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Abstract

Despite the known benefits of data-driven approaches, the lack of approaches for

identifying functional neuroimaging patterns that capture both individual variations

and inter-subject correspondence limits the clinical utility of rsfMRI and its applica-

tion to single-subject analyses. Here, using rsfMRI data from over 100k individuals

across private and public datasets, we identify replicable multi-spatial-scale canonical

intrinsic connectivity network (ICN) templates via the use of multi-model-order inde-

pendent component analysis (ICA). We also study the feasibility of estimating

subject-specific ICNs via spatially constrained ICA. The results show that the subject-

level ICN estimations vary as a function of the ICN itself, the data length, and the

spatial resolution. In general, large-scale ICNs require less data to achieve specific

levels of (within- and between-subject) spatial similarity with their templates. Impor-

tantly, increasing data length can reduce an ICN's subject-level specificity, suggesting

longer scans may not always be desirable. We also find a positive linear relationship

between data length and spatial smoothness (possibly due to averaging over intrinsic

dynamics), suggesting studies examining optimized data length should consider spa-

tial smoothness. Finally, consistency in spatial similarity between ICNs estimated

using the full data and subsets across different data lengths suggests lower within-

subject spatial similarity in shorter data is not wholly defined by lower reliability in

ICN estimates, but may be an indication of meaningful brain dynamics which average

out as data length increases.
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1 | INTRODUCTION

1.1 | Resting-state functional MRI

Resting-state functional MRI (rsfMRI) studies have significantly

advanced our knowledge of both typical and disordered brain func-

tional organization by evaluating the functional interactions across the

brain using the blood-oxygenation-level-dependent (BOLD) signal.

While rsfMRI has several advantages that make its application in a

wide range of clinical and research settings more feasible than task-

based fMRI paradigms, its clinical utility and application in single-

subject analyses have been limited.

Clinical applications and statistical inferences are generally built

upon identifying and evaluating common patterns/features. In struc-

tural MRI analysis, we investigate unambiguous brain structures

where changes in the properties of a given structure can be assessed

as an indication of abnormality. The task-based fMRI analysis captures

the brain's response to well-defined external tasks to identify and

evaluate the task-related features across individuals. However,

because the ground truth of the functional entities within a given

brain is unknown, the identification of the corresponding functional

patterns across individuals is not straightforward for rsfMRI. The limi-

tation of existing approaches to obtain comparable functional patterns

across individuals and brain states in a way that accurately and pre-

cisely captures both individual variation and inter-subject correspon-

dence is one primary factor limiting rsfMRI applications.

Focusing on functional connectivity, the most common category

of approaches uses anatomically fixed regions (i.e., existing atlases)

and evaluates the functional connectivity (typically temporal correla-

tion) between these regions. By using anatomically fixed regions, this

category implicitly assumes the functional (connectivity) profile within

each anatomically fixed region does not vary over time and is the

same across individuals. However, many static and dynamic rsfMRI

studies have challenged this strong assumption by identifying mean-

ingful and replicable differences in the spatial patterns of functional

entities both across subjects and within subjects over time

(Boukhdhir et al., 2021; Erhardt et al., 2011; Iraji, Deramus,

et al., 2019; Iraji, Fu, et al., 2019; Luo et al., 2021; Wang et al., 2015).

The presence of within- and between-subject spatial differences is

further supported by task-based fMRI findings showing that func-

tional connectivity maps and spatial patterns of brain responses vary

across individuals for a given task as well as within-subject across

mental states dictated by tasks (Calhoun et al., 2008; Krienen

et al., 2014; Salehi et al., 2020; Sui et al., 2009; Wu et al., 2021). As a

result, data-driven approaches are gaining interest because they iden-

tify functional entities from the rsfMRI data itself and therefore incor-

porate spatial variabilities in calculating corresponding functional

connectivity patterns.

1.2 | Data-driven approach for analyzing
rsfMRI data

There are two main categories of data-driven approaches. They either

(1) estimate functional entities for each sample (e.g., subject) and then

match them across samples or (2) obtain group-level functional enti-

ties using entire samples (e.g., group-level brain networks) and then

use them as a reference to estimate corresponding functional entities

for each sample. Early data-driven approaches belong to the first cate-

gory, including those that apply independent component analysis

(ICA) to each subject's data to extract intrinsic connectivity networks

(ICNs; as estimations of functional entities) and then perform a match-

ing step (e.g., clustering) to identify the ICN correspondence across

individuals. While this category of approaches has remained a matter

of great interest with significant potential (Calhoun, Adali, McGinty,

et al., 2001; Durieux & Wilderjans, 2019; Esposito et al., 2005; Gor-

don, Laumann, et al., 2017; Salehi et al., 2020), ambiguity and uncer-

tainty that the matched functional entities represent the best

corresponding functional patterns across individuals continued to be

their major drawback. Studies have shown that a slight change in the

seed location can result in significant differences in functional connec-

tivity patterns (Yeo et al., 2011), indicating that finding the best-

matched patterns across individuals requires an extensive search

across all possibilities. In the case of using functional parcellations as

functional entities, this means searching for different sizes and loca-

tions across all individuals. In addition, extending the application to

new unseen data, which is necessary for clinical application, requires

special solutions as accessibility to the initial dataset and rerunning

the process is not only practically unfeasible but importantly can lead

to different functional patterns than the original analysis. Differences

in data acquisition, such as different spatial and temporal resolutions,

can also impact functional pattern identification. Finally, the signal-

to-noise ratio (SNR) of rsfMRI adds yet another challenge, reducing

the likelihood of finding the same functional entities across individ-

uals. Finding corresponding functional entities is even more challeng-

ing when considering the dynamic nature of the brain and the fact

that functional entities continuously evolve and have different spatial

profiles (Iraji et al., 2020).

The second category of data-driven approaches, also known as

group-informed approaches, has been deployed to overcome these

limitations and enhance the identification of corresponding functional

patterns across individuals (Calhoun, Adali, Pearlson, et al., 2001).

These approaches utilize a template obtained from multiple subjects

to guide the estimation of corresponding functional patterns for each

individual. Leveraging a large number of subjects helps to compute a

more reliable and generalizable estimation of functional entities, and

using the common template for sample estimation of functional enti-

ties improves the identification of corresponding patterns across
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individuals. As a result, this category can be more beneficial for wide-

spread clinical adoption as it enhances the possibility of comparing

the same functional patterns (and their dynamic states) across individ-

uals. Group ICA + back-reconstruction is the most commonly used

example of this category, which uses group-level ICNs estimates to

obtain corresponding subject-level ICNs (Erhardt et al., 2011). Yet,

two aspects must be improved to fully leverage this category's

potential.

First, we need to obtain a reliable template (e.g., group-level ICNs)

that best represents all individuals. A key factor in achieving this goal

is to recruit the largest possible dataset. As we increase the size of a

dataset, the group-level estimations get closer to the central ten-

dency, and therefore, better represent all (seen and unseen) individ-

uals. Second, we need to use well-designed, group-informed

(e.g., reference-guided or back-reconstruction) network estimation

techniques to identify corresponding subject-specific functional pat-

terns accurately and precisely. This step is important to prevent loss

of subject-specificity and meaningful inter- (and intra-) individual dif-

ferences. Multiple studies have shown that existing techniques cap-

ture individual-level variations well (Allen et al., 2012; Erhardt

et al., 2011), yet developing more advanced network estimation tech-

niques (in addition to accurate estimation of a template) is a key ele-

ment to bringing group-informed approaches to perfection and

transitioning to clinical applications of rsfMRI.

