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Abstract

Abnormal glucose metabolism and hemodynamic changes in the brain are closely

related to cognitive function, providing complementary information from distinct bio-

chemical and physiological processes. However, it remains unclear how to effectively

integrate these two modalities across distinct brain regions. In this study, we devel-

oped a connectome-based sparse coupling method for hybrid PET/MRI imaging,

which could effectively extract imaging markers of Alzheimer's disease (AD) in the

early stage. The FDG-PET and resting-state fMRI data of 56 healthy controls (HC),

54 subjective cognitive decline (SCD), and 27 cognitive impairment (CI) participants

due to AD were obtained from SILCODE project (NCT03370744). For each partici-

pant, the metabolic connectome (MC) was constructed by Kullback–Leibler diver-

gence similarity estimation, and the functional connectome (FC) was constructed by

Pearson correlation. Subsequently, we measured the coupling strength between MC

and FC at various sparse levels, assessed its stability, and explored the abnormal cou-

pling strength along the AD continuum. Results showed that the sparse MC–FC cou-

pling index was stable in each brain network and consistent across subjects. It was

more normally distributed than other traditional indexes and captured more SCD-

related brain areas, especially in the limbic and default mode networks. Compared to

other traditional indices, this index demonstrated best classification performance.

The AUC values reached 0.748 (SCD/HC) and 0.992 (CI/HC). Notably, we found a

significant correlation between abnormal coupling strength and neuropsychological

scales (p < .05). This study provides a clinically relevant tool for hybrid PET/MRI

imaging, allowing for exploring imaging markers in early stage of AD and better

understanding the pathophysiology along the AD continuum.
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1 | INTRODUCTION

Alzheimer's disease (AD) is quickly becoming one of the most expen-

sive, lethal, and burdening diseases with no curative treatments

(Jessen et al., 2020). Early detection and intervention may slow down

the continuous deterioration associated with AD. Subjective cognitive

decline (SCD) has been regarded as the earliest symptomatic stage

along the AD continuum (Jessen, Amariglio et al., 2020). Currently,

the clinical diagnosis of SCD is largely based on self-reported symp-

toms from patients without objective evidence. Besides classical

markers like amyloid-β (Aβ) and carrying of Apolipoprotein E (ApoE) ε4

gene (Yu et al., 2021), alterations in brain function due to AD may

occur before memory impairment (Balsis et al., 2018). Investigating

brain functional abnormalities in SCD individuals could provide a bet-

ter understanding on primary cause of cognitive deficits and offer

diagnostic imaging markers.

It has been shown that the [18F] fluorodeoxyglucose positron

emission tomography (18F-FDG PET) imaging (Drzezga, Altomare

et al., 2018; Scheef et al., 2012) and resting-state functional magnetic

resonance imaging (rs-fMRI) (Hafkemeijer et al., 2012; Klaassens

et al., 2017) are sensitive to neuronal functional activity degeneration

in AD patients. However, the abnormal patterns reported in one

modality (FDG-PET or rs-fMRI) were not entirely consistent across

studies, especially in the early stage of SCD patients (Wang, Huang,

et al., 2020). Signal of rs-fMRI arises from hemodynamic mechanisms

in relation to oxygen consumption, while FDG-PET offers high sensi-

tivity and a stable signal of glucose utilization (Sander et al., 2013).

Researchers have found the utilization of oxygen and glucose by

active neural cells in the brain are inextricably linked (Lourenco

et al., 2015). Using the simultaneous 18F-FDG PET and rs-fMRI scan-

ner, researchers captured different aspects of functional brain activity

for patients with AD at the group level (Ripp et al., 2020). Integrating

complementary information from two modalities at the same brain

state may help us further understand how impairments in neuronal

function contribute to the mechanisms underlying AD in the SCD

stage.

By measuring voxel-based correlations between glucose con-

sumption and functional activity, researchers found reduced bioen-

ergetic coupling in amnestic mild cognitive impairment (CI) patients

(Marchitelli et al., 2018). Previous studies also reported better diag-

nostic performance for preclinical AD by using voxel-based coupling

value of these two modalities (Ding et al., 2021). Although these

studies revealed distribution differences of coupling values in spe-

cific brain areas, they ignored connections across separated brain

areas. The AD is a disconnection syndrome that could be repre-

sented by brain networks (Gao et al., 2020; Wang, Huang,

et al., 2020). Recent study reported strong glucose metabolism in

brain areas with high functional connection in healthy male Lewis

rats (Palombit et al., 2022). Although hybrid PET/MRI has been clini-

cally used, how to integrate signal of these two modalities at brain

network level is still unknown, preventing our understanding of

stage-dependent effects on the functional brain activity along AD

continuum.

