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Abstract

The Free Energy Principle (FEP) and Integrated Information Theory (IIT) are two ambitious

theoretical approaches. The first aims to make a formal framework for describing self-orga-

nizing and life-like systems in general, and the second attempts a mathematical theory of

conscious experience based on the intrinsic properties of a system. They are each con-

cerned with complementary aspects of the properties of systems, one with life and behavior,

the other with meaning and experience, so combining them has potential for scientific value.

In this paper, we take a first step towards such a synthesis by expanding on the results of an

earlier published evolutionary simulation study, which show a relationship between IIT-mea-

sures and fitness in differing complexities of tasks. We relate a basic information theoretic

measure from the FEP, surprisal, to this result, finding that the surprisal of simulated agents’

observations is inversely related to the general increase in fitness and integration over evo-

lutionary time. Moreover, surprisal fluctuates together with IIT-based consciousness mea-

sures in within-trial time. This suggests that the consciousness measures used in IIT

indirectly depend on the relation between the agent and the external world, and that it should

therefore be possible to relate them to the theoretical concepts used in the FEP. Lastly, we

suggest a future approach for investigating this relationship empirically.

Author summary

Two influential theoretical frameworks in cognitive science, neuroscience and computa-

tional biology, are the Free Energy Principle and Integrated Information Theory. The first is

a formal approach to self-organization and adaptive behavior - in short, life - based on

first principles from statistical physics. The second is an attempt at formally describing the

intrinsic experience of a given system, that is, how it feels to be that system. In this way,

these two theories provide tools for understanding two complementary aspects of a given

organism; namely, how it acts in a goal-directed manner based on statistical beliefs about
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the world, and how it feels to be that system in that process. In this paper, we provide an

initial numerical investigation of the potential relation of these theoretical frameworks.

We simulate agents that undergo evolution, and show that as their level of integration (F,

a measure from Integrated Information Theory) increases, information theoretic surprisal

(a quantity used in the Free Energy Principle) decreases. We also see thatF and surprisal

fluctuate together, and that these fluctuations depend on sensory input. Finally we provide

considerations for future simulation work, and how to bring these two theoretical frame-

works closer together.

Introduction

In recent years, two influential theoretical fields have emerged which provide tools for under-

standing the relation between self-organization, complexity, beliefs and experience within any

given system. These are Integrated Information Theory (IIT) [1,2] and the Free Energy Princi-

ple (FEP) [3–5]. They have much in common: both are substrate-agnostic theories that gener-

alize beyond human brains; they take hierarchical and multi-scale perspectives; and they

provide formalizations and quantitative measures with origins in information theory (FEP:

[6,7], IIT: [8,9]). At the same time, they have potentially complementary outlooks. IIT is

grounded in axioms from phenomenal consciousness, the FEP in first principles from statisti-

cal physics. IIT is primarily occupied with a system’s internal causal structure and correspond-

ing conceptual structure and intrinsic experience; The FEP has an extrinsic focus on a system’s

sensorimotor environmental exchanges and the generative model structure and statistical

beliefs they imply. In IIT, existence is an irreducible causal structure [10], while in the FEP it is

the presence of a stable Markov Blanket and corresponding (non-equilibrium) steady state [5].

While they are very different, the perspectives of IIT and the FEP are not necessarily mutually

exclusive. Indeed, a synthesis of the two theories could provide tools for a formal exploration

of the relation between experience and behavior in self-organizing systems in general. We

therefore in this paper make an initial empirical exploration of the relation between theoretical

constructs from the two theories. We first outline the two theories from their own perspectives,

and give some initial theoretical considerations of how the theories could complement or

enrich each other. We then present a simulation study that shows a relation between quantita-

tive measures related to each theory, namely F and information theoretic surprisal, on both

evolutionary and behavioral timescales. Finally, we discuss suggestions for further steps to

empirically relate the Free Energy Principle and Integrated Information Theory.

Integrated Information Theory (IIT)

The fundamental question asked in IIT is which properties a physical system must exhibit in

order to support consciousness. It is thus not assumed that consciousness is exclusive to brains.