1.3 | Toward perfecting group-informed data-
driven approaches

Our main objective is to develop a standardized framework that

leverages a very large dataset to obtain a reliable general template of

functional entities and uses techniques that allow accurate subject-

specific estimation of these functional entities. This can lead to the

systematic characterization of common and distinct alterations in

functional patterns across cohorts (including among clinically overlap-

ping disorders) and identifications of subject-specific irregularities.

This standardized framework makes identifying corresponding func-

tional patterns for new subjects and comparing findings among data-

sets and across studies straightforward, which is of great need in the

field. Moreover, because the estimation for each subject is indepen-

dent of other subjects in the study, it becomes an ideal solution for

both clinical applications as well as prediction analysis, which require

complete separation of the training and testing data.

1.3.1 | Using multi-model-order spatial ICA to
obtain multi-spatial-scale canonical ICN templates

We apply multi-model-order spatial ICA (msICA; Iraji et al., 2022) to a

large dataset (over 100k subjects) to generate a set of reliable ICNs

that exist across different spatial scales (Iraji et al., 2022), from large-

scale spatially distributed ICNs (Damoiseaux et al., 2008; Iraji

et al., 2016) to more spatially granular ICNs (Allen et al., 2011; Iraji,

Faghiri, et al., 2019). The model order of ICA effectively sets the spa-

tial scale of ICNs without imposing a direct spatial constraint (Iraji

et al., 2022). This is a great advantage as the complexity varies across

brain systems, and there is no reason to expect distinct regions

(e.g., temporal lobe vs. the frontal lobe) or systems (e.g., the visual

vs. the cognitive control) to have the same spatial scale across the

brain functional hierarchy.

The second advantage of using msICA is its superior ability to

estimate more reliable ICNs across different datasets. Briefly, the

amount of variance that can be explained by a given IC relative to

other ICs can vary across datasets, which impacts the principal com-

ponents (PCs) retrieved by group-level principal component analysis

(PCA), and therefore the input for ICA decomposition. In other words,

subject variability influences the data reduction steps prior to ICA

decomposition, and hence the output of ICA. Variability in ICA estima-

tions, such as statistical errors and several equally good local minima

solutions, also impact the output of ICA decompositions, which we

commonly minimize by running ICA several times and identifying the

best run (Ma et al., 2011). Nonetheless, these sources of variability

together lead to a better estimation of a given ICN at different model

orders across different datasets. In layman's terms, a given ICN can be

best identified either in one specific model order across datasets or in

different model orders. Thus, by using ICA with multiple model orders,

we can improve the identification of ICNs across datasets.

It should be noted that compared to previous similar attempts to

obtain ICN templates (Du et al., 2020), our work uses a much larger

sample size, obtains ICNs across multiple spatial scales, provides more

reliable and replicable ICNs, and does not restrict to typical control

cohorts. We chose to use all data available to us (including clinical

cohorts) to ensure the obtained ICN template reflects the diversity

and heterogeneity of the brain and can be broadly representative of

different groups.

1.3.2 | Group-informed network estimation
techniques to estimate subject-specific ICNs

While the first part of this framework aims to leverage a universal

template that can best represent all individuals, estimating subject-

specific networks through group-informed techniques is crucial for

precise ICN estimation from a given fMRI time series. As such, there

is a significant effort to develop robust, reliable methods with a high

level of sensitivity and specificity to accurately identify corresponding

ICNs for a given sample data while capturing sample-specific

(e.g., subject-specific) fine information (Du & Fan, 2013; Lin

et al., 2010; Mejia et al., 2020). While we emphasize the necessity of

developing new, more advanced methods, we leave this effort to

future endeavors and use multivariate-objective optimization ICA with

reference (MOO-ICAR) to estimate subject-specific ICNs because it

performs well in capturing subject-specific information and removing

artifacts (Du et al., 2016; Du & Fan, 2013).

In addition, accurately estimating subject-specific ICNs involves

various factors, as highlighted in Box 1. Applying group-informed
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approaches to a dataset does not ensure the successful identification

of corresponding ICNs. Thus, there is a significant need to evaluate

factors influencing sample-specific estimates and provide tools to

evaluate the estimated ICNs. Our study takes the first step in this cru-

cial research area.

1.4 | On smoothing and reliability analysis

Spatial smoothness induced by sample size is an understudied

research area. For instance, the group ICA results, similar to averaging

and any group-level analysis, are smoother than the single-subject ICA

results, as sample-specific spatial variation is gradually smoothed out

as more data are included. This phenomenon can also be observed

when calculating the functional connectivity map of a given seed and

averaging it across individuals. This smoothing effect can also be seen

when increasing the sample size (number of time points in this case)

for estimating the subject-level functional connectivity (FC) patterns.

The more time points that are included, the smoother the FC pat-

terns/ICNs become.

This smoothness associated with data length directly impacts

the results of downstream assessments (e.g., reliability assessment)

that use spatial similarity to evaluate a system's performance, since

more spatially smoothed estimations in general result in higher spa-

tial similarity. Therefore, the impact of this smoothing effect should

be factored in for reliability analyses and similarity evaluations,

especially when comparing results from data with different data

lengths. Otherwise, the results are always biased toward longer data

lengths and therefore support the notion of using longer data

lengths. A fair comparison between the results of different data

lengths may need to control for the induced spatial smoothness due

to this averaging effect. One straightforward solution is to match

the smoothness of ICNs across different data lengths, for instance,

by applying different levels of spatial smoothing for different data

lengths to achieve a similar level of overall smoothing across data

lengths.

At the same time, one should take caution about the extent to

which the spatial variations are driven by sample variability and error

of estimation, or to what extent they reflect a true underlying pattern.

While higher spatial similarity among a given ICN estimate (such as

similarity to its reference and its within-subject and between-subject

similarity) is an appealing feature for many analyses, for example,

when using spatial similarity as reliability or replicability criteria, it

could potentially come at the cost of reducing subject differences, fine

spatial information, and dynamic properties. Thus, applying spatial

smoothing (to match smoothness across analyses) in studies could

also include an assessment of its impact not only on reliability and

replicability analysis but also its impact on other analyses such as pre-

diction and association.

2 | MATERIALS AND METHODS

2.1 | Datasets and data preparation

2.1.1 | Dataset

We utilized rsfMRI data from 100,517 subjects available in more than

20 private and public datasets. The full list of datasets and resources

for obtaining further details on each can be found in Supporting

Information S1. Datasets are from cohorts with different male-

to-female ratios, age distributions, handedness, and diagnoses, col-

lected by different scanners with varying imaging protocols such as

different spatial and temporal resolutions. In this initial work, we lev-

eraged as much data as possible to identify an ICN template, and the

influence of various demographic factors will be evaluated in future

studies, given the demographic distribution availability. Here, we

focused on data quality control (QC) criteria to screen and select data

without further exclusion criteria. The QC criteria include (a) a mini-

mum of 120 time points (volumes) in the rsfMRI time series, (b) mean

framewise displacement less than 0.25, (c) head motion transition less

than 3� rotation and 3 mm translation in any direction, (d) high-quality

registration to an echo-planar imaging template, and (e) whole-brain

(and the top 10 and the bottom 10 slices) spatial overlap between the

individual mask and group mask above 80%. We chose these QC

BOX 1 Factors affecting the accurate estimation

of subject-specific intrinsic connectivity networks.

