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Abstract
Incentivised by breakthroughs and data generated by 
the high-throughput sequencing technology, this paper 
proposes a distance-based framework to fulfil the 
emerging needs in elucidating insights from the high-
dimensional microbiome data in psychiatric studies. By 
shifting focus from traditional methods that focus on the 
observations from each subject to the between-subject 
attributes that aggregate two or more subjects’ entire 
feature vectors, the described approach revolutionises 
the conventional prescription for high-dimensional 
observations via microbiome diversity. To this end, we 
enrich the classical generalised linear models to articulate 
the multivariable regression relationship between 
distance-based variables. We also discuss a robust 
and computationally feasible semiparametric inference 
technique. Benefitting from the latest advances in the 
semiparametric efficiency theory for such attributes, 
the proposed estimators enjoy robustness and good 
asymptotic properties that guarantee sensitivity in 
detecting signals between clinical outcomes and 
microbiome diversity. It offers a readily implementable and 
easily interpretable solution for deciphering the gut–brain 
axis in mental health research.

Introduction
The human microbiome is the totality of 
the microbes (microbiota), their genetic 
elements (metagenome) and the interactions 
they have with surrounding environments 
throughout the human body.1 In contrast to 
the human genome, the human microbiome 
is highly variable, displays substantial intra-
individual variation at different body sites 
(gut, skin, lung, vagina, oral cavity, etc), inter-
individual variation at the same body sites and 
intra-individual variation at different times in 
longitudinal studies.2

The human microbiome plays a key role 
in human disease and health. A preponder-
ance of human microbiome studies have 
implicated the human microbiome in the 
pathogenesis of many human diseases, such 
as obesity, diabetes, alcoholic liver disease, 
vaginosis and even cancers.1 3 The genotypic 
effect on the microbiome may explain the 
missing link between genetics and disease 
since a disease-susceptibility genotype may 

affect the disease outcome through the alter-
ation of the microbiome composition.4 5 
Therefore, identifying potential factors that 
influence the microbiome composition and 
discovering their relationship with biolog-
ical or clinical outcomes help demystify the 
inherent disease mechanism and enable the 
possibility of modulating the microbiome 
composition for therapeutic purposes.

Fuelled by the technological advancement 
of next-generation sequencing, the human 
microbiome can be interrogated using high-
throughput sequencing. One strategy ampli-
fies and sequences the bacterial 16S ribosomal 
RNA from the samples. We then cluster the 
similar sequences into operational taxonomic 
units (OTUs). By comparing OTUs with refer-
ence databases, we identify existing species in 
the samples and also obtain the OTU abun-
dance profiles. The OTU abundance profiles 
refer to a matrix with the (i, j)-th element 
referring to the number of sequence reads 
that represent the j-th OTU (or species, 
roughly speaking) in the i-th subject. This 
count matrix forms the foundation for statis-
tical analyses.6 The notable features of OTU 
abundances are high-dimensional (p>>n) and 
skewed counts with a preponderance of zeros. 
One line of research aims to advance statis-
tical tools to directly tackle such data features 
to find individual OTU culprits for certain 
diseases of interest.7 8 Another emerging 
paradigm, however, shifts gears to study the 
impact of the overall microbiome composi-
tion represented as diversity metrics, such as 
alpha-diversity and beta-diversity,6 which we 
introduce and focus on in this paper.

Microbiome diversity metrics
Alpha-diversity
Alpha-diversity is a subject-level metric 
summarising OTU abundance into a scalar 
value for each person. Consider a sample of 
‍n‍ subjects and a vector ‍yi =

(
yi1,yi2,..., yip

)T
‍ 
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denoting the counts of the ‍p ‍ OTUs for subject ‍i ‍. Alpha-

diversity for subject ‍i ‍ is:

	﻿‍

S
(

m
)

i =




p∑
j=1

pm
ij


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(1)

where ‍m ‍ is the order controlling the weight allocation 
among taxa. Varying ‍m ‍ permits different alpha diversi-
ties. For example, ‍m = 0‍ yields the observed species index 

‍S
(
0
)

i =
∑p

j=1 I
(
pij > 0

)
‍ that counts the total number of 

species present, hence weighing more on the rare taxa 
and indexes the richness of microbe in total.9 On the other 

hand, ‍m = 2‍ leads to the Simpson index ‍S
(
2
)

i = 1/
∑p

j=1 p2
ij ‍ 

that assigns more weight towards abundant taxa, hence 
indicating species evenness.9 When ‍m = 1,‍ (1) is unde-
fined but the resulting limit is the Shannon index, 

‍S
(
1
)

i = −
∑p

j=1 pijlog
(
pij
)
‍.

