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Abstract

Background: Thousands of chemicals are observed in freshwater, typically at trace levels. 

Measurements are collected for different purposes, so sample characteristics vary. Due to 

inconsistent data availability for exposure and hazard, it is complex to prioritize which chemicals 

may pose risks.

Objective: We evaluated the influence of data curation and statistical practices aggregating 

surface water measurements of organic chemicals into exposure distributions intended for 

prioritizing based on nation-scale potential risk.

Methods: The Water Quality Portal includes millions of observations describing over 1700 

chemicals in 93% of hydrologic subbasins across the United States. After filtering to maintain 

quality and applicability while including all possible samples, we compared concentrations across 

sample types. We evaluated statistical methods to estimate per-chemical distributions for chosen 

samples. Overlaps between resulting exposure ranges and distributions representing no-effect 
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concentrations for multiple freshwater species were used to rank estimated chemical risks for 

further assessment.

Results: When we apply explicit data quality and statistical assumptions, we find that there are 

186 organic chemicals for which we can make screening-level estimates of surface water chemical 

concentration. Of the original 1700 observed chemicals, this number decreased primarily due to 

a predominance of censored values (that is, observations indicating concentrations too low to be 

measured). We further identify 423 chemicals where all measurements were censored but, through 

consideration of detection limits, risk might still be prioritized based on the detection limits 

themselves. In the final set of 1.5 million samples, the median environmental concentration of one 

chemical (acetic acid) exceeded the 5th percentile of no-effect concentrations for the most delicate 

freshwater species (the highest priority risk condition identified here), and a further 29 chemicals 

were identified for possible further evaluation based on a small margin between occurrence and 

toxicity values.

Significance: This method shows the broad range of chemical concentrations seen for organic 

chemicals across the country and identifies methods of determining their central tendency, 

allowing for researchers to characterize higher-than-normal or lower-than-normal surface water 

conditions as well as providing an overall indication of the presence of organic chemicals in 

the United States. The highest chemical concentrations did not always indicate the highest-risk 

conditions. Even when accounting for the high level of uncertainty in these data due to differences 

in data collection and reporting across the set, some chemicals may still be categorized as higher 

environmental risk than others using this method, providing value to chemical safety decision 

makers and researchers by suggesting avenues for more focused investigation.
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Introduction

The potential risk posed by a chemical to public health or the environment may be 

conceptualized [1] by comparing the threshold at which the chemical has been determined 

to cause harm in a particular organism to the magnitude (in space, time, or both) of that 

organism’s contact with the chemical (that is, exposure [2]). Yet for thousands of chemicals, 

neither the harmful dose level nor the expected exposure is known for humans or other 

species [3, 4]. It would be impractical to develop guideline-quality in vivo toxicity data 

for all species-compound combinations (much less simply for humans), or to measure the 

concentrations of thousands of chemicals in surface water anywhere contact could occur. 

Instead, many governmental regulatory bodies are investigating new approaches to identify 

chemicals most in need of attention among those currently in use [5].

New approach methods (NAMs) for assessing hazard, including using in vitro models to 

measure cell-based toxicity, have become a well-developed field in recent decades and are 

gaining acceptance for use in regulatory decisions [5,6,7]. NAMs for exposure also exist 

[8], including high-throughput exposure models [9,10,11], but since modeling exposure 

is complex (for example, physical transport, chemical transformations, and biological 
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interactions across different conditions), different modeling assumptions may lead to very 

different results depending on the underlying framework [12,13,14]. Regardless, decisions 

on which chemicals in surface water require the most monitoring and regulatory attention 

are routinely made, implicitly or explicitly, with less-than-ideal information.

The process of screening of thousands of chemicals to identify priorities for follow-up 

research poses some challenges that differ from the regulation of a specific chemical, even 

though many of the tools, data, and scientific issues can overlap [13,15,16]. When assessing 

risk posed by a single chemical, incomplete knowledge may be addressed with a mix of 

new measurements and simulation of different possibilities based on comparison of similar 

chemicals [17,18]. Similar resources suitable to address thousands of chemicals are unlikely 

to be available, so decision makers must make the best-available use of existing data sources 

and models [19].

For a variety of reasons (such as required routing monitoring or monitoring for a specific 

research project or in response to water quality questions), the U.S. Geological Survey, the 

U.S. Environmental Protection Agency (U.S. EPA), state agencies, and other stakeholders 

routinely collect a range of data, including surface‐water and groundwater samples [20]. 

These data, presented in aggregate form through the U.S. National Water Quality Monitoring 

Council’s Water Quality Portal (WQP) [21], do not necessarily compose a representative 

survey of the waters of the United States, but they do provide millions of observations 

with the potential to inform chemical risk prioritization. An additional challenge is that 

metadata needed to contextualize these samples are often missing or incomplete, which 

forces analysts to make assumptions [22].