Instead, IIT focuses on the relationship between consciousness and physical systems in general

[1,11]. At the heart of IIT lies a distinction between intrinsic and extrinsic descriptions of a sys-

tem, i.e., what a system is to itself and what it is to an outside observer. The claim is that con-

scious experience exists exclusively for the system having the experience, so it cannot be

modeled as an extrinsic property and must be addressed from the intrinsic perspective of a sys-

tem. Throughout this paper we use the terms intrinsic and extrinsic in the sense provided by

IIT, where a description of a system from its intrinsic perspective may only refer to internal

states and excludes, for example, correlations between internal and external states.
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One of the novelties of IIT compared to other theories of consciousness is that it takes its

outset in the phenomenology of consciousness itself by proposing five axioms that are neces-

sarily true for any conscious experience (in the sense of being logically irrefutable [10]). These

axioms are then translated into a corresponding set of postulates about the characteristics that

physical systems must have in order to comply with each of the axioms, which in turn forms

the basis of the formalism of IIT (for a full technical description of these axioms and postulates

in the version used in our work, see [2] (“IIT 3.0”)).

In essence, IIT claims an identity between intrinsic existence and consciousness. The theory

builds on the idea that to exist is to exert causal power, i.e., in order for something to be a single

coherent thing, it must, as that thing, have the potential to affect something in some way (note

that to exert causal power is not necessarily to cause something, but just to have the power to

do so). According to this view, the difference between extrinsic and intrinsic existence lies in

whether the “thing” exerts causal power upon something else, in which case it exists for the

other, or exerts causal power upon itself, in which case it exists for itself. In addition, for some-

thing to exist as a coherent whole, it must be irreducible to its parts. This is key to what IIT

attempts with its formal analysis. The formalism of IIT can be viewed as an attempt at model-

ing such intrinsic existence from an observer’s point of view. Since existence is described in

causal terms, this formalism then amounts to an analysis of the causal structure of the system

itself (not the way the system interacts with its environment). As the analysis specifically needs

to represent the intrinsic nature of the system, it is not appropriate to merely use conventional

information theoretic measures, as these are inherently extrinsic [1,12]. Instead, IIT defines an

intrinsic information measure, loosely described as ‘differences that make a difference’ [2]. It

is important to stress that this is very different from, and not directly comparable with, other

information measures. Simply put, the intrinsic information of IIT measures how much some-

thing, in causal terms, constrains the state of the system it is a part of.

As such, there are two levels of analysis: the mechanism level and the system level. The aim

of the mechanism level analysis is to identify all the parts of the system that intrinsically exist

in a compositional manner. To exist within the system, the parts must specify irreducible

intrinsic information about other parts of the system (such parts are called “concepts”), which

is measured by the mechanism integrated information φ. The basic idea behind integrated

information φ is to find the minimum difference in intrinsic information between the con-

straints specified by a mechanism within the system and any possible partition of it. If there is

a way to partition it which results in no loss of intrinsic information, the mechanism can be

reduced to those parts. However, if there is no such partition, it means that the mechanism

specifies information above and beyond its constituents and is therefore irreducible to those

constituents. Next, one must evaluate whether the causal structure composed of all these parts

is in itself irreducible. All concepts of a system, taken together, form a joint causal structure for

the system, called a conceptual structure. At the system level of analysis, this structure is evalu-

ated according to the same principles of integrated information just outlined. The integrated

conceptual information F quantifies the extent of irreducibility in the conceptual structure.

Note that due to IIT’s fifth axiom and postulate of consciousness (exclusion), the causal

structure doesn’t just need to be irreducible, it needs to be the most irreducible out of all over-

lapping sets and (in principle) across all spatial and temporal grains. Thus, according to IIT a

conscious system is one which specifies a causal structure that is maximally irreducible. The

whole analysis is thus repeated for all possible candidate systems (subsets of elements), while

treating the elements outside the candidate system under analysis as background conditions

(considering a brain, the sensory input, the rest of the body and the environment are considered

background conditions). A system with a non-zero F that does not overlap with another set of

elements with a greaterF value (in both time and space) is called a “complex”. In general, theF
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value of a complex is interpreted as the size or the amount of consciousness, whereas the con-

ceptual structure is interpreted as the content or richness of that conscious state, while the indi-

vidual concepts are the distinguishable things or features constituting this content [1,13].

