trials mentioned and will refine the impact of SHP2i  
in the clinic.

CONCLUSIONS
The multifaceted role of the protein phosphatase SHP2 is 

a direct reflection of the complex cross-talk between cancer 
cells and the surrounding microenvironment. Although the 
role of SHP2 has been extensively described in the context 
of the activation of the RAS–MAPK pathway, a clear idea of 
how SHP2 influences tumor-extrinsic growth is still elusive 
and would require further investigation. The development of 
direct inhibitors of SHP2 and the clinical strategies associ-
ated with them will uncover additional aspects of this phos-
phatase in tumor biology.
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