Beta-diversity
Unlike the OTU abundance or alpha-diversity that 
describes features within each subject, beta-diversity is 
a between-subject attribute6 indexing the dissimilarity 
between any two individuals or a pair. Essentially, beta-
diversity compares the feature differences between any 
pair ‍i =

(
i1, i2

)
∈ Cn

2 ‍ using a dissimilarity or distance 
metric, denoted as ‍di = d

(
yi1 , yi2

)
‍, where ‍d

(
·
)
‍: ‍R

p × Rp → R‍ 
is a mapping from the high-dimensional OTUs to a scalar 
value for that pair. Different choices of ‍d

(
·
)
‍ lead to distinct 

versions of beta-diversity, with the commonly used ones 
including Aitchison, Bray-Curtis, Jaccard, Unifrac, and so 
on. For example, the Aitchison beta-diversity10 is defined 
as:

	﻿‍
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(2)

By integrating information from high-dimensional 
features, beta-diversity represents a totality measure of 
dissimilarity between two subjects across all the OTUs, 
which constitutes a biologically relevant indicator of 
human health11 and merits interest. It is non-negative, 
with ‍0‍ (bigger values) indicating the same (very different) 
taxonomic abundances. Also, its dimension does not 
change with the number of taxonomic units ‍p,‍ hence can 
be viewed as a dimension reduction.

Statistical methods
The research community is primarily interested in using 
statistical methods to link various diversity metrics intro-
duced above to clinical variables, such as disease status.

Alpha-diversity
The alpha-diversity is composed of data from one subject; 
therefore, most standard statistical methods are readily 
applicable for the analysis of alpha-diversity. For example, 
popular tools for associating a phenotype with alpha-
diversity include the Kruskal-Wallis H (or Mann-Whitney 
U) test12 for categorical variables and the Spearman’s 
correlation for continuous phenotype variables. When 
controlling for covariates (eg, demographics) is needed 
in more complex settings, the robust regression frame-
work is often suggested to ensure valid inferences given 
the non-normality nature of alpha-diversity. For a study 
with size ‍n‍, let ‍Yi ‍ denote a response, and ‍Xi ‍ an explana-
tory variable for the ‍i ‍-th subject. The semiparametric GLM 
characterising the within-subject relationship between ‍Yi ‍ 
and ‍Xi ‍ is:

	﻿‍ E
(
Yi|Xi

)
= h

(
Xi;β

)
, 1 ≤ i ≤ n‍� (3)

where ‍h
(
·
)
‍ is the inverse of some link functions. 

Compared with the classical parametric GLM, (3) is more 
flexible. It removes the distributional assumption on ‍Yi ‍, 
thus yielding valid inference even when the data deviate 
from such an assumption. Hence, it is especially suited 

for modelling the alpha-diversity by specifying ‍Yi = S
(
m
)

i ‍ in 
(1). It is worth noting that the same method can be used 
if alpha-diversity is the predictor.

Beta-diversity
Given a main factor ‍Xi ‍ with ﻿‍ K ‍ levels for the group 
membership, let ‍µk = E

[
diI

(
Xi =

{
k, k

}]
‍ and 

‍σ
2
k = Var

[
diI

(
Xi =

{
k, k

}]
‍ denote the mean and variance 

of ‍di‍ for the ‍k ‍-th group. We can formalise the scientific 
question into a hypothesis to test the mean beta-diversity 
distance across the ﻿‍K ‍ groups:

	﻿‍

H0 : µk = µ for all 1 ≤ k ≤ K v.s.

HA : µj ̸= µk for 1 ≤ j ̸= k ≤ K ‍�
(4)

However, unlike the case with alpha-diversity, the ‍di‍ 
involves the OTU abundances from a pair, so it introduces 
rather complex correlation structures that are difficult, if 
not impossible, to model using parametric form.