Here we developed chemical-specific estimates for ranges of surface water concentrations 

that may be compared to estimated hazardous concentrations in order to prioritize 

environmental chemicals based on the risk posed to human or ecological health on the 

scale of a nation, in this case the United States. We investigated the effect of different data 

curation and analysis assumptions on the inference of national-scale chemical concentration 

distributions. Public health researchers looking for spatiotemporal associations between 

environment and health outcomes often run into data gaps impeding analysis; if these 

heterogenous surface water observations can be integrated on a per chemical basis into 

national-representative values, we might broaden the number of chemicals that can be 

investigated for health effects.

Materials and Methods

Data were analyzed in Python 3.6 using packages numpy, pandas, os, xml, and pickle; 

and in R 4.0.5 using libraries EnvStats, tidyr, dplyr, ggplot2, readxl, NADA2, forcats, 

viridis, cowplot, stringr. All data and analysis scripts have been made available at: https://

github.com/USEPA/EcoSEEM-Consensus-Model-for-Chemicals-in-Surface-Water.

Data set

The U.S. National Water Quality Monitoring Council’s WQP [21] (https://

www.waterqualitydata.us/) includes measurements of surface water and groundwater 
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samples [20] collected by the U.S. Geological Survey, the U.S. EPA, state agencies, and 

other stakeholders. Read et al. [21] describe the WQP as “…the largest standardized water 

quality dataset available at the time of this writing, with more than 290 million records from 

more than 2.7 million sites in groundwater, inland, and coastal waters.”

Data curation

All records for water samples of organic chemicals in the contiguous United States in 

the WQP from 2008 to 2018 were downloaded and transformed using a Python script 

available on GitHub (folder observation_data). Table 1 provides definitions for key terms for 

describing the water samples.

Chemicals were often identified only by name in this database, which may not be sufficient 

for positive identification [23]. Names and Chemical Abstracts Service Registry Numbers 

(CAS-RN) were provisionally mapped to unique chemical substance identifiers (DSSTox 

Substances IDs) using the batch search function in the U.S. EPA CompTox Chemicals 

Dashboard (https://comptox.epa.gov/dashboard [24]); the mappings were then manually 

confirmed. Chemicals without a match were checked for typos and alternate spellings 

(load_water_data.py at GitHub). Some chemical names were aggregated to a single identity 

based on identical structure. Because ecotoxicity values were only available for substances 

with unique structures, records for chemical names representing ambiguous structures were 

removed from our dataset.

Once chemical identities were harmonized, records were pruned based on spatial location 

(for example, samples suspected to be taken from saltwater) and metadata (for example, 

results not from ambient water monitoring, such as “initial dilution zone”, “finished water” 

or “field spike”). Concentration units were standardized to µg/l for measured concentrations 

and for limit values (load_water_data.py). For this evaluation, we excluded chemicals with 

fewer than 50 observations above the detection limit across the 10-year range to avoid 

inference on the most data sparse chemicals.

Intra-chemical comparison of representative values for different sample types

Recognizing that samples were collected under many circumstances for many purposes 

(routine monitoring, monitoring for a specific research project or to track reports of 

contamination), we attempted to identify factors that could cause concentrations to differ. 

The first data subset we recognized is limit types. Over 80% of the samples in this set 

were censored: identified only as being below a limit value. We divided the limits into 

three conceptual categories: (1) a “technical min” representing the lowest possible result 

detectable using a particular instrument or method (also called a non-detect), (2) a “technical 

quant” representing the lowest result deemed quantifiable using a particular instrument or 

method, and (3) a “reporting min” representing the lowest value reportable based on a 

laboratory’s certification or other regulatory threshold. A “technical quant” has a numerical 

relationship to “technical min”, but a “reporting min” is often unrelated to either technical 

measure. Additionally, for some chemicals and methods, the “technical quant” can vary 

based on the sample. It can be imagined that samples expected to be high could be measured 

using a less sensitive method or only reported if over a regulatory limit. Even if our 
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investigation could not directly answer whether below-limit values were missing at random 

or not, it could tell us if the uncertainty introduced by using a higher limit could affect a 

distribution, and therefore a risk prioritization, using the resulting value. For the comparison 

of distributions by limit type, we used observed values combined with either the records 

where the limit was a “technical min”, or the records where the limit was a “reporting min”. 

Samples were identified as being within one of the three types using a text classification 

script available in our GitHub (load_water_data.py).

The second data subset was a comparison of bulk and dissolved samples (here called 

“phase”). Samples may be analyzed in different phases based on the objective of the 

sampling activity or on the properties of the chemical. For example, chemicals known to 

adhere to organic matter may be less likely to be detectable in dissolved fractions. Labeling 

samples as dissolved (having passed through at least a 0.45-micron filter) or bulk (less finely 

filtered) was determined by text analysis of the method description (details in Python code). 

We also checked for a log-linear relationship between differences in concentration based on 

phase with several relevant physicochemical properties as explanatory variables.

The final data subset was a comparison of per-chemical concentrations by hydrological 

quarter: January–March (a season of soil moisture recharge), April–June (a season of 

runoff), July–September (a season of evapotranspiration), and October–December (another 

season of soil moisture recharge), based on knowledge that some chemicals such as 

pesticides are used seasonally and might therefore have different concentrations per season. 