Therefore, we introduce a metabolism-functional connectome

(MC-FC) coupling method for hybrid PET/MRI imaging, which was

conducted using a series of sparse thresholds to control false connec-

tions. The data of health control (HC), SCD, and cognitive impairments

(CI) individuals were collected from hybrid PET/MRI scanners. It is of

note that the MC and FC were constructed at individual level with the

same network node. We not only validated the stability of the sparse

MC–FC coupling index but also explored its abnormalities associated

with AD. We hypothesize that the MC–FC coupling indices could cap-

ture AD-related pathological imaging biomarkers in SCD population.

Results of our study are likely to provide insights into the develop-

ment of clinically relevant tools for hybrid PET/MRI imaging, which

could be used for the early diagnosis of AD.

2 | MATERIALS AND METHODS

2.1 | Sparse MC–FC coupling analytic method

The flowchart for the sparse MC–FC coupling analysis is presented in

Figure 1. We used the Schaefer fMRI atlas to divide each brain into

400 regions of interest (ROIs) (Schaefer et al., 2018). Then, the MC

adjacency matrix was constructed based on Kullback–Leibler diver-

gence similarity estimation (KLSE; Wang, Jiang et al., 2020), while the

FC adjacency matrix was estimated using Pearson correlation (Brier

et al., 2014). The MC/FC adjacency matrix describes pairwise ROIs

metabolic/functional connectivity. At different sparsity levels, we

quantified MC–FC coupling index of each ROI by calculating the

Spearman rank correlation between corresponding MC and FC values.

The details are explained below.

MC estimation. For the MC, the probability density function (PDF)

was estimated by nonparametric kernel density estimation for each

voxel based on FDG-SUVR map. The characteristic function was cal-

culated as follows:

bφ tð Þ¼1
n

Xn
j¼1

eitxj , ð1Þ

where xj represents an array quantifying the metabolic intensity of

each voxel within the ROI. To avoid the issue of diverging integral, we

used the Gaussian function as a damping function:

ψ tð Þ¼ e�πt2 : ð2Þ

Next, the density estimation is derived using the Fourier trans-

form formula and the following equation:

bf xð Þ¼ 1
2π

ðþ∞

�∞
bφ tð Þψh tð Þe�itxdt¼ 1

nh

Xn
j¼1

K
x�xj
h

� �
, ð3Þ

where K is the Fourier transform of the damping function. For each

participant, the similarity of brain glucose metabolism was described

by calculating the KLSE of PDFs between pairwise ROIs, which
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wasinterpreted as metabolic connection. The KLSE is derived by

transforming the symmetric KL divergence into an exponential form

(relative entropy), which can be expressed mathematically as follows:

KLSðP j Qj Þ ¼ e
�
ð
X

P xð Þ log P xð Þ
Q xð ÞþQ xð Þ logQ xð Þ

P xð Þ

� �
dxÞ

, ð4Þ

where P and Q represent the PDFs of voxel intensities in a pair of

ROIs. Finally, a 400�400 adjacency MC matrix was obtained.

FC estimation. For the FC, the mean fMRI time series of

400 ROIs were extracted regionally. The Pearson correlation coeffi-

cient was estimated between the time series of paired ROIs' to

quantify the FC:

FC X,Yð Þ ¼

Pn
i¼1

Xi�X
� �

Yi�Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Xi�X
� �2Pn

i¼1
Yi�Y
� �2s , ð5Þ

where X and Y are the mean time series of ROIs per pair, and X and Y

are the mean values of X and Y, respectively. For each subject, a

400�400 weighted adjacency FC matrix was constructed.