Note that the computational procedure of calculating F is costly, as it is iterating over all

possible combinations of system elements at multiple levels, resulting in an explosion of the

time required to calculate F as systems get larger [14]. This means that it is usually far from

feasible to actually calculate F on any network much larger than about 10 nodes, far below the

roughly 100 billion neurons of the human brain. Thus, it is as yet not possible to relate the

findings of any given IIT analysis to the concrete phenomenology that we are familiar with, or

to concrete human behavior (but see [13,15]). IIT evaluates causal constraints within the sys-

tem. In general, the relationship between IIT’s intrinsic measures and the extrinsically

observed behavior of even simple systems is yet to be determined, which is a motivation for

relating IIT to theories of behavior.

The Free Energy Principle (FEP)

The Free Energy Principle (FEP) is a theoretical framework, based on first principles from sta-

tistical physics and information theory, which attempts to bridge as diverse fields as evolution-

ary biology, cognitive science and philosophy of mind [5,16] It was originally proposed as a

unifying framework for understanding brain function [17,18], but has since been expanded to

encompass organisms and self-organizing systems in general [4,5,19]. The FEP builds on the

claim that any self-organizing system continually returns to a non-equilibrium steady state,

i.e., a small set of non-equilibrium states out of all the states it could possibly inhabit, in order

to resist entropic fluctuations and stay in existence in a recognizable form. This can be formal-

ized as solving an optimization problem, minimizing the long-term average of the information

theoretic surprisal of the system’s sensory exchanges with the external world, based on an

implicit generative model. However, evaluating this surprisal is normally not computationally

feasible, so a different, computable quantity is used instead, the variational free energy, which

tracks how well the generative model is able to explain sensations, and which upper-bounds

the surprisal [3]. Consequently, any living, i.e., self-organizing organism, can be described as if

it tracked and minimized the variational free energy of its sensory states relative to a generative

model, thus providing a general principle for understanding the behavior of self-organizing

systems and life in general [19].

A crucial component of the FEP is the presence of a temporally stable Markov blanket. A

Markov blanket is a statistical separation between internal and external states of a system, sepa-

rated by another set of states that form the boundary between the two. Internal states are not

affected by, and do not affect, external states, except when mediated through the blanket states.

Blanket states are denoted as sensory states when they affect internal states and are affected by

external states, and are denoted as active states when the causal direction is opposite. It is pro-

posed that maintaining a Markov blanket is necessary for keeping structural integrity, that it

emerges from simple random dynamical processes, and that maintaining a Markov blanket

entails maintaining a non-equilibrium steady state and exhibiting behavior which implicitly

minimizes variational free energy [5]. In this process, the dynamics of the system’s internal

states come to statistically model those of the external states [20]. Note that, in recent work, a

path integral reformulation of the FEP is proposed that does not require assuming a steady

state [21]; our starting point here, however, is the classical state-based version of the FEP)

Biological systems can then be construed as a nested hierarchy of Markov blanketed systems,

where smaller systems form the components of larger systems. Thus a collective of Markov-

blanketed macromolecules may form a cell wall creating a stable Markov Blanket on the level
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above. This can continue upwards, with cells forming blanketed organs, which in turn form

human bodies, social groups, cities, ecologies etc., with every level of the nested hierarchy seem-

ingly acting to minimize the variational free energy of its blanket’s sensory states by existing [6].

The variational free energy of a system’s sensory states is always evaluated relative to a gen-

erative model of the external (hidden) states generating predictions about sensory states. One

way of minimizing the variational free energy is to (variationally) make state estimates, update

parameters and infer model structures, which corresponds to (perceptual) inference, learning

and structure learning, respectively. Another way of reducing free energy is to act on the envi-

ronment in order to produce sensory inputs that are expected by the organism, and therefore

preferred. In active inference, a framework based in the FEP where agents choose actions that

minimize expected free energy, preferences are implemented as prior expectations for sensory

inputs - here called goal priors - that are immutable, and must therefore be realized in order to

minimize free energy [20]. These goal priors are thought to reflect the kinds of sensations the

organism usually encounters, a statistical ‘phenotype’, and are thought to be evolutionarily

selected. This provides an interpretation of evolution as Bayesian model selection, where varia-

tional free energy is minimized over time by producing organisms that imply more adaptive

generative models [7]. The FEP and active inference can thus be used to understand processes

at both evolutionary, developmental and mechanistic scales [22,23], as well as how organisms

and their niches mutually adapt to, and model, each other [24]. Finally, it is important to point

out that work based in the FEP and active inference often take an instrumentalist approach,

only claiming that some given systems can be described as if it performs active inference [25].