However, as different pesticides are used on different crops, and growing seasons vary by 

crop and location, it may be that these known usage differences are not great enough to elicit 

a statistical change in a chemical’s concentration distribution between seasons, considered 

with other factors of variability such as persistence.

In all three cases, difference between subsets was determined using a Peto-Peto two-sample 

test (a log-rank method appropriate for skewed data [25]) to compare differences between 

their empirical cumulative distribution functions instantiated in the R package EnvStats [26]. 

The significance level was adjusted by the sample sizes of the comparison groups, which 

was sometimes quite different. Different degrees of censoring in the sets could possibly bias 

the comparisons; however, this was something we could neither prevent nor correct for in 

this highly censored dataset [27]. For all three comparisons, only some chemicals could be 

compared; for example, samples of some chemicals were only ever analyzed as dissolved. 

To determine whether subsets would be considered different for our risk prioritization, the 

number of chemicals with evidence of difference in their distributions by subset was divided 

by the number of chemicals without. When the ratios were very small, the subsets could be 

combined without affecting the outcome of a risk decision; other ratios were considered on a 

case-by-case basis, incorporating other relevant knowledge.

The authors note there may be other factors that could cause concentrations to differ. The 

analysis methods described here could be applied to any other factors of interest in other 

experiments.
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Calculation of representative values

Because many sample results were below reporting or detection limits (known also as 

“left-censored”), we needed to employ a method of developing representative values that 

meaningfully incorporated those values. The commonly used method of substituting left-

censored results with the limit value or half the limit value artificially reduces the variation 

in the sample and introduces bias in the mean [28, 29]. Therefore, we evaluated the 

difference in representative values calculated using either a parametric method that assumed 

a log-normal distribution of the data (maximum likelihood estimation (MLE)) or a non-

parametric method based on the empirical cumulative distribution function (Kaplan-Meier 

(KM)). Values for both methods were calculated using the R package EnvStats.

The benefit of MLE is that it allows determination of parameters describing a distribution 

based on maximization of the likelihood of the detects, while also incorporating knowledge 

of the non-detects. This permits measures of central tendency and dispersion to be calculated 

with the below-limit values meaningfully included. However, it assumes that the underlying 

data were lognormally distributed, while environmental concentrations may in truth be even 

more right-skewed (concentrations near or at zero, with a few high concentrations) [30]. 

KM avoids this potential misrepresentation by being strictly empirical; however, because it 

does not impute values below the smallest observed value, a central tendency derived from 

a highly censored set will be biased [31]. Although the representation is empirical, in the 

case of high censoring, there may not be an observed middle value; the position of the 

KM median was calculated using the Michael and Schucany method as recommended in 

EnvStats documentation. Therefore, we were able to derive different representative values 

using these two methods (KM and MLE) to take advantage of their relative strengths and 

allow analyses of risk from either expected concentrations (based on the medians) or from 

the highest concentrations (based on the 95th or 99th percentiles).

Inter-chemical comparison of bioactivity and exposure

To characterize bioactivity for comparison to these exposure values, we first queried EPA’s 

ECOTOX Knowledgebase [32] for in vivo-measured toxicity measurements in freshwater 

species. However, consistent toxicity values were not available across our chemical space. 

Therefore, we adopted species sensitivity distributions (SSDs) developed by Posthuma et al., 

which estimated a range of predicted no-toxic-effect values across species for over 12,000 

chemicals [33]. Compounds were mapped to DTXSIDs using the CompTox Chemicals 

Dashboard by name and CAS-RN; mismatches were manually resolved. We regarded 

chronic concentration distributions as most relevant for this assessment, and only used 

values where authors deemed there was enough information to completely characterize a 

distribution (as indicated in their results by quality codes beginning with a “1”). We began 

risk prioritization by comparing the smallest no-effect concentrations in each distribution 

(representing concentrations at which no effect is predicted even for a chronic exposure 

in the most sensitive species) in surface water and the highest occurring concentrations 

(empirical or estimated).

For chemicals for which no representative value could be determined due to a lack of above-

limit values, the highest per-chemical limit value was compared to the bioactivity value 
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range. Although this comparison holds less information than the exposure distributions, 

it may still be the case that some per-chemical limit ranges are lower than all hazard 

values, constituting a no-risk condition based on this data. Prioritization was performed 

with categories similar to the set for which distributions could be derived, though in this 

case since only the highest limit was used as an exposure proxy, the categories (and 

results) between the two types of prioritization are not equivalent because the highest 

actually-occurring concentration for the second type of comparison may be many times 

smaller than the highest limit, whereas in the first comparison type the highest value was 

always a detect; limit values above detects were not incorporated.