Sparse MC–FC coupling index. To remove spurious connection and

to obtain sparsely connected matrices, we used proportional threshold

to ensure equal density across patient and control samples. The spar-

sity was defined as the ratio of the actual edge number to the total

connected edge number in the MC and FC network. The range of

sparsity (0.1–0.5, interval = 0.01) was defined to guarantee that the

resulting random graph was connected, with a significance level of

p < .05 for correlation coefficients (Li, Biswal, et al., 2019). However,

different thresholds produce different numbers of remaining connec-

tions, which may influence the coupling values. It is not all clear what

density is the most accurate for inferring brain connection (van den

Heuvel et al., 2017). To avoid the issues, we calculated the averaged

coupling index aρMC�FC to avoid the influence of specific threshold for

further analysis. The sparse MC–FC coupling index was calculated as

follows:

aρMC�FC ¼
Ps

n¼1rn MC,FCð Þ
s

, ð6Þ

where s represents the amount of sparsity. The r represents the cou-

pling value calculated by Spearman-rank correlation between MC and

FC at specific threshold. Then, the aρMC�FC coupling values were nor-

malized by calculating the Z-scores across ROIs. Therefore, each par-

ticipant had a one-dimensional vector that represented the regional

sparse coupling strength of 400 ROIs.

2.2 | Participants

Participants in this retrospective study were recruited from the

Chinese Sino Longitudinal Study on Cognitive Decline project

(ClinicalTrials.gov: NCT03370744) from 2018 to now (Li, Wang,

et al., 2019). In this retrospective study, participants with image

quality problems and excessive head movement (>3 mm or >3�)

were excluded. This resulted in a total of, 137 participants, includ-

ing 56 healthy control (HC), 54 SCD, and 27 CI individuals (see

Supplemental Figure S1). All the participants signed written

informed consent and underwent the neuropsychological scales,

including the mini mental state examination (MMSE) and Montreal

cognitive assessment-basic (MoCA-B) to assess cognitive function,

Hamilton depression scale (HAMD) and Hamilton anxiety scale

(HAMA) to assess depression and anxiety levels. Details of the

inclusion and exclusion criteria can be found in the Supplemental

Method. The project was approved by the Ethics Committee of

Xuanwu Hospital of Capital Medical University according to the

Helsinki Declaration.

F IGURE 1 The flowchart of sparse MC–FC coupling analytic method. (a) The template was used to divide the brain into 400 regions of
interest (ROIs). (b)The glucose metabolic connectome (MC) between two ROIs was estimated based on Kullback–Leibler divergence similarity
estimation (KLSE) method, while functional connectome (FC) was estimated by Pearson correlation. (c) The MC–FC coupling index of each ROI
was calculated according to Spearman-rank correlation between MC and FC at different threshold. Then, the coupling values with various
sparsity were obtained.
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2.3 | Image protocol and data preprocessing

The simultaneous 18F-FDG-PET (scan duration = 35 min, 8 iterations),

rs-fMRI (echo time [TE] = 30 ms, repetition time [TR] = 2000 ms),

structural T1-weighted MRI (TE = 2.98 ms, TR = 6.9 ms) data were

obtained from a hybrid 3.0 T TOF PET/MR scanner (SIGNA PET/MR,

GE Healthcare, Milwaukee, Wisconsin, USA). The PET and rs-fMRI

data were preprocessed by the SPM12 (https://www.fil.ion.ucl.ac.uk/

spm) and DPARSF (http://www.rfmri.org/dpabi) toolbox respectively

in MATLAB 2016b (MathWorks, Natick, Mass). More details on the

scan parameters and data preprocessing were provided in Supplemen-

tal Method.

2.4 | Validation of sparse MC–FC coupling index

We validated the robustness of MC–FC coupling index across sub-

jects in HC group. First, we determined 1000 null models of MC and

FC, respectively, at different sparsity levels by shuffling the connec-

tion matrix while preserving the overall degree- and weight-

distribution (null_model_und_sign.m function in the brain connectivity

toolbox). The null-distribution of coupling index was derived based on

these shuffled MC and FC matrices, which could be used to infer sta-

tistical significance of true aρMC�FC. In addition, we further validated

the method by disrupting the order of brain regions in the MC and FC

matrices for each subject separately.