There is, however, an ongoing discussion regarding the degree to which a realist interpretation

of the computationalist constructs of the FEP is warranted [26–28], and it is argued that the

FEP and active inference are compatible with other justifications for computational and repre-

sentational realism, like mechanical accounts of computation [29] and teleosemantics [30].

A few different approaches have been taken to apply the FEP to questions of consciousness.

Firstly, a variety of active inference Markov Decision Process (MDP) models have been devel-

oped, where agents model the world as discrete state transitions and select actions that mini-

mize variational free energy [31]. These can be taken as abstract models that describe the

beliefs about the world implicit in a system’s behavior; it is thought, however, that the system’s

internal states parameterize these models [32], and they can be related to variational message

passing schemes for predictive coding [33]. Because inferences about the world are thought to

be the basis for conscious experience, MDP models are thought to reflect the subjective experi-

ence of the system that imply them (as for example in [34]). In general, it is argued that con-

scious experience is a product of inferential rather than sensory processes, and that it emerges

when a system’s implied generative model is temporally and counterfactually deep, that is,

includes inferences about what will happen in the future and what could have happened in the

past given different actions [35,36]. Additionally, it has been argued that consciousness is ten-

tatively linked to the system’s model being responsive to interoceptive information [37], and

to the fact that complex agents come to attribute high certainty to mid-level predictions while

allowing higher-level beliefs to vary, thus creating a chasm between the world itself and imme-

diate experiences of it [38]. It has also been argued that consciousness is related to affect, and

that affect is related to moving towards a variational free energy minimum, suggesting that

consciousness arises when explicit evaluation of the expected variational free energy associated

with action policies is required, as opposed to when behavior is automatic or reflexive [39,40].

An active inference version of the global neuronal workspace theory of consciousness has been

formulated [41], and an active inference neurocomputational Projective Consciousness

Model, also based axiomatically on phenomenology, has been proposed to explain the perspec-

tival and integrated quality of first person experience [42,43]. There has also been an attempt
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at employing generative modeling techniques on phenomenological experience, linking ‘raw’

immediate experience to an active inference agent’s observations, and the total experience to

the best explanation or most likely model given those experiences [44]. A more detailed discus-

sion of how the mathematical constructs of the FEP potentially relates to consciousness can be

found in [32], with the essential point being that the mind-matter duality can be grounded in

the difference between the intrinsic information geometry of the probabilistic evolution of

internal states, and the extrinsic information geometry of probabilistic beliefs about external

states that is parameterized by the internal states (note that ‘intrinsic’ and ‘extrinsic’ are here

used in a different sense than the IIT-based one we use). These accounts, even as they differ

substantially, are all based in predictive processing accounts of brain function, which is argued

to be a fruitful framework within which to identify neural correlates of consciousness [45].

We do not in this paper go in depth with the theoretical relationship between IIT and the

FEP, but instead focus on a numerical investigation of some core constructs from the two the-

ories. We will first, however, take a moment to outline some considerations as to the potential

for mutual enrichment between Integrated Information Theory and the Free Energy Principle.

Motivation for relating the FEP and IIT

There are multiple ways in which IIT and the FEP appear to be compatible, and where there

seems to be potential for mutual contribution. In a brief discussion, [32] argue that there is a

construct validity between the two approaches, claiming that the five axioms of IIT all are com-

patible with Markov Blanketed variational free energy minimization systems as conceptualized

under the FEP. It is speculated that relating the FEP to IIT might help distinguish between

conscious and unconscious types of active inference processes, and possibly be a step towards

a unitary concept of consciousness. They also point out that both theories rest upon partitions

of causally related systems, which, in addition to further indicating that the theories might be

mutually intelligible, also highlights possible avenues for research. See Albantakis (2020) for a

brief discussion and criticism of these claims.

The FEP and IIT take different, but potentially compatible, ontological starting points. IIT

is physicalist, in the sense that it is occupied with describing the causal relations between physi-

cal states within a system, and it is intrinsic, in the sense that it exclusively considers causal

relations within the system, and only within a single point in time (at a particular temporal

grain). FEP is functionalist, in that it considers abstract computational beliefs and their expres-

sion in behavior, and often extrinsic, in that it is interested in the relation between the system

and its surrounding environment. Better understanding the relationship between such intrin-

sic/physicalist and extrinsic/functionalist accounts could provide value both for IIT and the

FEP. To IIT it might provide a means for making inferences about a system’s intrinsic perspec-

tive based on an extrinsic account of situated behavior (which often is the only account accessi-

ble for real biological systems). For the FEP it could provide a way to relate the behavior and

implied computations in a system (understood instrumentally or not) to its intrinsic causal

structure and level of integration.