Results

Qualitative data curation

Figure 1 shows an overview of how the dataset was winnowed to yield the final analysis set 

of 1.5 million samples. In our workflow all chemicals were processed consistently, and the 

amount of information per chemical dictated what could be calculated from each chemical’s 

data. The first step, associating the samples with specific chemicals identities (labeled 

“Chemicals” in Fig. 1), was executed manually. Comments on chemical identity decisions 

are provided in the supplement on GitHub load_water_data.py. The second (“Sites”) and 

third (“Samples”) sections were filtered by machine, the details of which are available in the 

same script. It is worth noting that records missing metadata in site or sample fields were 

not excluded from this analysis. Although those records may include irrelevant data, there 

was no clear evidence either way, so we retained the data. Therefore, some non-ambient 

or non-surface water samples may have inadvertently been included. It may be possible to 

infer this information by text analysis of other metadata fields in a more detailed filtering 

approach, if necessary.

The number of chemicals (or chemicals’ names) is indicated in parathesis, to demonstrate 

how the number of chemicals available for prioritization decreased because of sample 

inapplicability or missing information. In the Chemicals stage, “Names represents multiple 

structures” compounds were aggregated by DTXSID into a category on the left; therefore, a 

name may be in more than one category. “Result” means a sample had a non-censored value 

in the record, “LOQ” means a sample had a limit value in the record, and “joined LOQ” 

means a limit value was found in an analytical method linked to the record.

Influence of water sample characteristics

For each chemical our goal is to determine a nation-wide distribution from which 

the available samples might have been drawn. Because the samples were collected 

inhomogeneously and annotated inconsistently, we examined the impact of different 

approaches to aggregating the data across key sample characteristics:

Annotation of reporting/technical limits

Since many samples are non-detects, it is critically important to understand the lowest 

detectable limit for each sample. Per chemical, there may be several values for each type 

of limit (for example, differing instruments yield different technical limits for the same 
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chemical). Figure 2 shows that for 59% of evaluation set chemicals, the median reporting 

minimum was higher than the median technical minimum. Almost all chemicals had cases 

where a limit was reported instead of a measurement. We therefore compared inter-chemical 

distributions of samples where metadata provided either “technical mins” (51.5% of all 

samples) or reporting limits (33.9% of all samples). Of the 177 chemicals in the overall 

set with both “technical mins” and reporting limits, the intra-chemical distributions were 

statistically different for 131 (using the same above-limit values). We did not expect the 

difference in limit types to be explicable by evaluating the available metadata, and we do 

not have a proposed reason for the difference between chemicals with similar distributions 

across limit types and chemicals where the distributions change. Although it is possible 

that high concentrations above most observations (but below the even-higher limits) are 

present, there is no evidence of them in the quantified values. We chose not to exclude 

samples with reporting limits, as a comparison could only be made between reporting 

and technical limits for 36% of chemicals. It is possible that the reporting minima add 

more noise than signal (for example, reporting limits are sometimes several orders of 

magnitude higher than any observed value) but for this analysis, these records were retained 

to maintain a greater sample size and a slightly larger chemical space. It could be possible 

for distributions including non-detects with only reporting limits to skew higher, but the 

statistical methods used here do not incorporate limits above any observed value when 

calculating representative values.

Scatter plot showing the per-chemical median of quantified samples for the evaluation set 

chemicals on the x-axis and the per-chemical median of limits on the y-axis, with reporting 

limit medians as blue squares and technical limit medians as red triangles. The dashed line 

represents a 1:1 relationship, not a regression line.

Bulk vs. dissolved water samples

We next examined the impact of the phase (bulk or dissolved) of the samples on intra-

chemical distributions. The phase of each sample was identified using three different 

metadata fields in the ResultAnalyticalMethod table from the WQP (details in Python 

script). Across a test of 800,000 records, no phase conflicts were identified by our script 

using any of those fields, therefore we assumed an entry in any field was sufficient to 

determine the phase of a sample. However, for about 21% of samples, either all three 

fields were blank, or the field text was not categorized into a phase by our identification 

script; these samples were not included in the final calculations. When comparing the 

intra-chemical distributions for the 272 chemicals that had both bulk and dissolved samples, 

165 of them had statistically different distributions at a significance level of 0.05. Although 

phase distributions were more similar than limit distributions, aquatic toxicity values are 

measured in dissolved concentrations. If the bulk and dissolved concentrations were similar, 

they could be kept together to increase the sample size, but since notable differences were 

observed, only the samples defined as dissolved (46%, or 2,292,937 samples) were used for 

this risk prioritization. This led to the removal of 24 chemicals that were only measured 

in bulk or unknown phases. When upholding our constraint of chemicals with at least 

50 observed values, the set was reduced to 286 chemicals for the rest of the analysis. In 

a logistic regression based on a binomial distribution on the physicochemical properties 
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air:water partition coefficient, octanol:water partition coefficient, vapor pressure, and water 

solubility (predicted using the OPERA model [34]), there were no significant predictors of 

whether bulk and dissolved concentration distributions would differ.