Permutational Multivariate Analysis of Variance Using Distance 
Matrices
One solution is the distance-based Permutational Multi-
variate Analysis of Variance Using Distance Matrices 
(PERMANOVA).13 It defines a pseudo-F statistic as:

	﻿‍
pseudo − F =

tr
(
HGH

)
/
(
p−1

)

tr
[(
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)
G
(
I−H

)]
/
(
n−p

)′
‍�

where ‍tr
(
.
)
‍ is the trace of a matrix, 

‍
H = X

(
X⊤X

)−1
X⊤

‍
 

is the hat matrix of the design matrix ‍X,‍ and ‍G‍ is the 
Gower’s centred matrix obtained from ‍D.‍ Due to the 
complexity of beta-diversity (usually non-Euclidean) 
distance, the limit of this pseudo-‍F ‍ is unlikely to follow the 
‍F ‍-distribution, and the non-parametric permutation is 
thus adopted for p values.
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Although routinely being used, some concerns have 
been raised regarding PERMANOVA. First, it does not 
provide any coefficient estimators for explanatory vari-
ables, which hinders generating interpretable results 
on the direction or size of the effects or discerning the 
sources of differences. Second, it only describes relation-
ships between beta-diversity (a between-subject attribute) 
and a within-subject main categorical factor, not with 
their between-subject counterpart or any other types of 
variables, such as a continuous variable. Third, it requires 
a large number of permutations for stable results, and 
thus carries more overhead in terms of the computa-
tional burden. Last but not least, it is difficult to extend 
PERMANOVA to longitudinal studies (especially with 
missing data) to discover valuable scientific insights from 
dynamic and highly personalised microbiome data.

To resolve those limitations, recently, a more flexible 
alternative has been proposed.6 Granted by its distance-
based regression setup, this approach permits elucidating 
the association between the beta-diversity ‍di‍ and a cate-
gorical variable (eg, group difference) or even more 
general variable types, such as perceived stress, a contin-
uous instrument in mental health research.14

Distance-based regression
Modelling the between-subject attributes
To enlarge the semiparametric GLM framework for 
beta-diversity, consider a column vector of multivariate 

response and an explanatory variable 
‍

(
Y⊤

i , X⊤
i

)
‍
 for the 

‍i ‍-th subject, where ‍Yi
(
Xi
)
∈ Rh (Rm)

‍, and where ‍h, m ≥ 1
‍. By concatenating ‍Yi ‍ into a (scalar) functional response 
from two subjects with some scalar-valued function, such 
as the beta-diversity ‍di = f

(
Yi1 , Yi2

)
‍ in (2), we can model ‍di‍ 

as a function of 
‍
Xi =

(
X⊤

i1 , X⊤
i2

)⊤
‍
:

	﻿‍ E
(
di|Xi

)
= h

(
Xi;β

)
, i =

(
i1, i2

)
∈ Cn

2 ‍� (5)

where ‍h
(
·
)
‍ is some smooth function (eg, with contin-

uous derivatives up to the second order), and ‍β‍ is a vector 
of parameters. Akin to (3), (5) remains semiparametric 
by imposing minimum distributional assumption on ‍di‍. 
This introduces greater flexibility in practice.

The distance-based regression introduced above is 
a special case of a class of semiparametric functional 
response models (FRM).6 Equation (5) achieves effective 
dimension-reduction (with the mapping ‍di‍) and is well-
suited for data entailing the intrinsic between-subject 
nature, that is, outcomes that are composed of pairs of 
subjects. With this setup, we can formalise the scientific 
question by regressing ‍di‍ on the explanatory variables to 
test their associations, adjusting for covariates.