Several factors play roles in estimating corresponding intrin-

sic connectivity networks (ICNs) at the subject level, includ-

ing fMRI data characteristics, ICNs themselves, and group-

informed network estimation techniques. The data charac-

teristics, such as the amount (i.e., number of time points) of

subject-level data and spatial as well as the temporal resolu-

tions of data, define the limits of ICNs estimation. In other

words, a given ICN cannot be estimated if enough informa-

tion is not present in the data, regardless of group-informed

network estimation techniques. The properties of each ICN

(e.g., its spatial distribution, the amount of data variance it

explains, and how densely its main cores are temporally

coupled) determine how easily they can be extracted. In

other words, the spatial and temporal information required

to identify each ICN varies. Some ICNs can be estimated

using fewer time points and coarse spatial and temporal

data, while others may require fine-grained spatial and tem-

poral information. Together, these factors highlight that

merely using an ICN template and a group-informed net-

work estimation technique does not guarantee proper esti-

mation of subject-level ICNs, and therefore underscores the

need for criteria to evaluate the success of the ICN

estimations.
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criteria as they are both reasonable and achievable across different

datasets. This resulted in 57,709 (57.4%) individuals who passed the

QC criteria, which we called the QC-passed dataset, in contrast to

the QC-failed dataset defining the remaining 42,808 (42.6%) individ-

uals who did not pass the QC criteria. We used the QC-passed data-

set to extract the ICN template and evaluated the replicability and

presence of selected ICNs by separately analyzing the QC-failed

dataset.

2.1.2 | Preprocessing

If the preprocessed data were available for a given dataset, we used

the preprocessed data; otherwise, we performed preprocessing steps,

including rigid body motion correction, slice timing correction, and dis-

tortion correction, using a combination of FMRIB Software Library

(FSL v6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and the statistical

parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) tool-

boxes under the MATLAB environment. Distortion correction, to

adjust for warps due to susceptibility-induced distortions based on

multiple scans collected with slightly different acquisition parameters,

was performed using the top-up toolbox in FSL with the default

parameters. In terms of the correction of physiological noise and

motion effects, we did not apply any voxel-level regression-based cor-

rection. Instead, we relied on the inherent capability of ICA to sepa-

rate out these variables as noise-related components (Du et al., 2016;

Griffanti et al., 2017). Next, preprocessed subject data were warped

into a Montreal Neurological Institute (MNI) space using an echo-

planar imaging (EPI) template, as it has been shown to outperform

structural templates (Calhoun et al., 2017) when distortion correction

is unavailable or unfeasible, as was the case for this study. Finally, sub-

ject data were resampled to 3 mm3 isotropic voxels and spatially

smoothed using a Gaussian kernel with a 6 mm full width at half-

maximum (FWHM).

2.2 | ICNs template estimation

The analysis pipeline is displayed in Figure 1. Using our QC-passed

dataset, we applied group-level multi-model-order spatial ICA (gr-

msICA; see Section 2.2.1.) to obtain a multi-model-order ICN tem-

plate. For this purpose, we first randomly half-split the QC-passed

data and applied gr-msICA on each half independently. We used

model orders of 25, 50, 75, 100, 125, 150, 175, and 200, totaling

900 independent components (ICs) for each data split. We

repeated this process 50 times, generating 100 sets of 900 ICs.

Next, we applied a greedy search and selected the 900 ICs with

the highest average pairwise spatial similarity (calculated by Pear-

son correlation) across 100 sets. After manually labeling the ICs,

we selected 105 ICNs that were most distinct from each other

(spatial similarity <0.8) to serve as the final ICN template (see

Section 2.2.2).

2.2.1 | Group-level multi-model-order spatial
independent component analysis

ICA analysis was performed using the Group ICA of FMRI Toolbox

(GIFT) v4.0c package (https://trendscenter.org/software/gift/; Iraji

et al., 2021). Spatial ICA is a multivariate blind source separation tech-

nique that simultaneously considers the relationships among all voxels

(as opposed to pairwise Pearson correlations) to estimate temporally

coherent spatial patterns that are maximally independent for a

selected model order. The group ICA analysis steps are as follows. We

first applied variance normalization (z-score) on voxel time courses

and computed subject spatial PCA to retain the PCs with maximum

subject-level variance (greater than 95%). Next, group spatial PCA

was applied to stacked subject PCs to obtain subject commonalities

and subspace with the maximum variation across the whole dataset.

Group PCs were computed using a memory-efficient subsampled time

PCA (STP) approach (Rachakonda et al., 2016). We used STP because

the conventional group spatial PCA is intractable considering the data

size used in this study. STP estimates the group PC subspace by incre-

mental updating based on a different sub-stack of subject PCs. In

other words, first-level group PCA was applied to different subsets of

subject PCs, and then the final group PC subspace was estimated by

incrementally updating and incorporating first-level group PCs

(Rachakonda et al., 2016). Next, we ran gr-msICA using the Infomax

ICA algorithm (Bell & Sejnowski, 1995) with model orders of 25, 50,

75, 100, 125, 150, 175, and 200. We ran Infomax 20 times for each

model order to obtain the most stable run for each model order (Du

et al., 2014).

2.2.2 | ICN selection

We applied msICA on 50 random half-splits of QC-passed data and

obtained 100 sets of 900 ICs. Next, we identified the most stable ICs

across the 100 runs. ICASSO is the most commonly used tool to find

stable ICs and its extension for multi-model-order ICA applications is

straightforward. However, the computational complexity of ICASSO

rapidly increases with the number of ICs and ICA runs, making it

impractical for our study (900 � 100 IC samples). As such, we applied

a procedure that selects ICs based on the best pairwise matching of

ICs between runs. The steps of the procedure are as follows. First, for

each IC of each run, we found its best-matched component from all

the other 99 runs. A best-matched component was defined as the

component with maximum spatial Pearson correlation. We calculated

the average of the 99 correlation values of best-matched components

as the stability coefficient for that given component. We obtained this

stability coefficient for all components across all runs resulting in a

900 � 100 stability matrix. Next, we identified the component with

maximum stability value across all 900 � 100 components as the first

selected component, and the selected component along with its best-

matched component in each run was removed from search space

(i.e., for each run, the component with maximum similarity with the
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selected component will be identified and omitted for the next itera-

tion). We repeated the whole procedure for the remaining 899 � 100

components and continued this procedure until we selected 900 com-

ponents along with their corresponding components across all runs.

This procedure ensures all ICs across different iterations were treated

equally and reduces the risk of bias toward a single IC sample. Next,

four authors (V. C., Z. F., A. F., and A. I.) manually labeled the

900 selected components as ICNs or non-ICNs. This was done based

on commonly accepted ICN criteria, including (a) peak values in gray

matter, (b) low spatial overlap with vascular and ventricular structures,

and (c) low spatial similarity with motion and other known artifacts.