Seasonal variation

For the final intra-chemical comparison, concentration distribution differences by season, 

there are six possible pairs (for example, one comparison is Jan–Mar compared with 

Apr–Jun). The distribution across chemicals for the number of statistically different season-

season pairs is shown in Fig. 3. Although there are three or more season pairs with 

concentration differences for most chemicals, which season-pairs differed varied across 

chemicals. The most hydrologically similar season pairs (Jan–Mar and Oct–Dec) had 

the fewest differences across all chemicals to a small degree (47%), but none of the 

season pair distributions were as different from each other as were the bulk and dissolved 

concentrations. To test the hypothesis that pesticide active ingredients would have more 

dramatic seasonal differences than other chemicals, we compared the count of season pair 

differences between pesticides (as defined in the EPA Chemicals Dashboard list EPAPCS: 

https://comptox.epa.gov/dashboard/chemical-lists/EPAPCS) and non-pesticides. As shown 

in Fig. 3, the distribution of differences is similar when comparing pesticides to other 

chemicals. This may imply that hydrological differences (for example, seasonal changes in 

rainfall) are more influential on ambient national concentrations than usage patterns, but 

making that determination was out of the scope of this project. None of the seasons had the 

highest or lowest concentrations across chemicals, and sampling activity, while present in all 

seasons for many chemicals, was very uneven across seasons. There were more than twice 

as many samples taken in the second and third seasons as in the first and fourth seasons, 

which influenced the certainty of the values and added bias to comparisons of sample sets. 

Therefore, we decided to include samples from any season in our estimates as we felt 

differences would be better addressed by a model able to incorporate data on hydrological 

differences between seasons.

This figure shows the histogram of differences between per-chemical concentrations on 

the basis of per-season averages; with zero representing statistically similar concentrations 

in all season comparisons. Given four seasons, a count of six represents statistically 

different concentrations for all possible season-season comparisons for a given chemical. 

The pesticides (shown below) have a similar distribution of differences to the non-pesticides 

(shown above). There are a few more pesticides than non-pesticides with statistically 

different concentrations in all season-season pairs, but this may be a data artifact because 

there are more pesticides overall in the set than non-pesticides. Clear seasonal concentration 

patterns across chemicals were not observed in this set.

Calculation of representative values

Once the method for curating acceptable data was selected, the most salient challenge was 

how to address the large proportion of non-detects (illustrated in Fig. 4). Referring to Fig. 

2, just as the reporting limits are usually higher than the technical limits, the technical 

limits are still higher than the median result values for 66% of chemicals. And as shown in 

Fig. 2, limit values (the first sample type comparison) were correlated with the measured 

Sayre et al. Page 9

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 July 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://comptox.epa.gov/dashboard/chemical-lists/EPAPCS


value. There was a near 1:1 ratio for the median observed value and the median limit 

value in this dataset, a source of measurement uncertainty for any study of ambient water 

concentrations. Analytical chemists may use methods with sensitivity commensurate to the 

values being measured but as previously discussed, meaningful incorporation of limit values 

also is confounded because not all limits relate to a technical measure: perhaps reporting 

limits also relate to expected concentrations in some cases. Limit values that exceeded the 

highest observed value for a chemical were not incorporated, and led to another source of 

data loss. Our estimated values are summarized in all_chem_res.csv (GitHub).

Scatter plot showing the record count for each chemical in the final analysis set on the x-axis 

and the percent of those records with only left-censoring limits instead of measurements on 

the y-axis.

Figure 5 shows representative values calculated using two different methods for developing 

a distribution given censored data, KM and MLE, for all chemicals within the final 

evaluation set. For the MLE method was the estimated mean of the log-normal distribution

—which is the median of the concentrations—was used as the representative value, while 

for KM the estimated median was used. In general, the two methods had the greatest 

concordance for chemicals with lower censoring proportions. Referring to the long-dashed 

bars on the right of the graph, notice that the variance is large in MLE for highly 

censored chemicals, pushing those medians lower than those calculated using KM. Using 

median-only estimates in these cases could possibly lead to falsely low values, but it could 

also be true that in some samples, the chemical analyzed was not present at all. It was 

not possible to tell from available data which scenario was the case. For 22 chemicals 

parameters for a distribution could not be estimated through MLE with the EnvStats function 

eqlnormCensored due to a wide spread of observed values or other data irregularities. We 

noted that the KM estimates were sometimes lower than the MLE estimates in cases of high 

variance.

Comparison of concentration ranges (median to 95th percentile) using KM (dotted) and 

MLE (dashed), with chemicals arranged from least censored on the left to most censored 

on the right. The highest censoring level is shown with an upward pointing triangle; these 

values are usually higher than all observations.

When examining the concentrations, four of the ten chemicals with the highest median 

concentrations were listed as pesticide active ingredients. However, some of these pesticide 

active ingredients such as di(2-ethylhexyl) phthalate also may have entered the environment 

from industrial or post-consumer releases unrelated to pesticides. Within these top ten 

were also disinfection byproducts (bromodichloroacetic acid and dichloroacetic acid) and 

breakdown products (acetic acid and methane) that could come from many types of 

sources, naturally occurring and human made. When inspecting the highest 99th percentile 

concentrations, six of the ten chemicals are listed as pesticide active ingredients; eight 

chemicals are in both lists. Depending on the risk assessment or research interest, 

the chemicals that would motivate further research would differ. The presence of high 

concentrations of disinfection byproducts in surface water, for example, could have human 

health implications if they are not removed efficiently during drinking water treatment 
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processes. The results of this research can identify avenues for research and the methods can 

inform the way relevant data for the research is recognized and analyzed.

