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Abstract

OBJECTIVE—In drug-resistant temporal lobe epilepsy, automated tools for seizure onset zone 

(SOZ) localization that use brief interictal recordings could supplement presurgical evaluations 
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and improve care. Thus, the authors sought to localize SOZs by training a multichannel 

convolutional neural network on stereoelectroencephalography (SEEG) cortico-cortical evoked 

potentials.

METHODS—The authors performed single-pulse electrical stimulation in 10 drug-resistant 

temporal lobe epilepsy patients implanted with SEEG. Using 500,000 unique poststimulation 

SEEG epochs, the authors trained a multichannel 1-dimensional convolutional neural network to 

determine whether an SOZ had been stimulated.

RESULTS—SOZs were classified with mean sensitivity of 78.1% and specificity of 74.6% 

according to leave-one-patient-out testing. To achieve maximum accuracy, the model required a 

0- to 350-msec poststimulation time period. Post hoc analysis revealed that the model accurately 

classified unilateral versus bilateral mesial temporal lobe seizure onset, as well as neocortical 

SOZs.

CONCLUSIONS—This was the first demonstration, to the authors’ knowledge, that a deep 

learning framework can be used to accurately classify SOZs with single-pulse electrical 

stimulation–evoked responses. These findings suggest that accurate classification of SOZs relies 

on a complex temporal evolution of evoked responses within 350 msec of stimulation. Validation 

in a larger data set could provide a practical clinical tool for the presurgical evaluation of drug-

resistant epilepsy.
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temporal lobe epilepsy; seizure onset zone; single-pulse electrical stimulation; cortico-cortical 
evoked potentials; deep learning; SEEG

EPILEPSY affects over 50 million people worldwide, with temporal lobe epilepsy (TLE) 

being the most common focal epilepsy.1 Approximately 30%–40% of TLE patients continue 

to have debilitating seizures despite maximal therapy with antiseizure medications.2 Drug-

resistant patients may undergo presurgical evaluation ahead of resection, ablation, or 

neurostimulation therapies. A major goal of presurgical workup is to find the areas of 

the brain responsible for seizure generation, i.e., the seizure onset zones (SOZs). However, 

precise localization of SOZs can be challenging with noninvasive modalities such as scalp 

electroencephalography (EEG), MRI, and PET. Therefore, invasive intracranial monitoring 

with stereoelectroencephalography (SEEG) is often pursued to provide direct electrographic 

recordings of seizures and to localize SOZs. Monitoring after SEEG implantation often 

requires long hospital stays of days to weeks to record multiple ictal events.3 Thus, it has 

been proposed that the use of interictal single-pulse electrical stimulation (SPES) of the 

SEEG contacts to elicit cortico-cortical evoked potentials (CCEP) could help localize SOZs 

more efficiently.4–6

A challenge of interpreting CCEPs with SEEG is that the foundational work in this field 

was done using subdural electrode grids that measured consistent electrographic phenomena 

after stimulation (e.g., N1 [10–50 msec] and N2 [50–300 msec] responses).4 However, 

N1 and N2 wave polarity and morphology are defined on the basis of the consistent 

electrode orientation of the subdural electrode grids relative to the cortical surface, and thus 

orthogonal to cortical pyramidal neurons. In contrast, SEEG has less consistent orientation 
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relative to cortical structures, and translation of N1 and N2 terminology for subcortical gray 

matter is even more challenging due to heterogenous cytoarchitecture.7 Thus, it is difficult 

to predict the pattern of CCEP wave morphology for any given SEEG contact. Accordingly, 

most groups rely on coarse metrics for CCEPs (or, more broadly, evoked responses) in 

SEEG such as root-mean-squared power.6,8 However, these metrics may miss important 

electrographic features that could help characterize the epileptogenic network.

We propose that a multichannel 1-dimensional convolutional neural network (CNN) 

is well suited for simultaneously recognizing variable evoked wave morphology from 

multiple SEEG contacts. This could be a useful tool to delineate whether a given set 

of evoked responses resulted from stimulation of an SOZ or non-SOZ. Furthermore, by 

probing various time windows after stimulation, we can systematically determine which 

poststimulation time periods contain the most important classifying features. Overall, this 

technique has the potential to directly improve neurological and neurosurgical clinical 

workflows by quickly localizing potential therapeutic targets.