The two different conceptualizations of when something exists as a ‘thing’, in the FEP

meaning maintaining a Markov Blanket over time, and in IIT meaning being a maximally inte-

grated cause-effect structure over a background of environmental influences, might be com-

plementary concepts (see also [46]). It could be conjectured that complexes do not usually

cross stable Markov Blankets, so that consciousness is usually contained within, as opposed to

extending across, the dynamically maintained borders of organisms. Methods from IIT might

also complement the FEP by determining at which level of a hierarchy of nested Markov Blan-

kets consciousness is located, namely the level where intrinsic integration is the highest.
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Another place where the two theories might contribute to each other is in the relation

between conscious experience and the external world. IIT is concerned with the experience of

a system regardless of its surroundings (but given its background conditions), but under the

FEP, self-organizing systems must imply models of the environment (parametrized by their

internal states) in order to persist. This indicates that IIT-based formal descriptions of a sys-

tem’s intrinsic experience might, to some degree, reflect its external environment. It might

even be possible to show that a system’s implied generative model and beliefs are to some

degree reflected in its conceptual structure, a kind of integrated representationalist interpreta-

tion of the FEP. Additionally, in FEP organisms are often thought to align their implied gener-

ative models (and consequently the internal states that parametrize them) through (social)

interaction with their conspecifics, which could involve alignment of their internal causal

structures, conceptual structures and intrinsic experience.

Finally, IIT is agnostic as to whether or not a conscious system self-organizes (although [46]

relate integration to self-maintenance). The FEP states, however, that self-organizing systems

maintain their structure and return to a stable subset of states by minimizing variational free

energy. One might surmise that minimizing variational free energy might then be related to

maintaining a stable, self-similar and spatially bound consciousness across time, that is, per-

haps, a sense of self.

It is also suggested by [32] that one might find a relationship between F and variational free

energy for a given system, so that minimizing variational free energy simultaneously leads to

an increase in F. Given that [47] suggest that being more integrated might have evolutionary

advantages, which should lead to a better ability to minimize variational free energy, such a

relationship does seem likely. The relationship might, however, become more complex, given

that both implicit statistical beliefs and surprisal, and also the amount of integration resulting

from evolution, vary with the complexity of a given task as well as the constraints on the sys-

tem, rather than only how well the system performs a task [47]. In this paper, we therefore take

first steps towards an empirical investigation of the relation between the two constructs.

Importantly, we do not yet compare F to the variational free energy of the system, but instead

compare it to an empirical approximation of the surprisal associated with the system’s sensory

states, since this is the quantity that variational free energy minimization ultimately seeks to

minimize. We then leave it for future work to properly incorporate further aspects of the FEP,

for example by calculating F for a system that performs active inference under a known gener-

ative model of the world (See Limitations and Further Work).

It is noteworthy that [48] has attempted to synthesize IIT, FEP and Global Neuronal Work-

space theory into a new Integrated World Modelling Theory. It is argued that active inference

and the Free Energy Principle can be used to bridge the otherwise contesting extrinsic and

intrinsic perspectives of the two other theories, and that this synthesis has applications across a

number of areas. It is beyond the scope of this paper, however, to contribute to theoretical

work on synthesizing the theories. Instead, we focus on investigating the numerical relation

between F and empirically approximated surprisal, and discuss the types of research this

might lead to in the future.

Evolving animats

To investigate the relationship between the measures of IIT and FEP we replicated the evolu-

tionary simulation presented in [47], where it was found that animats (artificial adaptive

agents) on average evolved more concepts and higher values of F when the task environment

was more complex and difficult, compared to simpler and easier tasks. The animats in the sim-

ulation were evolved to perform a simple perceptual categorization task, shown in Fig 1.
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Within the world, animats inhabited 3 squares of the bottom row of a tetris-like space. On

each trial, a block with a certain width would fall from the top to the bottom, eventually either

hitting or missing the animat at the end of the trial. Each trial the block would move consis-

tently to the left or right while falling (at one square per time step). The task of the animat was

to either catch or avoid the block at the end of the trial depending on the width of the block.