People and wildlife are commonly exposed to chemicals through water, so the representative 

values calculated here might provide a point of reference for interpreting the national context 

of a given sample. There are many reasons the concentration of a chemical might be higher 

than the representative value reported here; for example, our estimates are obtained by 

averaging spatially over the entire United States and therefore proximity to a chemical 

release might reasonably lead to exceeding our estimated value. For example, for Di(2-

ethylhexyl) phthalate, the surface water concentration would have to be above 0.2 ug/l to 

be above the median level we estimated, possibly indicating a source nearby (among many 

other reasons). Meanwhile for Pyraclostrobin, the surface concentration would only have to 

be above 0.00137 ug/l to be above the average surface water value estimated here. For 661 

other chemicals, such as Hydrocortisone, measurements were attempted in more than 50 

surface water samples, but the concentration was above the limit of quantification in fewer 

than 50 of all samples. However, the median censoring level (that is, detection limit) for 

Hydrocortisone was 0.147 ug/l, and therefore any concentration measured above 0.147 ug/l 

might indicate a proximate source.

Bioactivity:exposure ratio comparison

We next compared the environmental occurrence ranges with hazard as represented by the 

Posthuma cross-species distributions of no-toxic-effect concentrations (that is, SSDs) [33] 

as an example national screening-level risk comparison. After removing the SSDs with 

the lowest confidence flags (indicating insufficient evidence for developing a distribution), 

there were 186 chemicals remaining for a bioactivity exposure risk prioritization (Fig. 

6). Because the KM values were more closely tied to the data and slightly higher (and 

therefore presumedly more health-protective), the KM 95th percentile values were used for 

the environmental occurrence part of our bioactivity exposure comparison. This approach 

also had the benefit of retaining all chemicals for risk prioritization. We developed several 

categories of risk conditions from higher risk (cases where species encounter predicted 

no-effect concentrations at the median of the occurrence distribution), to lower risk (no-

effect concentrations at the 95th or 99th percentile of the occurrence distribution), to 

essentially no risk according to this assessment method (no overlap between hazard and 

exposure distributions). Of the evaluated chemicals, 156 fell into this no-risk category. Of 

the remaining chemicals, the highest-risk condition with any representation (in which the 

exposure median exceeded SSD 5th percentile) contained only one chemical (acetic acid). 

Although this chemical is relatively non-toxic, it had high levels of observed occurrence. 

For eight chemicals, the exposure median exceeded the 1st percentile SSD. Most of these 

chemicals have low environmental concentrations but their smallest predicted no-effect 

concentrations were even lower. The chemicals listed in Fig. 6 are ordered from left-to-right 

based on highest risk category to lowest, however since both quantities were uncertain, the 

absolute ranking of chemicals remains uncertain.

All 186 chemicals with estimated surface water concentrations are shown in the first panel 

(above), while only those with bioactivity exposure overlaps are shown in the second panel 

Sayre et al. Page 11

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 July 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



(below). Each line pair represents one chemical, with the dashed lines displaying the median 

to 1st percentile of no-effect concentrations in the species sensitivity distribution in log-µg/l 

and the dotted lines displaying the median to 99th percentile of the KM distribution of 

dissolved organic chemical concentrations. The highest risk category (left side of figure), 

the case in which the KM exposure median exceeds the SSD 5th percentile, contains one 

chemical. The second category, the case in which the KM exposure median exceeds the SSD 

1st percentile contains eight chemicals. From left to right, the same two SSD percentiles are 

used but the overlap with exposure values goes to the 95th, and then the 99th percentile. For 

156 chemicals there is effectively no risk based on this evidence; the entire range of hazard 

values is higher than all observed concentrations). The first part of the figure displays results 

for all chemicals and the second part of the figure displays the same information zoomed in 

for the chemicals with any overlap.

For chemicals where there were at least 50 samples but not 50 above-limit dissolved 

results (423 chemicals, 164 of which had toxicity values) the highest technical or reporting 

limit value was compared to the hazard distribution—presumedly the mean chemical 

concentration is less than this limit. For 100 cases even the highest limit value (which 

was unlikely to be an actually-occurring concentration) was below the 1st percentile SSD. 

This could be considered as a no-risk condition (based on this dataset), as even the largest 

upper-limit in the set for that chemical did not reach the level predicted to cause no effect 

in the most sensitive species. This is even more stringent than the no-risk condition in the 

other comparison, though it is based on fewer records. In the next comparison category, 

14 chemicals had a highest upper-limit above the 1st percentile SSD and below the 5th; 

in the next category between the 5th percentile and the median of the SSD there were 17 

chemicals. In what was considered the highest risk condition in this analysis, 33 chemicals 

had a higher upper-limit than the median SSD. It is still entirely plausible that even 

these chemicals considered as being in the highest risk category have their lowest actually-

occurring environmental concentrations below all levels expected to elicit a biological effect 

across species, but due to non-reported concentrations that level of specificity cannot be 

known from this set.