Methods

Participants and SPES

We collected over 500,000 poststimulation 900-msec SEEG epochs from 10 patients with 

drug-resistant TLE who underwent presurgical evaluation (Table 1). Clinical data were 

collected through chart review, and seizure outcomes were assigned using the Engel scale.9 

This study received institutional review board approval, and informed subject consent was 

obtained. We conducted SPES with every adjacent bipolar pair of contacts in the gray matter 

for each patient. We used a 10-second, 1-Hz, 300-msec biphasic pulse at 3.0 mA with a 

recording sampling rate of 512 Hz.

Preprocessing and SOZ Labeling

We filtered raw SEEG data by using MATLAB’s filtfilt function (MathWorks, Inc.) with 

Butterworth filter passbands of 1–59, 61–119, and 121–150 Hz. We then parsed the data into 

900-msec epochs after each 1-Hz stimulation. This resulted in over 500,000 preprocessed 

epochs for training our model. SOZs were defined as regions containing any contacts 

involved in the ictal onset of 1 or more seizures on the basis of the interpretation of 

all ictal data by an epileptologist. By using custom SEEG planning software, CRAnial 

Vault Explorer (CRAVE), we used postimplantation CT scans to accurately localize every 

contact in each patient and then created a table of all intercontact Euclidean distances.10 All 

contact locations were verified by a staff engineer, attending neurosurgeon, and attending 

epileptologist.

Deep Learning

By using poststimulation EEG epochs, we trained a 1-dimensional multichannel, multiscale 

CNN (Fig. 1A). To accomplish this, we modified the Multi-Scale-1D-ResNet developed by 

Fei Wang (https://github.com/geekfeiw/Multi-Scale-1D-ResNet) to input 40 SEEG channels 

simultaneously. To avoid stimulation artifact and implantation bias, the epochs were distance 

thresholded to exclude any SEEG channels within 20 mm of the stimulation pair.11 For each 
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training pass, we randomized a subset of 40 channels chosen from all of a patient’s available 

channels. We utilized a weighted binary cross-entropy loss function and stopped training 

after 5 model epochs. We implemented a leave-one-patient-out testing strategy across all 

patients. We first tested the ability of the trained model to classify SOZs by using the entire 

0- to 900-msec window. Next, we tested the model with only a nonoverlapping 50-msec 

sliding window over the poststimulation period. We also trained the model on 3 separate 

randomized region labels to serve as a control.

Post Hoc Testing

We conducted post hoc testing to answer the following 3 questions: 1) Which 

poststimulation time period is best for SOZ classification? 2) Can the model classify 

unilateral versus bilateral mesial temporal onset? and 3) Can the model accurately classify 

neocortical temporal SOZs?

We answered question 1 by nulling the data outside the desired time window before training. 

To answer question 2, we compared the accuracy of left and right mesial temporal SOZ 

classification in patients with bilateral mesial temporal seizures (n = 4) with that in patients 

with a) unilateral mesial temporal seizures on ictal SEEG, b) a bilateral SEEG implant, and 

c) seizure-free surgical outcomes (n = 3). To answer question 3, we calculated the accuracy 

of neocortical temporal SOZ classification in all patients.

Statistical Methods

We calculated the sensitivity and specificity of leave-one-patient-out testing across all 

10 patients for the various time window analyses. We also reported the Youden index 

(sensitivity + specificity − 100) to summarize the usefulness of the model at a given 

time window. Youden index values greater than 50 are generally considered to indicate a 

very useful model for classification, and values close to 0 are considered useless even if 

sensitivity or specificity is individually high.12 We compared Youden indexes with the paired 

t-test using Bonferroni-Holm multiple comparison correction. Data and computer code are 

available upon reasonable request.

Results

CNN Trained on Long-Range CCEPs Accurately Classified SOZs

As outlined in Fig. 1B, the CNN trained on the entire 900-msec poststimulation period 

correctly classified the stimulation pair as SOZ with mean sensitivity of 78.1% (95% 

CI 67.8%–88.4%) and specificity of 74.6% (95% CI 68.7%–80.5%) according to leave-

one-patient-out testing, resulting in a mean Youden index of 52.7 (95% CI 43.7–61.8). 