To illustrate, consider a categorical variable ‍Xi ‍ (such 
as the group membership) with ﻿‍ K ‍ levels. We trans-
form ‍Xi ‍ into a between-subject attribute by defining 
a set of pairwise indicators (or dummy variables) for 

‍Xi =
{

Xi1 , Xi2
}
‍ through the one-hot encoding function 

‍δ
(
·
)

:
{
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}
×
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}
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2 :‍

	﻿‍

δk1k2

(
Xi
)

=




1, if Xi =
{

Xi1 , Xi2
}

=
{

k1, k2
}

0, otherwise ‍�
(6)
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where ‍δk1k2

(
Xi
)
‍ indicates the pair with the same ‍k ‍-th 

concordant (‍k1 = k2 = k ‍) or discordant (‍k1 < k2‍) levels for ‍Xi‍ 
. For example, if ‍Xi ‍ is a binary indicator of disease, we 
use ‍δ

(
Xi
)

=
(
δDD

(
Xi
)

, δHH
(
Xi
)

, δHD
(
Xi
))⊤

‍ to index the 
respective diseased-diseased, healthy-healthy and healthy-
diseased pairs. With ‍di = f

(
Yi1 , Yi2

)
‍ the beta-diversity for 

the ﻿‍ i‍-th pair, we can model its conditional mean among 
subgroups with (5):

	﻿‍ E
(
di|Xi

)
= exp

[
β⊤δ

(
Xi
)]

, β =
(
τ11, . . . , τKK

)⊤
‍� (7)

here ‍exp
(
·
)
‍ is adopted since the response beta-diversity 

is non-negative.
The coefficients ‍β‍ reveal the heterogeneity in ‍di‍ among 

different subgroups. Constructing tests among subgroups 
also helps disentangle different types of heterogeneity. 
These insights, in terms of effect sizes and directions, are 
of considerable interest to researchers but are difficult to 
achieve for PERMANOVA. Additional strengths of FRM 
include the computational scalability over permutation-
based mainstream for such data, as well as the ease of 
including covariates in (7), either between-subject or 
within-subject.6

A more generalised variation can be specified in this 
distance-based regression. For example, by switching the 
response and explanatory variable, we can define the 
‘difference indices’ ‍f

y
i ‍‍= yi1 − yi2‍ for some clinical outcomes 

(such as body mass index difference) and model their 
relationship with beta-diversity (as a predictor):

	﻿‍ E
(
fyi |di

)
= βdi, i =

(
i1, i2

)
∈ Cn

2 ‍� (8)

One glitch is that while ‍di‍ is non-negative, ‍f
y
i ‍ here can be 

positive or negative. This can be readily fixed by setting ‍di‍ 
to ‍disign

(
i
)
‍, where ‍sign

(
i
)
‍ denotes the sign function with 

‍sign
(
i
)

= 1‍ if ‍i1 − i2 > 0,‍ ‍sign
(
i
)

= −1‍ if ‍i1 − i2 < 0‍ and 

‍sign
(
i
)

= 0‍ otherwise. For brevity, we continue to denote 
‍di‍‍sign

(
i
)
‍ by ‍di‍ in what follows.

Now for (8), ‍
∣∣β∣∣‍ represents the differential response ‍f

y
i ‍ 

per unit difference in the beta-diversity ‍di‍ for the ﻿‍i‍-th pair. 
This generalisation is especially useful when interest lies 
in evaluating the role of alpha-diversity and beta-diversity 
metrics together on a clinical outcome (see section ‘Real 
data analysis’). Furthermore, (8) even permits multi-
variate clinical outcomes ‍Yi ϵ Rm ‍, where some domain-
specific distance can be prespecified as ‍f

y
i = d

(
Yi1 , Yi2

)
‍.

Statistical inference and hypothesis testing
As the response function in (5) or (8) involves pairs of 
subjects, inferences about ‍β‍ must tackle their inter-
locking dependencies. A class of U-statistics-based GEE 
(UGEE) has been proposed accordingly15 for this. Let
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In practice, ‍Vi‍ is unknown and substituted by a working 
variance such as ‍Vi

(
hi
)

= τ2hi‍, with ﻿‍ τ2‍ as an unknown 
constant. Thus, the UGEE takes a familiar form

	﻿‍
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where the estimates ‍̂β‍ are obtained through the 
Newton-Raphson method.

The theory of U-statistics guarantees that ‍̂β‍ by solving 
for (10) is consistent and asymptotically normal (CAN) 
under mild regularity conditions:

	﻿‍
√

n
(
β̂ − β

)
→d N

(
0,Σβ

)
‍� (11)

where ‍→d ‍ denotes convergence in distribu-
tion and a consistent ‘sandwich’ variance esti-
mator of ‍Σβ = B−1ΣUB−1, B = E

(
DiViDT

i
)
‍ and 

‍ΣU = 4Var
(
E
(
Un,i|yi1 , xi1

))
‍, which can be obtained by 

substituting consistent estimates of ‍β‍ and moments of the 
respective quantities.