Note that some ICNs might have high spatial similarities with

each other, and thus we chose a subset of ICNs (N = 105) with spatial

similarity less than 0.8 as the ICN template (Supporting

Information S2). All 900 components and their stability values can be

found in Supporting Information S3 to allow researchers to select cri-

teria that best match their objectives.

2.3 | Subject-level estimation of ICNs

We evaluated the identification of the corresponding subject-specific

ICNs using MOO-ICAR (Du & Fan, 2013) and proposed two minimal

criteria to systemically evaluate the successful identification of

subject-specific ICNs for a given dataset.

The first criterion evaluates whether the spatial similarity

between a given ICNs template and its subject-level estimates in a

given dataset is significantly higher than the spatial similarity between

the ICN's template and components estimated from null data with the

same data length and level of spatial smoothing. This criterion basi-

cally determines whether an ICN is estimated significantly beyond just

using predefined anatomical information determined by its template.

Otherwise, the estimations reduce to using predefined spatially fixed

weighted nodes/seeds (i.e., become equivalent to atlas-based

approaches). The second criterion evaluates if an estimated ICN has

significantly higher spatial similarity to its own template compared to

its similarity to templates from other ICNs. Data specifications

(e.g., resolutions and length) and group-informed network estimation

techniques determine the ability to differentiate between ICNs (See

Box 1 for more details).

We evaluated the success of estimating ICNs at subject-level

using the two introduced criteria for the Functional Imaging Biomedi-

cal Informatics Research Network (FBIRN; Keator et al., 2016) and

Human Connectome Project (HCP; van Essen et al., 2013) datasets

with different specifications (including inherent spatial resolution).

The FBIRN dataset contains 109 subjects that passed QC with

162 time points, a repetition time (TR) of 2 s, and an original voxel size

of 3.4375 � 3.4375 � 4 mm3. The HCP dataset consists of 706 sub-

jects that passed QC and have four complete rsfMRI scan sessions.

Each session has 1200 time points, a TR = 0.72 s, and an original

F IGURE 1 Analysis pipeline. Data of 100,512 subjects went through preprocessing and quality control (QC). In total, 57,709 subjects passed
the QC and were used to generate the template. The QC-passed dataset was randomly split in half, and group-level multi-spatial-scale
independent component analysis (gr-msICA) was applied on each half-split to generate 900 independent components (ICs). This process was
repeated independently 50 times, which resulted in 100 sets of 900 ICs. Next, the 900 most stable ICs were identified and labeled as non-ICNs or
ICNs, and the 105 most distinct (spatial similarity <0.8) were selected as the ICN template. Finally, several group-level and subject-level analyses
were performed.
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voxel size of 2.0 mm isotropic. We also investigated ICN estimation in

the context of (a) similarity to template ICNs, (b) within-subject simi-

larity, and (c) between-subject similarity for different data lengths and

sampling rates. We focused on the HCP dataset for data length

and temporal resolution assessments. We discarded the first 50 time

points and partitioned the data from each session into incrementally

longer segments, beginning at 25 time points with an increment of

25 time points (i.e., 25, 50, 75, …, 1150). We performed this process

for data with different temporal resolutions of 1–5 TR (0.72, 1.44, …,

3.6 s). We applied MOO-ICAR separately to each data length and

temporal resolution to estimate the corresponding 105 ICNs.

We also conducted some baseline analyses to demonstrate the

general impact of spatial smoothing on subject-level ICN evaluations

and left a rigorous analysis of the effects of spatial smoothing equali-

zation across different data lengths for future studies. For this pur-

pose, we applied post hoc smoothing using a Gaussian kernel with a

fixed FWHM to the subject-level ICNs estimated across all data

lengths, that is, the same level of smoothing (FWHM = 4.9 mm) was

applied to all ICNs, regardless of the data length used for estimation.

The FWHM value was selected as the value that gave the highest

average spatial similarity to the template ICNs across all data lengths

in independent external data. We evaluated how smoothing affects

the results of our analyses, such as the similarity between subject-

level ICNs and their template, as well as both within-subject and

between-subject similarities.

3 | RESULTS

3.1 | Reliable ICNs template

Figure 2a displays the composite views of the 105 selected ICNs and

their average functional connectivity. Supporting Information S4 con-

tains the axial view of each ICN. The stability coefficient (average spa-

tial similarity across runs) for all ICNs is well above 0.8. Figure 2b

shows the spatial similarity between ICNs and best-matched compo-

nents across 100 runs of gr-msICA on 50% of the QC-passed dataset.

We additionally ran gr-msICA on the QC-failed dataset, which was

not used in ICNs estimation (unseen dataset), and successfully (spatial

similarity >0.8) identified all 105 ICNs.

Our results suggest that leveraging the msICA framework can

improve ICN identification. Figure 2c shows the average spatial simi-

larity between each ICN and the best IC matches across 100 runs in

each model order as well as the number of ICNs identified by each

model order using the similarity threshold of 0.8 (similar to stability

coefficient = 0.8). This analysis shows that (1) no single model order

ICA can estimate all of the 105 ICNs [e.g., only 11 out of 105 ICNs

were identified using model order 25 and only about half (58) of the

ICNs were identified using model order 175]; therefore, msICA pro-

vides a more complete view of brain functional patterns and (2) the

ICNs represent different patterns across the various ICA model

orders, meaning each can be identified from a different range of

model orders. Examples of these differences can also be seen in

Figure 2d. For example, ICN 105 was successfully identified across all

model orders, while ICNs 1, 9, and 60 were only identified in one

model order. We also observed that some ICNs were successfully

identified (ρ ≥ 0.8) across multiple model orders, with one model order

exhibiting the highest stability value (e.g., ICN 8 and 68).

Figure 2e provides an example of a single ICN where the best-

matched components across runs (which contain different data) come

from different model orders. In this example, we can obtain ICN

58 using a single-model-order ICA with a stability coefficient above

0.8; however, because the best-matched components can come from

different model orders, we achieved higher stability and improved the

identification of ICNs across datasets by leveraging multi-model-order

ICA, which is the second above-mentioned advantage of multi-

model-order ICA. Our analysis shows that 28 of the 105 ICNs came

from different model orders (2–4 different model orders) across

100 half-split runs. In addition, we examined this advantage of multi-

model-order ICA in the QC-failed dataset. Our analysis revealed that

53 ICNs were identified using different model orders than those ICNs

found in all QC-passed runs.

3.2 | Subject-level analysis

The subject-level analysis suggests that we can identify

subject-specific ICNs corresponding to our template using existing

data acquisition paradigms and back-reconstruction methods. MOO-

ICAR estimated all ICNs above null for all HCP data lengths (i.e., 25,

50, 75, …, 1150 time points); however, it could not effectively extract

ICN-specific information for 6, 5, and 2 ICNs for the shortest data

lengths of 25, 50, and 75 time points, respectively, meaning the

MOO-ICAR solutions for these ICNs were not statistically (p-value >

.05) more spatially similar to their templates compared to that of other

templates.

Indeed, the results of subject-level estimations can vary based on

both back-reconstruction and data characteristics. For instance, for

the FBIRN dataset with 157 time points and a larger original voxel size

of 3.4375 � 3.4375 � 4 mm (i.e., higher inherent spatial smoothness),

MOO-ICAR estimation of 12 ICNs did not show statistically higher

similarity to their reference than other references. In comparison, for

the HCP dataset with data length equal to or larger than 100 time

points, MOO-ICAR successfully estimated all 105 ICNs.