Discussion

Water is an important source of chemical exposure for both humans and ecological species. 

We have organized, filtered, and analyzed several million observations reported by the 

U.S. National Water Quality Monitoring Council’s WQP to estimate median and 95th 

percentile organic chemical concentrations at a national-scale. Although there were many 

measurements available in this resource from across the United States, they were collected 

for different purposes with different methods, and many aspects of the samples vary. The 

approach we used trades chemical-specific precision for broader (that is, across many 

chemicals) applicability. By attempting to characterize the uncertainty and limitations of 

these estimated surface water concentrations, we hope that decision makers may, in some 

cases, find these summary data fit for screening-level purposes. The workflow could be 

modified or tailored to evaluate specific geographical areas or sample type subsets.
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Of the 1761 chemical names among the observations available from WQP, we could only 

complete risk-based prioritization (requiring both hazard and exposure estimates) for 186 

compounds. Although additional sampling would improve the chemical space of such an 

analysis there are other simpler things that could also improve the size of the evaluation 

set. For example, hundreds of the chemical names were ambiguous. Given the level of 

effort taken in collecting and measuring these samples, a low marginal investment into more 

detailed annotation, such as providing an unambiguous chemical name, could potentially 

provide a good return on the ability to use the resulting data for this or other purposes. 

We hope that by demonstrating that this dataset might have uses beyond the original reason 

for collection, we provide the motivation for improved annotation and curation of these 

data. However, we have demonstrated that even when inadequate values are reported to 

develop estimates of environmental exposure, just reporting the limits can provide enough 

information to delineate possible risk strata for chemicals.

The largest reduction in chemical space (from 1310 to 498) occurred for chemicals 

lacking 50 or more uncensored observations. For these chemicals, the highest limit 

value provides a rough but potentially useful estimate of the upper limit for these 

chemicals, though it is plausible that their actual concentrations might be far lower (file 

sayre_water_data_results.csv). Choosing a technical limit value rather than a reporting limit 

value (when there is that option) gives a better sense of the concentration boundary, given 

how much higher many of the reporting limits are than the observations. However, it was 

not always the case that reporting limits were higher than technical limits; it is not known 

whether this reflects differences in sampling over space and time or errors in the method text 

identification script. Regardless, unclear chemical naming and high reporting limits were 

the factors most responsible for the loss of nation-wide representative values; addressing 

either factor has the potential to considerably increase the number of chemicals that can be 

compared to bioactivities.

In any dataset including non-detects, assumptions made about how to handle the left-

censored observations are critical [35]; especially given such a high prevalence of censored 

data as in this dataset (Fig. 4). Knowledge of the detection limits was inconsistently 

annotated across the data. For the chemicals where there were enough detects (our 

assumption was 50 or more), we found that using the different types of limits (median 

reporting minima vs. technical minima) led to different estimates for 131 of the 177 

chemicals where both types of limits were available. The more censored values there were 

for a chemical, the stronger the dependence of the median estimate on our assumption of 

lognormality. The occasional difficulties of the MLE algorithm to converge could indicate 

that the log-normal assumption was not suited for those samples. One alternative distribution 

is a mixture between a log-normal and a point mass at zero (that is, the chemical is 

completely absent in some samples).

We found that the dissolved concentration was often, but not always, statistically different 

from the bulk concentration, although this may only be the case for the subset of chemicals 

for which concentrations were measured in multiple phases and not a valid assumption 

across all chemicals. Six pairwise comparisons of measurements made in different seasons 

were evaluated, with none being as different from each other as the bulk and dissolved 
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concentrations. We did not find an overall difference in seasonal dependence between 

chemicals with pesticide and non-pesticidal uses. For the seasonal comparisons, the 

number of measurements available in each season was a confounder. For all intra-chemical 

comparisons, an additional issue was that the statistical tests used assumed independent 

samples. All the observations were spatially dependent and had other aspects that almost 

guaranteed that some samples were related to each other (for example, samples taken by 

different agencies). This analysis did not consider many other factors that could influence 

overall risk, such as pH or combined exposure to multiple chemicals with a shared mode 

of action leading to biological changes at smaller per-chemical concentrations. However, it 

does investigate some of the many possible factors that could be important (but may often be 

overlooked) when deciding whether to include a sample record in an analysis.

Although the data were selected to be as inclusive as possible, they still only painted a 

sparse picture of the water concentrations on a spatiotemporal basis. At least one record 

was present in 2114 of 2270 hydrologic subbasins in the United States in the original set; 

however, after filtering, there were samples in only 1197 subbasins. The average number 

of subbasin samples for a given chemical was 280. Temporally, only 340 chemicals were 

measured in all monitoring years at any site. Future work is needed to evaluate methods 

for identifying spatiotemporal trends and space-time varying the likelihoods of chemical 

concentrations in water in the United States.