This can be readily applied to testing any linear hypoth-
eses concerning ‍β‍ through the linear contrast ‍H0 : Cβ = 0
‍vs ‍Ha : Cβ ̸= 0‍, where ‍C‍ is a matrix of known constants 
with rank ‍s ‍. Under the null, the Wald statistic has an 
asymptotic ‍χ2‍ distribution:

	﻿‍
Wn = n

(
Cβ̂

)⊤ (
CΣ̂βC⊤

)−1 (
Cβ̂

)
→d χ2

s ‍�
(12)

where ‍χ
2
s ‍ denotes a (central) ‍χ2‍ distribution with ‍s ‍ df. A 

score test can also be constructed if needed.6

More importantly, ‍̂β‍ is also semiparametrically efficient 
whose asymptotic variance ‍Σβ‍ is the smallest among all 
models satisfying the same moment restriction in (7) or 
(8), which can lead to reduced sample size requirements 
for clinical studies in detecting a given effect size.16 Alto-
gether, this semiparametric inference technique ensures 
both robustness and sensitivity to help facilitate data-
driven scientific findings.

Real data analysis
Recent studies suggest that the gut microbiome plays a 
major role in the development and functioning of the 
central nervous system via the microbiome–gut–brain 
axis.17 Although numerous pieces of evidence have impli-
cated strong relationships among psychosocial factors, 
few have investigated their relationship with the gut 
microbiome. A recent study18 fills this gap by collecting 
both self-reported psychosocial measurements and faecal 
samples from 184 community-dwelling adults (aged 28–97 
years). Participants completed the validated measures, 
including physical and mental health 36-Item Short Form 
Survey (SF-36), resilience, optimism, loneliness, wisdom, 
compassion and social support. DNA extraction and 
16S rRNA amplicon sequencing were completed using 

the Earth Microbiome Project standard protocols. The 
feature dimension of the microbiome taxonomic units 
was quite high (m = 12 131).

The original paper18 focuses primarily on the 
predicting role of Faith’s phylogenetic alpha-diversity 
on the psychosocial variables, using a robust regression 
model. The study revealed that lower levels of loneliness 
and higher levels of wisdom, compassion, social support 
and social engagement were all associated with greater 
alpha-diversity of the gut microbiome, and age plays an 
important moderating role. Partial least squares (PLS) 
analysis was first applied to all the collected psychosocial 
variables to summarise them into PLS components of the 
negative impact of loneliness on gut health. The results 
supported the previous findings and related literature on 
the negative impact of loneliness on gut health.19 These 
encouraging findings motivated us to further investigate 
the role of microbiome beta-diversity on psychosocial 
outcomes, intending to uncover different aspects from 
the between-subject attributes. Below, we present the 
results of applying the distance-based model to elucidate 
the impact of beta-diversity on perceived stress and posi-
tive states (traits). For illustration, we did not correct for 
multiple comparisons.

Perceived stress as a continuous response
Perceived stress was assessed by the standardised 
instruments of the Perceived Stress Scale (PSS)14; it 
can be viewed as continuous with larger values indi-
cating higher levels of perceived stress. The distance-
based model in (8) with predictors of beta-diversity ‍d

x
i

‍, alpha-diversity difference ‍d
z1
i ‍, age difference ‍d

z2
i ‍ and 

the one-hot encoded gender ‍δ
(
wi
)
‍ can be specified as 

‍E
(

fyi |d
x
i , dz1

i , dz2
i , wi;β

)
= βxdx

i + βz1dz1
i + βz2dz2

i + βwδ12
(
wi
)

‍, 

where ‍f
y
i = yi1 − yi2‍ denotes the difference score for the 

perceived stress of the ﻿‍i‍-th pair.
Here, ‍

∣∣βx
∣∣
‍ represents the mean difference between the 

perceived stress per unit difference in the beta-diversity 

‍d
x
i ‍, ‍βz1‍‍

(
βz2

)
‍ indicates the directional mean difference 

between the perceived stress per unit difference in the 
alpha-diversity (age), and ‍

∣∣βw
∣∣
‍ is the mean difference 

between the perceived stress comparing male–female 
pairs with homogeneous gender pairs.