In comparison, when the model was trained with regions randomly labeled as SOZ or 

non-SOZ, the mean Youden index significantly decreased to 16.5 (95% CI 9.62–23.4, p < 

0.001, t-test). Furthermore, for the 50-msec sliding window analysis, the model achieved 

significantly improved Youden index values when trained on windows ranging from 0 

to 350 msec when compared with models trained using the same windows with random 

labels (Fig. 1C). Interestingly, the specificity and sensitivity of the model peaked during 

different periods in the initial 350-msec period after stimulation: sensitivity peaked in the 
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time window that spans 100 to 150 msec, while specificity peaked in the 0- to 50-msec 

time window. This suggests that delayed responses are most sensitive for classifying SOZs, 

whereas early responses are most specific for classifying SOZs.

Important Features Were Temporally Distributed Within the Initial Poststimulation Window

We performed post hoc analyses to assess which early poststimulation window was most 

effective for classifying whether an SOZ had been stimulated (Fig. 1D). Using a time 

window of 0–350 msec, we observed a mean testing sensitivity of 74.0% (95% CI 63.3%–

84.7%) and specificity of 78.5% (95% CI 75.9%–81.1%) with the leave-one-patient-out test 

and a mean Youden index of 52.5 (95% CI 42.1–62.9); these values are very similar to those 

obtained when the model was trained on the entire 0- to 900-msec period. The Youden index 

determined with leave-one-patient-out testing dropped significantly when we divided the 0- 

to 350-msec period into 0- to 175-msec and 175- to 350-msec periods, suggesting that both 

the early and late portions of this time window contributed to model performance.

The Model Can Classify Unilateral- Versus Bilateral-Onset Mesial TLE and Can Detect 
Neocortical Temporal SOZs

We observed that the bilateral-onset patients had left mesial temporal structures correctly 

classified as SOZs for 68.9% (95% CI 58.7%–79.1%) of the CCEP epochs, and right 

mesial temporal structure epochs classified as SOZs for 67.9% (95% CI 45.4%–90.4%) 

(Fig. 1E). For unilateral patients, the model correctly classified mesial temporal structures 

ipsilateral to the seizure-onset hemisphere as SOZs for 91.5% (95% CI 89.7%–93.3%) of 

the epochs, with a low false-positive rate of 35.1% (95% CI 16.7%–53.5%) for non-SOZs 

on the contralateral side. This subanalysis provides evidence that the model did not simply 

classify all mesial temporal structures as SOZs but rather provided accurate classification 

of unilateral- versus bilateral-onset mesial TLE patients. Furthermore, the model correctly 

classified neocortical temporal SOZs at a rate of 64.4% (95% CI 44.3%–84.5%) and 

misclassified neocortical temporal non-SOZs at a rate of only 26.0% (95% CI 19.7%–

32.3%) (Fig. 1F).

Discussion

We have demonstrated that a CNN trained entirely on SEEG-derived evoked responses 

farther than 20 mm from the site of stimulation can classify an SOZ with high sensitivity 

and specificity in patients with TLE. This technique could augment or potentially replace 

lengthy SEEG recording sessions with only a brief neurostimulation session. A strength of 

this approach is that the model accurately classified SOZs despite the variable morphology 

of evoked responses during stimulation of the SEEG electrodes. Furthermore, the most 

important poststimulation features for classification are contained within 0–350 msec. This 

is not surprising considering that most previous findings obtained with root-mean-squared 

power have centered on N1 and N2 responses within 300 msec.4,13,14 However, separating 

this window into smaller segments significantly reduces model accuracy. This suggests that 

there is a complex pattern of evoked responses occurring at various periods after stimulation 

that must be considered in an ensemble to accurately classify the stimulation of SOZs—

this observation could be due to the previously described various phenotypes of evoked 
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responses.15 Additionally, on the basis of our subanalyses, we conclude that this model did 

not classify all mesial temporal structures as SOZs and can accurately distinguish between 

unilateral and bilateral mesial temporal onset. Finally, the model can also accurately classify 

neocortical temporal SOZs.