This, together with the different falling directions of the block, gave four different task types

(right catch, right avoid, left catch and left avoid) and a total of 128 trials (given the maximum

of 4 different block sizes). Internally the animat was a Markov brain [49], a network consisting

of 2 sensory nodes, 2 motor nodes and 4 hidden nodes. Each sensory node responded on see-

ing the block directly above it and were placed on the outermost squares of the animat (thus,

no sensory input was received from above the middle of the animat). The hidden and motor

nodes each had an internal logic determining how different combinations of inputs resulted in

either activation or deactivation of the node. The motor notes controlled how the animat

moved around in the space, such that when one motor node was active, it would move in a

direction corresponding to that node (left or right), and while none or both was active the ani-

mat would not move. More details on the animats and the simulation environment are pro-

vided in the methods section, and we recommend visiting http://integratedinformationtheory.

org/animats.html for a visual presentation of the task and the animat.

In [47], there were 4 tasks, which differed by the sizes of the falling blocks, each with

increasing difficulty. Here we only simulated the easiest task (task 1) and the hardest task (task

4). We evolved 150 lines of descent (LOD), 50 for the easy task and 100 for the hard task. Each

LOD was evolved over 60000 generations, starting from an unconnected network. For each

generation a set of animats would mutate by slightly changing the connections and logics of

the hidden nodes, and the best performing animats would form the basis of the next genera-

tion. Each LOD represents an independent evolutionary simulation and can for this reason be

seen as different species, independently evolved to do the same task. Again, more details are

provided in the method section. In addition to comparing the easy task and hard task animats,

we also separately analyze the 8 hard task animats with perfect fitness in the last generation.

This is done for consistency with [47], and because perfect fitness animats are easier to inter-

pret since they are in fact performing the task correctly. Since more than two thirds of animats

reached perfect fitness on the easy task and the overall high fitness achieved on average, we did

not separate out perfect fitness animats in the easy task.

Finally, we consider how to extract FEP-related measures for the animat at each timepoint,

in order to compare them with F. The immediate challenge here is that the variational free

energy (and also the surprisal which it upper bounds), in theory, is based on the animat’s

implicit generative model of the world, which we do not a priori have access to. In the litera-

ture, simulated agents are often constructed with a generative model of their surroundings,

based on which they calculate expected free energy given different action policies and select

the policy with the lowest expectation (like in [34]). In this case it is possible to track the beliefs

and the variational free energy of the agent as it interacts with its environment. The animats

are constructed as deterministic logic networks, however, and do not by construction possess

a generative model. If one could reconstruct the generative model that the animats must have

had in order to generate their observed behavior—that is, their implied generative model—

one could directly access their implicit beliefs and free energy on each timestep. It is no simple

task to reliably reconstruct such a generative model, however, so we do not do it here (although

see Limitations and Further Work for a suggestion on how to do it). Instead of obtaining the

variational free energy directly from the generative model, we construct an empirical approxi-

mation of the model-conditioned surprisal, the quantity which in the FEP is minimized by

minimizing variational free energy. This approximation does not require access to the animat’s
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implied generative model, and therefore makes possible an initial numerical relation of the IIT

and FEP.

Surprisal is calculated as the negative log probability of an observation (i.e., sensory state)

occurring, given the animat’s generative model:

Iðo j mÞ ¼ � lnðPðo j mÞÞ

Where I is the surprisal, and P(o|m) is the probability P of outcome o occuring on the time-

step, given the generative model m. Calculating P(o|m) requires access to the animat’s genera-

tive model, and is therefore not accessible here, so we instead approximate it with an empirical
goal prior. We construct these empirical goal priors by using the distributions of observed sen-

sory states of (perfectly) adaptive animats. The sensory states that perfect animats sample

should be the kinds of observations that animats expect, assuming that they a priori expect to

perform their task well, and have a useful model of their environment. Animats are therefore