There were 186 chemicals remaining for the bioactivity exposure risk prioritization. The 

choice of quantiles used from the exposure and hazard distributions reflect the degree of 

conservatism of the prioritization. For chemicals with overlapping hazard and exposure, 

some had high exposure values but relatively low toxicity (acetic acid) and some had very 

low environmental concentrations predicted to possibly reach a no-effect level in sensitive 

species under chronic exposure (bifenthrin). In either case, the idea that a national-level 

concentration might be causing biological effect is an indication of need for further study. 

Because of the uncertainties involved (as evidenced by the data gaps described here as 

well as inconsistent sampling availability), it is reasonable to expect that with additional 

analysis (and potentially new data) that there could be a margin of safety between even these 

chemicals. It is worth noting that even though some chemicals were identified as a potential 

ecological risk for the United States, this method does not address chemicals which may 

exist in environmental concentrations exceeding activity values in different scales of space 

and time. A similar experiment recreating the tests done here could be done at other scales 

to determine if the results found in our comparison of different sample types hold true under 

differing problem scopes.

In addition to chemical exposure and risk prioritization, it is hoped that nation-scale 

estimates of surface water concentrations based on this set may also serve as evaluation 

data for predictive chemical fate models for water concentration of other chemicals where 

no such data exist. High-throughput models help fill data gaps by making predictions largely 

from chemical structure-derived properties [8]. By developing estimates for a broad range of 

chemicals, we may better identify when, and how, these high-throughput models can help 

inform human and ecological risk decisions and, conversely, for which classes of chemicals 

the models may currently be inadequate. The results of our case study also reiterate the 
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importance of including both per-chemical exposure values and toxicity values in risk 

estimates, as the highest concentration chemicals did not always present higher relative risk 

and lower concentration chemicals sometimes presented higher relative risk in cases where 

they were potently hazardous for the included range of species.

These data do not result from a randomized sampling scheme but might offer an evocative 

glimpse of ambient water concentrations in the United States. By contrast, the CDC 

NHANES chemical exposure human biomonitoring program makes use of carefully chosen 

individuals for which statistical reflection of the aggregate U.S. population is known. Those 

data are then analyzed in a standardized fashion over a limited amount of time. The water 

concentration data analyzed here were collected for myriad reasons using multiple chemical 

analysis laboratories across decades. The sample locations and timing may reflect external 

factors such as concern for nearby sources of potential chemical emission. Therefore, the 

values might be presumed to be conservative and more likely to represent high values, 

yet we see in Fig. 2 that the distributions are highly skewed toward non-detects. On the 

other hand, given the paucity of environmental sampling in general (Fig. 4, [4]), we cannot 

presume to know what has not been observed.

The WQP data used in our analyses do not tell a complete story of national water 

concentrations, and various problems with the annotation preclude much of the data being 

included in a national-scale aggregate analysis. However, with reasonable assumptions and 

thorough data curation, concentration ranges useful for screening-level risk assessment can 

be estimated for nearly 200 organic chemicals. Additionally, we demonstrate that screening-

level risk assessment is possible even when calculation of a concentration range is not 

possible due to incomplete reporting; a further 164 chemicals may be included in such 

assessments using the approach described here. The ranges can be used not only for the 

ecological risk estimate example presented here, but also other purposes such as comparing 

concentrations at a given location with a national range for geographical epidemiology 

studies examining a correlation between a chemical and a disease prevalence to determine 

whether concentrations at different locations are relatively high or low compared with 

nation-wide values, for example. Another possible use is to investigate chemicals with the 

highest national concentrations in surface water (which could differ based on whether the 

median or 95th percentile were used) for potential human contact or risk via recreation or 

drinking water. So the whole proves to be bigger than the sum of the parts. While we cannot 

prove that the method for summarizing surface water concentrations described here was the 

best possible method, we hope by articulating our approach and demonstrating its utility, we 

draw attention to the impression that data curation assumptions may have on future analyses 

of this type.
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Fig. 1: 
Visual representation of criteria used to filter samples and arrive at the final evaluation set.
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Fig. 2: 
Limit values often exceed result values.
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Fig. 3. 
The amount of seasonal concentration variation was similar for pesticides and non-pesticides
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Fig. 4: 
Most records are below a limit value.
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Fig. 5. 
Statistical methods agree when data are less censored.

Sayre et al. Page 23

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 July 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. 6: 
Risk prioritization based on bioactivity exposure range overlap
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Table 1

Glossary

Term Definition

Censored data A measurement where the concentration was below the threshold for detecting the chemical.Also called a “non-detect”.

Technical Min The lowest possible result detectable using a particular instrument or method (also called a non-detect).

Techinical Quant the lowest result deemed quantifiable using a particular instrument or method.

Technical Limit Either a technical min or technical quant, sometimes reported without specifying which.

Reporting Limit The lowest value reportable based on a laboratory’s certification or other regulatory threshold.

Sample Result The observed or measured value of the concentration in the water sample, which is only available if the observation is not 
censored.
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