Second, we divided 400 ROIs into seven networks: visual, soma-

tomotor (SM), dorsal attention network (DAN), ventral attention net-

work (VAN), limbic, frontoparietal control (FPCN), and default mode

network (DMN; Schaefer et al., 2018). We calculated the histogram

distribution of aρMC�FC in each network and measured the standard

deviation across subjects as the individual variation. The distribution

and variation of the coupling index were compared with the index

derived from only one modality, either MC or FC. We also compared

the aρMC�FC with voxel-based coupling method using Bland–Altman

consistency analyses and histogram distribution. The voxel-based cou-

pling method has been already explored in previous work and shown

to be stable in the cognitive normal population (Ding et al., 2021),

including (a) correlation between SUVR and the fractional amplitude

of low-frequency fluctuations (fALFF), and (b) correlation between

SUVR and the regional homogeneity (ReHo).

2.5 | Abnormal sparse coupling index along the AD
continuum

To investigate whether AD has stage-dependent effects on the cou-

pling of metabolic and functional connections, the one-way analysis

of variance (ANOVA) analysis was performed across HC, SCD, and CI

groups in each brain network. The least significant difference (LSD)

test was utilized for post hoc pairwise analysis. The network showed

significant differences that could be considered as imaging markers

for early diagnosis of AD. We also compared the one modality MC

and FC across HC, SCD, and CI groups in each brain network in the

same way.

Furthermore, we developed a logistic regression (LR) model to

evaluate the classification performance of 7 networks' aρMC�FC for

distinguishing SCD and CI from HC. The results were compared with

one-modality indexes (MC, FC, SUVR, fALFF, ReHo) and voxel-based

coupling indexes of two modalities (SUVR-fALFF and SUVR-ReHo).

Furthermore, we evaluated the potential AD-related pathological sig-

nificance of these brain networks. The partial correlation coefficients

between aρMC�FC and clinical scale scores of SCD and CI patients

were calculated controlling for gender, age, and education.

2.6 | Statistical analysis

Clinical and demographic characteristics were compared between

groups using the chi-square test for categorical data and the one-way

ANOVA for continuous data. We used one-way ANOVA to compare

aρMC�FC across three HC, SCD, and CI groups with LSD post hoc anal-

ysis. All the statistical analyses were performed in SPSS (version 25.0,

IBM). The p-values were set to .05 (two-tailed) after false discovery

rate (FDR) correction. The LR analysis was performed in GraphPad

Prism (version 9.3.1, GraphPad Software). The receiver operating

characteristic curve (ROC) analysis and its area under the curve (AUC)

with 95% confidence interval (CI) was calculated.

3 | RESULTS

3.1 | Demography and neuropsychology

The detailed demographic and clinical information of all groups are

presented in Table 1. The Chi-square test of categorical variables

showed that the gender of SCD was significantly different from HC

TABLE 1 Clinical and baseline demographic characteristics of all
participants.

HC SCD CI

Gender (M/F) 56 (24/32) 54 (9/45)a 27 (10/17)b

Age (years) 65.48 ± 4.21 66.02 ± 4.52 64.22 ± 10.18

Education 12.87 ± 2.81 13.15 ± 2.66 12.89 ± 3.80

MMSE 29.32 ± 0.83 29.09 ± 0.80 19.48 ± 5.80b,c

MOCA-B 26.41 ± 1.97 26.43 ± 1.68 13.11 ± 6.18b,c

HAMD 1.88 ± 2.20 3.65 ± 3.48a 6.74 ± 5.57b,c

HAMA 3.00 ± 2.62 4.83 ± 3.47a 6.33 ± 6.28c

Note: Data are given as mean ± standard deviation.

Abbreviations: CI, cognitive impairment; HAMD, Hamilton depression

rating scale; HAMA, Hamilton anxiety rating scale; HC, healthy control;

MMSE, mini-mental state examination; MoCA-B, basic version of

Montreal cognitive assessment; SCD, subjective cognitive decline.
ap < .05 HC versus SCD.
bp < .05 SCD versus CI.
cp < .05 HC versus CI.
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and CI groups. For continuous variables, no significant difference was

found in age or education among the three groups. The MMSE and

MOCA-B scores in the CI group were significantly lower than those in

HC and SCD groups (p < .001, two-sample t-test, FDR corrected). The

HAMD scale score showed significant differences among the three

groups. Compared with the HC group, the HAMA scores of the SCD

and CI groups were significantly higher.

3.2 | Validation of sparse MC–FC coupling method

The coupling index decreased as the sparsity increased (Figure 2a).