Limitations and Future Work

Although 500,000 nonoverlapping SEEG epochs were used to train the CNN, training and 

testing data sets were divided at the patient level. Thus, our relatively small sample size 

of 10 patients limited our assessment of generalizability and motivated our conservative 

strategy to use leave-one-patient-out testing across the entire cohort. Regardless, a larger 

cohort would greatly increase the assessment of generalizability to other epilepsy centers. 

Also, the mean follow-up was 15.4 months, and future seizure recurrence may decrease 

confidence in clinical SOZ localization and require the labels for CNN to be changed. 

We also did not include any focal extratemporal lobe epilepsy patients and thus cannot 

comment on the extension of these techniques to that population. Our future work is aimed 

at addressing these limitations by collaborating with other institutions that collect these rare 

data sets. We also hope to test this model on patients with surgical outcomes of Engel 

class II–IV. Perhaps, previously unidentified SOZs, including those responsible for bilateral 

seizure onset, could be elucidated in Engel class II–IV patients with a model trained on 

Engel class I patients. Inclusion of patients with Engel II–IV outcomes would help increase 

the generalizability of this model.

Conclusions

This work serves as the first demonstration, to our knowledge, that a CNN can learn the 

highly nonlinear features of SEEG-derived evoked responses that occur across multiple 

SEEG channels simultaneously and to classify when an SOZ has been stimulated. 

Furthermore, we demonstrated the importance of utilizing the entire 0- to 350-msec time 

window for classification. We hope that future work will consider using deep learning as a 

tool to explore the complex evoked responses generated with SPES. In summary, this work 

has the potential to greatly aid neurosurgical decision-making by drastically reducing the 

SEEG recording time required to accurately localize surgical targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CCEP cortico-cortical evoked potentials

Johnson et al. Page 6

J Neurosurg. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CNN convolutional neural network

EEG electroencephalography

SEEG stereoelectroencephalography

SOZ seizure onset zone

SPES single-pulse electrical stimulation

TLE temporal lobe epilepsy
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FIG. 1. 
Deep learning on distant SEEG evoked responses can accurately classify SOZs. A: We 

conducted SPES on all gray matter bipolar pairs of contacts in 10 patients who underwent 

SEEG. This resulted in over 500,000 poststimulation epochs from the recording channels. 

To avoid stimulation artifacts and biases related to contact implantation density due to the 

clinical hypotheses, we excluded recordings from contacts within 20 mm of the stimulation 

site. We then trained a CNN to classify whether a clinically defined SOZ or non-SOZ 

had been stimulated. B: We first trained the model using the entire 0- to 900-msec 
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poststimulation window. This resulted in a sensitivity of 78.1% and specificity of 74.6%, 

with a significantly improved Youden index compared with the model trained with random 

labels. C: For the 50-msec sliding windows, the model performed better than with random 

labels for the 0- to 350-msec poststimulation period with 50-msec intervals. Paired t-tests 

with Bonferroni-Holm multiple comparison correction were conducted between the Youden 

index (blue) and the random-label Youden index (gray). Note that the values on the x-axis 

represent the ending time of the 50-msec window. D: Use of only the 0- to 350-msec 

window resulted in model accuracy comparable to that obtained with the 0- to 900-msec 

window. However, dividing this window into 0- to 175-msec or 175- to 350-msec periods 

resulted in a significant reduction in the Youden index. E: The model did not simply classify 

all mesial temporal structures as SOZs. For bilateral patients, the model classified left and 

right mesial temporal structures as SOZs with comparable confidence around 70%. For 

unilateral patients, the model correctly classified ipsilateral mesial temporal structures as 

SOZs at a rate of 91.5% and contralateral (i.e., non-SOZs) at a low rate of 35.1%. This 

suggests that the model can accurately classify unilateral versus bilateral seizure onset. F: 
The model correctly classified neocortical temporal SOZs 64.4% of the time, with a low 

false-positive rate of 26.0%. The white dots in the violin plots represent median values, the 

horizontal bars represent mean, and the vertical bars represent interquartile range. Figure is 

available in color online only.
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