When the response and explanatory variable are both 
continuous, the between-subject regression will preserve 
their corresponding relationships among within-subject 
attributes. We demonstrate this in the continuous alpha-
diversity (age) in figure 1. Shown at the top of figure 1 
are the scatter plots with locally estimated scatterplot 
smoothing (LOESS) curves for the perceived stress 
(within-subject) with alpha-diversity and age, respectively. 
On average, the perceived stress did not correlate strongly 
with alpha-diversity, but it showed a negative relationship 
with age, which was confirmed by the univariate linear 
regression where the alpha-diversity effect was insig-
nificant (t-statistic=−0.3145, p=0.448) but had a signif-
icant negative age effect (t-statistic=−1.1021, p<0.001). 



5Liu J, et al. General Psychiatry 2023;36:e101090. doi:10.1136/gpsych-2023-101090

General Psychiatry

0.0

0.5

1.0

1.5

2.0

2.5

0.4 0.6 0.8 1.0 1.2 1.4
Alpha−diversity (normalized)

Pe
rc

ei
ve

d 
st

re
ss

Within−subject alpha−diversity

0.0

0.5

1.0

1.5

2.0

2.5

0.6 0.9 1.2 1.5
Age (normalized)

Pe
rc

ei
ve

d 
st

re
ss

Within−subject age

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0
Difference in the alpha−diversityD

iff
er

en
ce

 in
 p

er
ce

iv
ed

 s
tre

ss

Between−subject alpha−diversity

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0
Difference in ageD

iff
er

en
ce

 in
 p

er
ce

iv
ed

 s
tre

ss

Between−subject age

Figure 1  Real data analysis. The first row shows the scatter plots and LOESS curves for the perceived stress (within-
subject) against alpha-diversity (left) and age (right). The second row shows scatter plots and LOESS curves for the difference 
in perceived stress against the difference in alpha-diversity (left) and the difference in age (right). LOESS, locally estimated 
scatterplot smoothing.

Table 1  Estimates, asymptotic SEs, Wald statistics, p 
values for the real study data using distance-based model, 
controlling for body mass index (continuous) and gender 
(binary)

Continuous outcome (perceived stress)

Parameter Est. SE Statistic 
(Wald)

P value 
(Wald)

‍βx ‍
0.1457 0.0845 2.9752 0.085

‍βz1‍
0.0270 0.0625 0.1869 0.666

‍βz2‍
0.2520 0.0767 10.7857 0.001

‍βw ‍
0.0218 0.0371 0.3431 0.558

Composite outcome (positive traits/states)

Parameter Est. SE Statistic 
(Wald)

P value 
(Wald)

‍βx ‍
2.1210 0.1575 181.3488 <0.001

‍βz1‍
0.0292 0.0384 0.5804 0.446

‍βz2‍
0.1185 0.0618 3.6775 0.055

‍βw1‍
0.1912 0.1762 1.1775 0.278

‍βw2‍
0.1095 0.0815 1.8043 0.179

Est., estimates; SE, standard error.

The bottom of figure 1 shows the scatter plots for their 
between-subject counterparts. As expected, the within-
subject relationships were well-preserved in the between-
subject regression.

Shown at the top of table 1 are the results of perceived 
stress from the robust distance-based regression model. 
Per unit difference in a pair’s beta-diversity is associated 

with a 0.1457 (Wald=2.9752, p=0.085) unit difference 
in their perceived stress, suggesting that a larger differ-
ence between two subjects’ microbiome profiles implies 
more discrepancies in their stress levels. The mean 
(directional) stress score difference for any pair was 
−0.0270 per unit difference in their alpha-diversity but 
was not significant (Wald=0.1869, p=0.666). Per unit 
age difference was significantly associated with a 0.2520 
unit decrease in the mean perceived stress difference 
(Wald=10.7857, p=0.001). This is expected since the 
scatter plots in figure  1 suggest that age is negatively 
related to perceived stress. The mean perceived stress 
difference comparing male–female pairs versus homo-
geneous gender pairs (male–male and female–female 
pairs) was 0.0218 (Wald=0.343, p=0.558); that is, we did 
not find strong evidence implicating perceived stress in 
distinct gender pairs being different from homogeneous 
gender pairs. Although signals between perceived stress 
and the microbiome composition were not strong, the 
negative association between age and stress shown here 
has been demonstrated in the literature.20