To avoid the influence of a specific threshold, we computed the

averaged value and compared it with the null distribution of

aρMC�FC. This could account for the likelihood of observing aρMC�FC

by chance, resulting in a significant p-value of p< .001 (Figure 2b). In

addition, we observed that coupling index in brain areas was consis-

tent across subjects. The consistent was disrupted when analyzing

rand MC–FC coupling based on disrupted brain areas. Specifically, the

limbic network showed the highest coupling (aρMC�FC =0.990, one-

sample t-test p< .001), followed by the DMN, while the SM network

showed the lowest coupling strength (aρMC�FC =0.116, one-sample t-

test p= .003; Figure 2c).

Compared to one modality MC and FC, the aρMC�FC was more

normally distributed in each network, especially in DAN [main effect

of one-way ANOVA analysis, p= .001, F(2,165)=7.925], VAN

[p< .001, F(2,165)=29.931], limbic [p=0.03, F(2,165)=3.596], FPCN

[p< .001, F(2,165)=35.358] and DMN [p= .007, F(2,165)=5.102]

network (Figure 3). The index with normally distribution could mini-

mize the influence of noise. Then, the index could be used to explore

the imaging markers with disease specificity. The individual variability

of aρMC�FC (visual: 0.250, SM:0.272, DAN: 0.246, VAN: 0.166, limbic:

0.262, FPCN: 0.156, DMN: 0.139) was higher than MC but lower

than FC.

Based on Bland–Altman analyses, the aρMC�FC was consistent

with voxel-based coupling indexes of SUVR-fALFF and SUVR-ReHo,

with mean differences of 0.048 and 0.064, respectively. The aρMC�FC

also showed a more normal distribution in visual [p= .001, F(2,165)

=7.632], SM[p< .001, F(2,165)=14.755], DAN[p< .001, F(2,165)

=82.647], VAN[p< .001, F(2,165)=135.554], limbic[p< .001, F

F IGURE 2 Reliability analysis of MC–FC coupling method in the HC group. (a) The coupling value at different sparsity. (b) The null-
distribution of coupling value aρMC�FC from rewired null-model network. (c) Averaged coupling value across different sparsity in each brain areas
in each subject.
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(2,165)=46.277], FPCN[p< 0.001, F(2,165)=208.526] and DMN

[p< .001, F(2,165)=58.965] network (Supplemental Figure S2).

3.3 | Imaging marker based on sparse MC–FC
coupling index

The MC–FC coupling showed a decrease as the sparsity increased in

three groups at each threshold (Supplemental Figure S3). The differ-

ence across three groups were similar at each sparsity. To avoid the

influence of specific sparse threshold, the following comparisons were

based on the averaged coupling index (aρMC�FC). The one-way

ANOVA suggested significant main-effect in SM [p= .004, F(2,134)

=5.707], limbic [p< .001, F(2,134)=8.851], and DMN [p< .001, F

(2,134)=18.437] network (Figure 4a, b). Based on LSD post hos anal-

ysis, the CI group had the highest aρMC�FC in SM network, which was

significant when compared to SCD (p= .002) and HC group

(p= .004). In limbic network, compared with normal controls, the

aρMC�FC was significantly increased in SCD (p= .029) and decreased

in CI group (p= .017). There was a declining tendency across three

groups in FPCN, and especially in DMN network (HC/SCD: p= .041,

HC/CI: p< .001, SCD/CI: p< .001).

Results based on one modality, MC and FC, also showed some

statistically significant differences across three groups (Figure 4b, c).

The CI group had lower MC in DAN (CI vs. HC: p = .01; CI vs. SCD:

p = .003), and FPCN (CI vs. HC: p < .001; CI vs. SCD: p = .007) when

compared to HC and SCD, while having higher MC in limbic

(p < .001). In addition, the CI group had lower FC in visual network

compared to SCD (p = .002), and higher FC in FPCN compared to HC

(p = .041) and SCD (p = .003).

3.4 | ROC analysis

We further assessed the diagnosis performance of aρMC�FC from

7 networks based on LR model analysis. The ROC analysis results for

discriminating SCD and HC were displayed in Figure 5a. In compari-

son to the MC, FC, ReHo, fALFF, SUVR, SUVR-ReHo, and SUVR-

fALFF, the aρMC�FC had the highest AUC value (AUC=0.748, 95%

CI= [0.645, 0.850]). When differentiating CI and HC, the MC–FC cou-

pling also had the highest AUC value (AUC=0.992, 95%CI= [0.978,

1.000]) compared to other indices (Figure 5b and Supplemental

Table S1).