In Figure 3a, the top row shows an example of subject-level ICN

estimation from both the HCP and FBIRN datasets. Subject-specific

estimations have less spatial smoothness than the ICN template

obtained from the group-level analysis. Subject-specific smoothness

gradually increases as more time points are used for MOO-ICAR esti-

mations (Figure 3b). In other words, we illustrated the expected

increase phenomena (see Section 1.4) in spatial smoothness (com-

puted as one minus average gradient magnitude across the whole

brain) as a function of data length for an exemplar ICN. We also

employed the post hoc subject-level spatial smoothing (see

Section 1.4) and observed that this smoothing indeed increased the

similarity between subject-level ICNs and templates obtained from
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group-level analysis (the bottom row of Figure 3a provides a visual

illustration).

The results of the spatial similarity analysis between the subject-

specific ICNs and the template are summarized in Figure 4. The left

column shows the results for the original ICN estimations, and the

right column represents assessments after applying the post hoc

spatial smoothing (i.e., applying the same spatial smoothing with

FWHM = 4.9 mm to all ICNs and data lengths). The first row

(Figure 4a) shows the average similarity of 105 ICNs with the tem-

plate, where the green shaded area represents its standard deviations

across individuals, and Figure 4b shows an example of the spatial simi-

larity for ICN 38. The pattern of spatial similarity with the template

F IGURE 2 Group-level multi-spatial-scale independent component analysis (gr-msICA) results. (a) The composite views of the 105 selected
intrinsic connectivity networks (ICNs) and averaged whole-brain functional connectivity. Each ICN spatial map was first z-scored and thresholded
at z-value = 1.96 (p-value = .05). Whole brain functional connectivity was estimated by calculating the Pearson correlation between each pair of
ICNs and averaged across the QC-passed dataset. (b) Multi-model order stability. The spatial similarity of ICNs with corresponding independent
components (IC) across 100 gr-msICA runs on different halves of the QC-passed dataset. (c) single-model-order versus multi-model-order ICA.
The average spatial similarity is computed between each ICN and the best IC matches across the 100 runs in each model order (and multi-model-
order). The blue values on the right side indicate the number of ICNs identified by each model order using the similarity threshold of 0.8 (similar
to stability coefficient = 0.8). (d) Different ICNs can be identified using different ranges of model orders. For example, ICN 105 was successfully
identified by all model orders used in this study. (e) an example showing how using msICA improves the identification of the best corresponding
ICN across different subsets of data, suggesting msICA improves the identification of ICNs across datasets.
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varies across ICNs. Figure 4c shows differences in the similarity of

selected ICNs with the template, indicating different ICNs need differ-

ent data lengths (i.e., numbers of samples) to achieve a specific spatial

similarity to the template and spatial smoothing increases the similar-

ity across all ICNs.

We also evaluated the effect of the sampling rate (Figure 4d). For

the same number of time points (i.e., the same number of samples or

the same data length), lower sampling rates (i.e., a longer amount of

time between samples) result in slightly (but statistically significant)

higher spatial similarities with the template. The effect of sampling

rate is more significant in smaller data lengths. For example, the

F-statistic between data with TR = 0.72, 1.44, 2.16, and 3.6 s was

1121 for the data length of 25 time points compared to 489 for the

data length of 250 time points. Furthermore, for the evaluated TR

values, the two-sample t-test indicates that the impact of sampling

rate reduces as sampling rate (TR) increases. For example, for the

F IGURE 3 Subject-level estimation and the effect of smoothness. (a) Estimation of intrinsic connectivity network 6 (ICN 6) for a single
subject from the Human Connectome Project (HCP) dataset using different data lengths and one subject from the Functional Imaging Biomedical
Informatics Research Network (FBIRN). The subject-level estimation is less smooth than the template obtained using group-level analysis. The
subject-level estimate depends on several factors, including data characteristics such as length of data and original voxel size. (b) The smoothness
of ICN 6 estimated as a function of data lengths for the HCP dataset is shown in green. The red color represents the same measure for the FBIRN
dataset with 157 time points. Blue shows the smoothness level for the template of ICN 6. Y-axis shows the normalized smoothness level with a
maximum value of 1, which corresponds to a constant image (when all voxels have the same value, the normalized smoothness level is equal to
one). Normalized smoothness equals one minus average gradient magnitude across the whole brain.
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original estimation with 25 points, the t-value between the sampling

rates of 0.72 and 1.44 s is 35, while this value is 22 for the sampling

rates of 1.44 and 2.88 s. However, the increase in spatial similarity as

a function of sampling rate seems trivial, especially considering we

can (1) collect more data for the same amount of time using shorter

TR and (2) better assess the changes in functional patterns over time.

Within-subject and between-subject analyses were consistent

with the results of the similarity analysis with the template. For

instance, we calculated the within-subject spatial similarity between

different sessions of the HCP data and observed an increase in the

within-subject spatial similarity as a function of data length

(Figure 5a). Furthermore, post hoc spatial smoothing enhanced

within-subject and between-subject spatial similarities (Figure 5b).

While increasing data length increases within- and between-

subject spatial similarities, this pattern of within- (and between-) sub-

ject similarity across ICNs remains fairly consistent across data

lengths, with a higher consistency for within-subject analysis. In

Figure 5c, we calculated the average within-subject spatial similarity

for all 105 ICNs at each data length. Then, we measured the Pearson

correlation between 105 similarity values for each pair of data lengths.

Figure 5d shows the same analysis for between-subject analysis, and

Figure 5e,f illustrates the same analyses for post hoc spatially

smoothed data. We also observed that within- and between-subject

similarities are positively correlated with the size of ICNs, meaning

within- and between-subject similarities seem to be higher for larger-

scale ICNs than spatially more granular ICNs. Figure 5g,i illustrate the

relationship between the number of voxels with Z > 1.96 (p-value <

.05) and within- and between-subject spatial similarities.

We also evaluated the impact of data lengths and smoothing in

within-session similarities relative to between-session similarities

(Figure 5h,j). For this purpose, we calculated the spatial similarity of

the ICNs estimated using the given data length with those estimated

using a portion (25% and 50%) of that data length. For example, for

the data length of 100 time points, we calculated the similarity

between ICNs estimated using 100 time points with ones estimated

using the initial 25 and 50 time points. Within-session similarities are

more similar across data lengths, compared to between-session analy-

sis, particularly for original estimations (Figure 5h). For instance, the

F IGURE 4 Assessment of subject-level intrinsic connectivity networks (ICNs) estimated using multivariate-objective optimization ICA with
reference (MOO-ICAR). The left and right columns are the results of original ICNs estimations and after applying post hoc spatial smoothing.
(a) The average spatial similarity between subject-level estimations and the template using different data lengths (from 25 to 1150 time points).
The green shaded area represents its standard deviations, and the blue and red dot lines represent the fitted curve and its extrapolation. (b) The
same plot as (a) but for one ICN as an example. (c) While the spatial similarity between single-subject estimations and templates increases as the
length of data increases, different ICNs show different patterns. Here, we show an average similarity as a function of time for a few randomly
selected ICNs with and without spatial smoothing. (d) The sampling rate (TR) effect on the spatial similarity between template and subject-level
estimations. A high resolution of the figure can be found in Supporting Information S5.
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Pearson correlation between full-length and 50% remains around 0.8

across different data lengths. Moreover, post hoc spatial smoothing

has a larger impact on between-session similarities than

within-session similarities. Our analysis shows the increase in spatial

similarity as the result of spatial smoothing is more prominent in

between-session similarities compared to within-session similarities.