Positive states (traits) as a multivariate response
In mental health studies, some traits are evaluated as a 
composite outcome.9 Particularly, resilience, optimism, 
mental well-being and wisdom all belong to positive 
states (traits). We devised the distance-based regression 
notion to link this four-dimensional multivariate outcome 

‍yi ‍ to the microbiome composition by constructing the 
composite pairwise outcomes with the Euclidean distance 
and adopting (8) with a log link to decipher their 
relationships.
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At the bottom of table  1 are the results of the posi-
tive states. Significant associations were found between 
the mean distance (variability) in the positive states and 
beta-diversity (‍̂βx = 2.1210‍, Wald=181.3488, p<0.001) but 
not with the variability in alpha-diversity (‍̂βz1 = 0.0292,‍ 
Wald=0.5804, p=0.446). This non-significant alpha-
diversity is similar to the case of perceived stress as the 
univariate outcome. Hence, the microbiome beta-
diversity may be a more sensitive indicator in capturing 
the between-subject attributes of mental health than 
the alpha-diversity in this dataset. Age variability was 
only marginally significant (‍β̂z2 = 0.1185‍, Wald=3.6775, 
p=0.055). The mean distance (variability) in the positive 
states for male–male pairs was ‍exp

(
−0.1912

)
= 82.6%‍ the 

distance for female–female pairs (Wald=1.1775, p=0.278); 
the mean distance (variability) for male–female pairs was 

‍exp
(
−0.1095

)
= 89.6%‍ of that for female–female pairs 

(Wald=1.8043, p=0.179) but neither effect was significant. 
Hence, no significant gender effect was observed, similar 
to the case with perceived stress.

Taken together, those findings help support the exis-
tence of the microbiome–gut–brain axis17 19 and, more 
importantly, provide clinical implications for developing 
microbiota-related interventions to improve mental health 
and mitigate its related consequences. For example, given 
the positive association between beta-diversity and posi-
tive states, strategies that modulate patients’ microbiome 
composition may be beneficial to improve their mental 
health in general.

Conclusion and discussion
In this paper, we discussed both prevailing and emerging 
statistical approaches to demystifying the microbi-
ome–gut–brain axis by studying the relationship between 
the univariate or multivariate clinical outcomes and 
various microbiome diversity metrics. Depending on its 
attribute (within-subject or between-subject), each type of 
microbiome diversity metric merits its own clinical and 
scientific exploration and, hence, well-designed statistical 
tools.

We introduced the definition and characteristics of 
popular alpha-diversity (within-subject) and beta-diversity 
(between-subject) measures. Specifically, for the between-
subject beta-diversity, a semiparametric distance-based 
regression was discussed in detail. This distance-based frame-
work has unique advantages in dealing with the complex 
dependency structures in between-subject attributes such as 
beta-diversity, which is difficult for traditional approaches. 
The regression setup also provides coefficient estimates to 
characterise the associations, facilitating in-depth scientific 
findings in mental health research. We briefly discussed their 
theoretical properties as well.

By further augmenting the choice set for both the 
response and explanatory variables, this framework 
permits elucidating the relationship among multiple 
high-dimensional variables. We illustrated predicting 

univariate or multivariate clinical variables using micro-
biome diversity by first transforming those clinical 
outcomes into between-subject attributes. This strategy 
is especially relevant to mental health research as many 
psychometric measures are evaluated as a composite 
rather than a univariate outcome. We also presented the 
analyses of an actual study to implicate the essential role 
of the microbiome on mental health. The compelling 
evidence was consistent with previous findings to support 
the bridge between the gut and mental health. Simul-
taneously, this timely demonstration offers a new angle 
to analyse complex omics data or other types of data of 
similar format to prepare for the new line of interdisci-
plinary research in psychiatry.
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