3.5 | Correlation analysis

Figure 6 showed results of correlation between MC–FC coupling

strength aρMC�FC in the SM, limbic, DMN network and clinical scales

controlling for age, gender, and education. The aρMC�FC was positively

correlated with MMSE (SM: r=�0.431, p< .001; limbic: r=�0.472,

p< .001; DMN: r= .303, p= .026, FDR corrected) and MoCA-B (SM:

r=�0.382, p= .004; limbic: r=0.440, p< .001; DMN: r=0.318,

p= .025, FDR corrected), while no other neuropsychological scale

scores were significantly correlated (Figure 6 and Supplemental

Table S2).

F IGURE 3 Comparison of one modality MC, FC and coupling value. The histogram distribution of (a) MC, (b) FC, (c) aρMC�FC in each brain
network. (d) The individual variation of MC, FC, and aρMC�FC in each brain network.
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4 | DISCUSSION

In this study, we propose a connectome-based method for hybrid

PET/MRI imaging, which investigates the coupling relationship

between sparse metabolic and functional networks at the individual

level. Results showed the coupling index aρMC�FC was significantly

higher than null-distribution with high consistency across subjects. It

was more normally distributed than the result derived from one

modality (MC or FC) or voxel-based coupling index. In addition, the

aρMC�FC could detect more brain areas with significant differences

across HC, SCD, and CI groups, especially in limbic and DMN network

which was related to memory abilities. Based on the LR model, the

aρMC�FC showed highest AUC value for distinguishing SCD and CI

from HC. The networks (SM, limbic, DMN) with significant differences

across the AD continuum were also significantly correlated to neuro-

psychological scales, which could be used as imaging markers for early

detection of AD.

Simultaneous acquisition of fMRI and PET data could minimize

the variability caused by changes in brain states or moods. We

rewired the MC and FC matrices 1000 times to obtain the null-

F IGURE 4 Results of abnormal areas
along the AD continuum. (a) The mean
coupling value of each brain areas in HC,
SCD, and CI group. (b) Pairwise post hoc
analysis results across three groups based
on coupling value, (c) MC, and (d) FC
index. *p < .05, **p < .01, ***p < .001.
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distribution of coupling index. Result supported the notion that the

FDG PET and rs-fMRI represent similar aspects of functional brain

activity which cannot be clearly separated. The coupling was high in

limbic followed by DMN network. However, the SM network showed

low coupling. An animal study reported a high coupling of functional

and metabolic network organizations in DMN regions (Ripp

et al., 2020). This may be attributed to the continuous coherent activ-

ity during resting state in these brain areas (Raichle et al., 2001).

Based on histogram distribution and Bland–Altman plot analysis,

result showed that the MC–FC coupling strength was stable and nor-

mally distributed in each brain network. The FC showed highest

individual variation followed by aρMC�FC and the MC. This may be due

to dynamic temporal fluctuations of FC. Results also indicated similar

variation between aρMC�FC and MC in VAN, limbic, FPCN and DMN,

despite the high variation of FC, demonstrating the stability

of aρMC�FC.

For CI patients, the aρMC�FC and one modality indexes (MC and

FC) both identified abnormal changes in FPCN network. This finding

is consistent with previous study that reported impaired FPCN of AD

patients during verbal memory recall tasks (Dhanjal & Wise, 2014). In

addition, researchers suggested that altered FC in FPCN may serve as

a potential biomarker for the diagnose of AD (Zhao, Sang et al., 2019).

F IGURE 5 Receiver operating characteristic curve (ROC) curves. (a) Classification ROC curve of SCD and HC. (b) Classification ROC curve of
CI and HC.

F IGURE 6 Results of partial correlation analysis between coupling value (in SM, limbic, and DMN network) and neuropsychological scales
(MMSE and MOCA-B).
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However, the proposed MC–FC coupling method enabled us to iden-

tify more SCD-related regions, including the limbic and DMN areas.

Compared to one modality MC and FC, the use of aρMC�FC allowed

for the characterization of the communication ability of brain from dif-

ferent perspectives. The MC can reflect brain energy consumption at

slower temporal scales in the range of minutes, while FC can be

derived from dynamic fluctuations on a temporal scale of seconds.