F IGURE 5 Assessment of within- and between-subject similarities. The left and right columns show the results of original ICNs estimations
and after applying spatial smoothing. (a, b) The average within- and between-subject spatial similarity using different data lengths (from 25 to
1150 time points). Panels (c) and (e) show the similarity of the ICNs' within-subject spatial similarity across different data lengths for original and

post hoc smoothed ICNs. Panels (d) and (f) show similar results for between-subject spatial similarity. These results suggest that while within- and
between-subject similarity is positively correlated with the data lengths (i.e., higher similarity with longer data lengths), the pattern of similarity
across ICNs is consistent for different data lengths. Panels (g) and (I) show a strong positive correlation between ICNs size and within- as well as
between-subject similarity. Panels (h) and (j) show the impact of data length on the similarity of ICNs obtained using full data lengths with those
obtained using a portion (25% or 50%) of data. While the within-session similarity increases as a function of data length, this increase is not
substantial, particularly compared to between-session similarity. Panels (k)–(n) demonstrate the impact of sampling rate on within- and between-
subject similarities for original analysis as well as post hoc smoothed ICNs. A high resolution of the figure can be found in Supporting
Information S6.
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The effect of the sampling rate within and between-subject simi-

larity (Figure 5k–n) is also similar to what we observed in the context

of similarity to the template. For the same number of samples, lower

sampling rates (i.e., a longer amount of time between samples) result

in overall higher within- and between-subject spatial similarities. How-

ever, the ability to collect more data for the same amount of time

favors using higher sampling rates.

For the last analysis, we evaluated subject-specificity by

comparing within- and between-subject similarities through pairwise

statistics, where a higher value of t-statistic indicates higher subject-

specificity (i.e., large within-subject similarity compared to between-

subject similarity). The within-subject similarity was obtained by

calculating the spatial similarity between estimates of each subject

across different sessions. We observed that ICNs show different pat-

terns and levels of subject specificity. For example, Figure 6a shows a

few ICNs with different maximum t values and different relationships

between data length and ICN's subject specificity power. The maxi-

mum t-value is an indication of a given ICNs ability to differentiate

between individuals, and we observed, for example, that this value is

much higher for ICN 68 (commonly known to belong to the frontopar-

ietal domain) than ICN 5, which is a large-scale ICN in the cerebellum.

Moreover, the t-value of within- and between-subject similarity grad-

ually increases as a function of data length for ICN 68 in explored

data length, while the value reaches the maximum in mid-range data

lengths for ICN 5. Figure 6b shows that the pattern of ICNs'

subject-specificity remains fairly similar across different data lengths,

particularly when the data length is above 500 time points. Subject-

specificity is positively correlated with the ICN spatial extent for all

data lengths (minimum–maximum = 0.59–0.7; average ± SD = 0.68

± 0.02). This means larger scale ICNs estimated using MOO-ICAR

carry more subject-specificity power relative to spatially finer scale

ICNs. Figure 6c shows the average result across different data lengths.

Further investigation shows that subject-specificity variability was

nonuniformly distributed across systems. ICNs associated with fronto-

parietal and default mode show higher within-versus-between subject

t values, while ICNs associated with the subcortical and cerebellum

have the lowest subject-specificity power, and this pattern is similar

for the original as well as post hoc smoothing (Figure 6d).

4 | DISCUSSION

rsfMRI is a noninvasive brain imaging method with arguably the best

existing spatial and temporal resolution trade-off and minimal demand

from individuals during data acquisition. These properties make

rsfMRI a promising tool for studying brain function and for use in clini-

cal applications. Among different features acquired from rsfMRI, func-

tional connectivity, which assesses the interactions across the brain,

has shown associations with various mental and cognitive measures,

as well as characteristic alterations in certain brain disorders. How-

ever, the limitations of existing methods and datasets prevent us from

fully leveraging the potential of rsfMRI to study FC and transition it

into a well-established, valid clinical tool.

A key step toward establishing rsfMRI as a prevalent clinical tool

is the accurate estimation of corresponding functional patterns, that

is, the identification of equivalent functional patterns across individ-

uals and brain states in a way that captures both individual variations

and inter-subject correspondence. Accumulating evidence of spatial

differences in functional patterns across individuals and even within

individuals over time (Bhinge et al., 2019; Boukhdhir et al., 2021; Fan

et al., 2021; Iraji, Deramus, et al., 2019; Iraji, Fu, et al., 2019; Iraji

et al., 2020; Luo et al., 2021; Salehi et al., 2020; Wu et al., 2021) high-

lights the necessity of using data-driven approaches instead of prede-

fined (anatomical or functional) atlases in FC studies. However,

several factors must be taken into account when using data-driven

approaches. First, the calculation of functional patterns for each sub-

ject should preferably be estimated independently from other

subjects, particularly in the case of prediction and machine learning,

which require the training and testing data to be completely separate.

Data-driven approaches that separately estimate functional patterns

for each subject and then use a data-driven matching technique to

find the correspondence fail to adequately satisfy this criterion

because the matching step requires comparing the functional patterns

across all data (training and testing) and therefore results in data leak-

age. Second, differences in datasets across studies can influence

results. For example, changes in datasets used in a study (e.g., adding

new subject data) can impact the matching steps (and dataset-specific

group-level estimates) and lead to different results. Furthermore, we

often do not have access to all data used in previous studies, and even

if we do, rerunning analyses by adding new data to the previous ones

each time is impractical and can lead to different solutions. To address

the abovementioned complications, a straightforward and practical

solution is to use reliable templates and group-informed data-driven

techniques to obtain corresponding functional patterns for each indi-

vidual separately.

Here, we contribute to the solution above by identifying reliable

group-level multi-spatial-scale ICNs (as an estimation of a universal

template) using data from over 100k subjects and gr-msICA. We used

ICA to obtain our templates because of several key factors. First, ICA

is a widely used multivariate tool that divides the brain into temporally

coherent patterns, known as ICNs, which are potentially spatially

overlapping, yet functionally distinct patterns (Calhoun & Adali, 2012;