Combining the MC and FC may synthesize different aspects of early-

stage disease outcomes (Ripp et al., 2020).

Along the AD continuum, our results suggested that there was a

reduction in the MC–FC coupling strength in the DMN for SCD and

CI groups. The DMN has drawn a lot of interest in research about AD

(Dillen et al., 2016; Dong et al., 2018; Viviano et al., 2019). Aggrega-

tion of Aβ protein preferentially affects DMN regions, which was

associated with AD clinical performance (Palmqvist et al., 2017).

Decreased coupling in the DMN network at the SCD stage maybe

related to the early deposition of Aβ protein. Our finding was in agree-

ment with the previous studies which had reported reduction coupling

in DMN areas in amnestic MCI and AD (Shulman et al., 2001). How-

ever, their studies focused on voxel-based coupling methods and did

not include SCD patients (Raichle et al., 2001). The DMN remained

alert in resting state and maintained high demand for cerebral blood

flow as well as metabolic activity in this study, which may be the main

decoupling network in SCD individuals.

Reduced MC–FC coupling may result from neuronal integration

and signaling failure due to AD Badhwar et al., 2017). During rest,

the brain network derives most of its energy via oxidative phosphor-

ylation (Shulman et al., 2001), leading to high coupling strength of

MC–FC with a similar ratio of glucose consumption and oxygen utili-

zation. Disruption in the synergistic utilization of oxygen and glucose

utilization in the brain may be related to excessive aerobic glycolysis,

which refers to the non-oxidative metabolism of glucose despite

adequate oxygen being present (Bullmore & Sporns, 2012). Interest-

ingly, our results demonstrated a significant increase in coupling

within limbic network for SCD, which decreased in CI stage. Previous

studies reported that the DMN and limbic network are two separate

subunits of a memory circuit interacting to support memory-guided

behavior (Ritchey et al., 2015). This result could be explained by the

compensatory cognitive effect observed in the SCD stage (Wang,

Jiang et al., 2020). A previous study reported increased glucose

metabolism in the right medial temporal lobe in the SCD group,

which was related to compensatory neuronal activity (Scheef

et al., 2012).

Results of ROC analysis further suggested that the aρMC�FC had

better classification performance than one modality and voxel-based

coupling indexes. Based on voxel-based coupling with a comparable

sample size, a prior study obtained an AUC of 0.660 (Ding

et al., 2021). By using LASSO classifier, researches obtained an

AUC of 0.75 based on magnetoencephalography scans, which was

a similar value to this study (Lopez-Sanz et al., 2019). We further

investigated the pathological value of MC–FC coupling and found

significantly positive correlations between MC–FC coupling and

neuropsychological scales (MMSE, MoCA-B). It meant that disrupted

coupling relationships in these brain networks may play an important

role in cognitive decline due to AD.

However, there are some limitations to this study. First, all con-

nections and regions were treated equally in the process of sparse

MC–FC coupling calculation. It is possible that functional and meta-

bolic connection types differ among cortical regions, and therefore

treating all connections and regions equally may not accurately cap-

ture the underlying biology. Future work may consider modifying

MC–FC coupling measures, for example, to distinguish inhibitory con-

nections from excitatory connections. Second, observed effects were

interpreted on brain network levels. It is better to further explore the

physiological mechanism in combination with animal experiments.

Additionally, the small sample of participants in this study may be a

limitation. Future studies could consider enrolling larger samples of

patients or longitudinal SCD follow-up data to validate our results.

5 | CONCLUSION

The prolonged symptom-free stage of AD provides us with an oppor-

tunity to examine the brain changes that antedate cognitive decline.

However, previous studies of neuroimaging markers only focused on

one modality (FDG-PET or rs-fMRI) and being limited to group-level

or voxel-based investigations. Based on hybrid PET/MRI imaging, we

proposed a connectome-based sparse coupling method between glu-

cose metabolic and functional connection at individual level. Stability

and dissimilarity analysis of the MC–FC coupling strength in brain net-

works indicated that alterations in these patterns may be potential

imaging markers for the early detection of AD at the SCD stage, espe-

cially in limbic and DMN areas. These results allow for new insights

into the pathophysiology of SCD patients.
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