Calhoun & de Lacy, 2017; Iraji et al., 2022), and therefore good esti-

mates of intrinsic functional “sources” or entities (Iraji et al., 2020,

2022). Another appealing attribute of ICA is its ability to separate arti-

factual signals from ICNs in the mixed rsfMRI time series (Calhoun &

de Lacy, 2017). As such, FNC estimations (both intra- and inter-

network FC) have been shown to be more robust to artifacts and less

contaminated with erroneous signals compared to other FC measure-

ments (Calhoun & de Lacy, 2017). Furthermore, an ICN's spatial map

has a value at every voxel, indicating the contribution of each voxel to

the ICN. Therefore, instead of splitting the brain into separate parcels,

ICA appreciates the brain's functional heterogeneity and multifunc-

tionality (Calhoun et al., 2009; Haak & Beckmann, 2020; Iraji

et al., 2020). Another major advantage of ICA is its ability to capture

ICNs across multiple spatial scales without imposing a hard constraint
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F IGURE 6 Within-subject versus between-subject comparison. Panel (a) shows examples of this comparison for selected ICNs and different
data lengths. Panel (b) illustrates similarity in ICNs' t values across different data lengths. (c) The relationship between the t-value of within-
versus between-subject comparison and the size of the ICNs. Panel (d) demonstrates that the subject-specificity pattern is similar for original
estimations and smoothed ones and the distribution of ICNs' subject-specificity power.
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on the spatial extent of ICNs (Iraji et al., 2022). This is an important

attribute because the spatial scale of functional systems in the brain

does not necessarily change at the same rate. We used gr-msICA (Iraji

et al., 2022; Meng et al., 2021) to estimate ICNs across multiple spa-

tial scales and to obtain a more complete view of brain function. Sup-

porting Information S7 and S8 contain corresponding ICNs can be

obtained from single low and high model orders (25 and 175) for

those interested in using single-scale analysis at only large spatial

scale or fine-grained one. It is also worth mentioning that the ICNs

can be used to estimate a comprehensive subject-specific (and group-

level; Joliot et al., 2015) canonical parcellation/atlas.

Previous studies argued the ability of group-level ICA analysis to

identify the same ICNs in new data is challenging and can impact its

replicability, particularly when the datasets are independent and have

different characteristics (Du et al., 2020). Our findings suggest that gr-

msICA can significantly improve the stability of ICA results and the

identification of corresponding ICNs across datasets. Our results sup-

port the explanation in Section 1.3.1 that different datasets may

require varying optimal model orders for a given ICN. Specifically, we

found that 28 of the 105 ICNs had best-matched components from

different model orders across 100 half-split subsets of the QC-passed

dataset. Additionally, our analysis of the hold-out QC-failed dataset,

which had different characteristics, revealed that all 105 ICNs were

successfully identified, with 53 ICNs obtained from different model

orders than those found in all QC-passed runs.

It should be noted that although our results demonstrate that

ICNs can be identified across various ranges of ICA model orders

(as depicted in examples shown in Figure 2d), we believe that all ICNs

would appear across multiple model orders, with one model order

exhibiting the highest stability value (similar to ICN 8 and 68) if we

had utilized a larger range of model orders with smaller intervals

(e.g., model order 2–500 with an incremental step of 1). Using more

granular model order increments and including higher ICA model

orders (Iraji, Faghiri, et al., 2019; Smith et al., 2013) is also advanta-

geous to improve the reliability of ICN estimates and obtaining a more

complete set of reliable ICNs across a broader range of spatial scales.

However, due to computational limitations and the large number of

ICA runs in our stability analysis pipeline, we only utilize a limited

number of model orders with a step size of 25 (i.e., 25, 50, 75,

100, 125, 150, 175, and 200), so we only leverage this advantage of

the multi-model-order framework as far as computational feasibility

allows.

A prior study used 1005 and 823 control individuals from the

HCP and the Genomics Superstruct Project (GSP) datasets and group-

level spatial ICA to obtain a template (Du et al., 2020). Our work is dif-

ferent and improves this initial template in several key aspects. In this

study, we used a much larger dataset (over 57k individuals after qual-

ity control) from various demographics (not just controls) to extract

our ICN template; as such, it provides a closer estimation of a global

template. Another major difference is that, rather than using a single

model order of 100, here we leverage gr-msICA to improve the con-

sistency of estimated ICNs and to obtain a more comprehensive tem-

plate of ICNs across multiple spatial scales. Moreover, we use a much

higher spatial correlation value as the threshold (0.8 vs. 0.4) for the

reproducibility and stability of ICNs. If we were to use a threshold of

0.8, the data from Du et al. template shows only 16 replicable ICNs. In

contrast, all 105 ICNs of our template have spatial similarity above 0.8

with an unseen independent QC-failed dataset. The successful identi-

fication of ICNs in the QC-failed dataset may indicate that less strin-

gent quality control criteria can be employed compared to the

prevailing practice in the field. This would allow for the utilization of

more data, resulting in an increase in sample size and potentially unco-

vering more subtle effects or relationships. This can lead to more

robust and meaningful conclusions. However, to make any recom-

mendations or draw conclusions, further evaluations, particularly

subject-level analysis of those with lower data quality, are needed.

We also evaluated the presence of the Du et al. ICNs in our

selected ICs. For the threshold of 0.4, we found correspondence for

all 53 template ICNs among 900 ICs. However, only 45 out of 53 ICNs

for Du et al., show spatial similarity above 0.4 with our 105 template

ICNs; in other words, some of the ICNs in the initial template did not

meet our criteria of being an ICN.

Focusing on sample-specific (e.g., subject-specific) estimation, we

used group-informed network estimation techniques where our tem-

plate was used to guide subject-specific solutions. We recommend

using group-informed network estimation techniques combined with

our template for several reasons. First, group-informed techniques

more accurately estimate subject-specific patterns, particularly for low

SNR rsfMRI data with short data lengths, because the templates are

utilized as a constraint to limit the search space. A recent study (Duda

et al., 2023) suggests that this pipeline could potentially shorten clini-

cal rsfMRI scans to just 2–4 min without significant loss in static group

comparison. Group-informed techniques also enhance the estimation

of subject-specific correspondence by optimizing the solution to be

jointly spatially independent and close to a common template. In addi-

tion, these techniques only use the template and subject data itself to

estimate subject-specific ICNs, and therefore the estimation of each

individual is independent of other samples in a given study. Using our

template as a universal reference also facilitates the comparison of

findings across existing and future studies as we retain the correspon-

dence ICNs across all subjects that the pipeline is applied.

The first step toward using any subject-level estimates is to evalu-

ate whether or not network-estimation and parcellation techniques

successfully estimate subject-level patterns for a given dataset. This

has been mainly overlooked in previous studies. Here, we introduced

two criteria for this purpose which assess whether the subject-level

estimates of each ICN in a given dataset provide (1) subject-specific

information beyond predefined spatially fixed nodes (weighted masks)

and (2) unique information about the associated ICN compared to

other ICNs. The second criterion is important for highly similar ICNs

and evaluating if we can differentiate between them in subject-level

estimation in a given dataset. In this work, we assessed the ability of

the existing MOO-ICAR framework to obtain the subject-level estima-

tion of our template. But these two criteria can be used to evaluate

other network-estimation and parcellation techniques, and we also

call for further investigation on this understudied but important area.
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We also evaluated the role of different parameters in estimating

subject-level ICNs. The results show that in addition to the data

length, which has been the center of many reliability investigations

(Birn et al., 2013; Duda et al., 2023; Gordon, Laumann, et al., 2017;

Murphy et al., 2007), other data characteristics (particularly inherent

spatial resolution) play key roles in successfully extracting subject-

level ICNs. For instance, MOO-ICAR successfully estimated all

105 ICNs using 100 time points for the HCP dataset; however,

12 ICNs did not survive the second criterion for the FBIRN dataset,

even using 157 time points. This might suggest the spatial resolution

of data is an important factor in differentiating these highly spatially

similar ICNs. These highly spatially similar ICNs (Supporting

Information S9) that we observed at the group-level analysis resemble

the previously reported parallel interdigitated distributed networks

observed at the subject level (Braga & Buckner, 2017).

In addition to data characteristics, the intrinsic properties of a

given ICN are an important factor in calculating subject-level esti-

mates. In general, larger ICNs require less data to achieve a specific

level of within-subject (between-subject and template) spatial similar-

ity. Given that spatial similarity is commonly used as a reliability index,

we could postulate large-scale ICNs are more stable and require less

data to be estimated reliably at the subject level. This result agrees

with previous findings showing that lower model-order ICA generates

more consistent components than the higher model orders. Our find-

ings also indicate that ICNs carry different levels of subject fingerprint

information, with ICNs associated with the subcortical domain having

the least subject-specific information and those suggested to be

involved in higher cognitive functions, particularly ICNs associated

with frontoparietal domains showing the maximum within-to-

between-subject differences. A previous fingerprint study also identi-

fied the connectivity patterns of the frontoparietal network as the

most distinguishing of individuals (Finn et al., 2015).

Interestingly, ICNs exhibit different patterns of within-to-

between-subject differences across data lengths, which can relate to

the temporality aspect of functional fingerprinting (van de Ville

et al., 2021), for example, the within-to-between-subject difference

peaks at different data lengths for different ICNs. Our analysis using

the HCP dataset with TR = 0.72 s and a step size of 25 time points

shows the peak varies between 125 and 875 time points (90–630 s).

These findings may also imply (1) increasing data length is not always

desirable even though it increases within-subject similarity, which is

commonly used in reliability analyses to support using longer data

lengths (30 min and more) in analysis, (2) studies should take the

length of the data into account in their analyses and interpreting

the results, and (3) future work can analyze and leverage multi-

data-length information. One related key factor that was not explored

in this study is incorporating and assessing brain dynamics. The lower

spatial similarity for smaller data lengths can be partially related to

brain spatial dynamics and changes in the spatial patterns of ICNs

over time (Iraji, Deramus, et al., 2019). These differences observed in

findings across ICNs and data lengths (and probably other factors)

highlight the challenge of within- and between-subject variabilities in

understanding brain functional organization and its changes across

different conditions.

Notably, while there are observable differences in findings

between data lengths, the findings across various data lengths still

show a similar pattern across ICNs. For instance, while within-subject

and between-subject similarities are different across data lengths

(i.e., a systematic increase in spatial similarity as a function of data

length), the pattern of spatial similarity across ICNs remains fairly simi-

lar across data lengths (e.g., Figure 5c,d), suggesting features that

encode ICN properties relative to each other might be more robust to

the data length and therefore possibly more generalizable indicators

of brain function.

We also observe that differences in spatial smoothness across

data lengths (also between datasets) can impact the results and out-

come of analyses, and therefore may limit the comparison of findings

across studies. We show how spatial smoothing can alter results,

including improving within-subject spatial similarity. As such, we high-

light the necessity of correcting for differences in spatial smoothness,

particularly those associated with data lengths, for any interpretation

of results and comparing the findings across analyses. Furthermore, in

addition to evaluating the impact of spatial smoothing on subject-level

estimation, it is crucial for future studies to evaluate the impact of

spatial smoothing on the identification of group-level independent

components. As recent research suggests, the effect of spatial

smoothing is complex, nontrivial, and difficult to predict (Triana

et al., 2020).

The within-session results (i.e., our analyses of different overlap-

ping data within each session for different data lengths) may indicate

that the lower spatial similarity in smaller data lengths may not be

solely related to lower reliability in estimation but also associated with

the dynamic nature of brain function. We observed that the within-

session similarity between ICNs estimated using the full-length of

data and subset of it (e.g., 50% and 25% data lengths) remains fairly

similar for different full-lengths of data (cf. blue and green curves are

relatively flat in Figure 5h). For example, the spatial similarity between

ICNs estimated using 100 time points and the first 50 time points is

close to 0.8, as is the similarity between 1000 time points and the first

500 time points. We would expect a significantly lower spatial similar-

ity between 100 and 50 time points if their ICNs estimates were unre-

liable compared to those from longer data lengths. We posit that the

lower between-session spatial similarity for lower data lengths might

be because the two separated data carry different spatial dynamic

information of ICNs, and as the data lengths increase, they are gradu-

ally getting closer to average (also known as static) estimates of ICNs,

and therefore become more similar. Indeed, the larger increase in the

spatial similarity of between-session analysis relative to within-session

analysis may further support this posit.

Finally, it is important to mention that subject-level statistics were

examined on a subset of over 57k subjects used to estimate tem-

plates. While the contribution of any single subject to the obtained

template is trivial given the large sample size, future studies are

needed to validate our findings in an independent dataset.
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5 | CONCLUSION

In this work, we identified a reliable and replicable multi-spatial-scale

ICNs template using gr-msICA and around 58k subject data that

meet the quality control criteria. The template was also replicated in

data that did not pass the QC criteria. We aim to use this template

to generalize and standardize functional connectivity analysis. This

study builds on the recently proposed concept of Neuromark. Neu-

roMark is a comprehensive mapping of (unimodal or multimodal)

coherent brain patterns that correspond among individuals by

leveraging universal templates derived from prior data coupled with

guided data-driven approaches. Previously, NeuroMark_fMRI_1.0

template, including 53 ICNs, was obtained from two large rsfMRI

datasets and single model order ICA (Du et al., 2020). Here, we aug-

mented the previous effort by using a much larger dataset and gr-

msICA and introduced NeuroMark_fMRI_2.0 single- and multi-model

order templates, which are available for access at https://

trendscenter.org/data/.

In addition to providing an enhanced ICN template, we also stud-

ied the feasibility of estimating the corresponding ICNs at the subject

level. Previous work has demonstrated that the Neuromark frame-

work is relatively stable across different spatial normalization pipe-

lines (DeRamus et al., 2021). However, there is a significant gap in

understanding the factors that influence the successful capture of

subject-specific information such as ICNs or functional parcellations.

Here, we introduced two criteria to evaluate the successful identifi-

cation of subject-specific ICNs (or other functional parcellations) for

a given dataset and a group-informed estimation approach and stud-

ied the role of different factors in subject-level ICN estimates. The

results suggest that the intrinsic properties of the ICNs themselves,

data length, and spatial resolution are some key factors in success-

fully estimating ICNs at the subject level. We illustrated an increase

in spatial smoothness as a function of data length and the impact of

spatial smoothing on findings. As such, we suggest future studies

should control for the effect of spatial smoothness in their analysis

to mitigate its impact on our ability to compare the findings across

different studies. We also observed increasing data length can

reduce an ICN's subject-level specificity, suggesting longer scans

might not always be desirable. Finally, the consistency in the spatial

similarity between ICNs estimated using the full-length of data and a

subset of it across different data lengths may suggest that the lower

within-subject spatial similarity in shorter data lengths is not neces-

sarily defined by only lower reliability in ICNs estimates and demands

further investigations. Our future work will focus on incorporating

the findings of this study in functional connectivity analysis and

developing new group-informed network estimation techniques to

improve the estimation of corresponding subject-specific ICNs.

Future research can benefit from using higher model order ICAs and

lower step sizes. Future work can explore using other multi-

model-order ICA approaches (Du et al., 2021) and develop more

advanced gr-msICA to estimate ICNs across multiple spatial scales.

We will also soon release Neuromark templates for other imaging

modalities.
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