“surprised” when sampling sensory states that are uncommon under adaptive behavior i.e. dif-

ferent from what the perfect animats encounter. Importantly, we construct different probabil-

ity distributions for each of the four task types (right catch, right avoid, left catch and left

avoid) and at each timestep in a trial, since adaptive animats ought to have different expecta-

tions at different task types and timesteps. We additionally calculate surprisal using the sensory

state distribution from the perfect animat that results in the lowest surprisal. This means that

surprisal is evaluated relative to the kind of perfect behavior that is the most similar to its own,

avoiding that rare but still perfect strategies result in high surprisal. The surprisal measure we

use here is inherently linked to the fitness of the animats, as should be the case from the per-

spective of the FEP, but only insofar as the task-optimality of behavior is in fact reflected in an

animat’s sensory states within a particular trial. Because it is defined for within-trial time, and

because it depends on sensory states rather than the motor states that determine fitness, the

model-conditional surprisal is not simply a fitness measure. In addition, surprisal depends on

the entropy of the empirical goal prior, so that a deviance from a more uncertain expectation

results in less surprise than if it was from a more certain expectation.

Fig 1. Schematic of the block-catching task in the simulation. A block is falling from top to bottom, either towards

the left or the right. The animat has two sensory nodes, which are activated when the block is above them. It also has

two motor nodes, which allow it to either move to the right or left. Depending on the size of the block, the animat’s

task is to either catch or avoid the block. Reproduced from [47].

https://doi.org/10.1371/journal.pcbi.1011346.g001
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Interestingly, using an empirical goal prior to approximate animats’ surprisal allows us to

bypass the step of variational free energy entirely. This also means, however, that our measure,

even disregarding the ways in which it might be a poor approximation of the model-condi-

tioned surprisal of the FEP, does not directly reflect the epistemic component of the variational

free energy (although it might do so implicitly by making animats expect epistemic behavior

to the degree that perfect animats exhibit it). Our comparison here should mainly be consid-

ered as an initial comparison, until measures based directly on a (reconstructed) generative

model can be used.

In the following, we present results from an evolutionary simulation where animats per-

form the task as described. We replicate some of the findings from Albantakis et al. [47], and

additionally show that surprisal decreases over evolutionary time. Moreover, we assess how F

and surprisal change on within-trial time and how these fluctuations cross-correlate, and

relate, in an exploratory manner, these cross-correlations to the general patterns of fluctua-

tions in F and surprisal.

Results

In the following, we first investigate the changes in average F, surprisal and fitness on the evo-

lutionary timescale. Next, we consider the within-trial per timestep fluctuations of F and sur-

prisal, and how these covary on a non-aggregate level.

Finally, we split the animats into 3 groups based on correlation profiles (negative, positive

or no correlation between F and surprisal) and investigate how these groups differ in both

evolutionary and trial time.

Our data set consists of two task environments (easy and hard) with 50/100 independent

evolutions, respectively (Table 1). The distributions of F and surprisal at the final generation

are shown in Fig 2. It can be seen that the mean and median of F is higher in the hard task,

and even higher for the perfect animats. In contrast, surprisal is higher on the hard task, but

lower for perfect animats. We also see that the mean and median capture differences between

the distributions differently. For comparability with Albantakis et. al [47], we subsequently

present mean values in the main text (see S1 and S2 and S3 for the same analyses using the

median value).

Changes in evolutionary time

Fig 3 shows changes in F and surprisal over evolutionary time, averaged across LOD’s for each

generation. Fig 3A and 3B shows our replication of the main findings in Albantakis et al. [47].

Fitness increases over evolutionary time and is higher in the easy task than the hard task. The

red line shows the 8 perfect animats in the hard task, which reach near-perfect behavior about

halfway through the simulation. We also see that F is higher in the hard task than in the easy

task, and slightly higher for perfect animats in the hard task at the end of evolution. Compared

to the results of Albantakis et al. [47], we see higher average values of fitness andF in all condi-

tions. Additionally, these values increase faster over evolutionary time and are more similar

across tasks. This is likely due to a recent increase in the efficiency of MABE’s evolutionary

algorithm [50].

Our goal in this study is to compare changes in IIT quantities over the course of the animats

evolution to FEP related quantities. As shown in Fig 3C, surprisal decreases over evolutionary

time and is lower in the easy task than in the hard task. In the subset of 8 perfect animats in the

hard task, surprisal decreases more than on average. However, it never gets as low as in the

easy task.
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Fluctuations in trial time

Fig 4 showsF and surprisal (averaged over trials and LODs) plotted over trial time (36 time

steps) at the end of evolution (generation 60000). Fig 4A shows that surprisal decreases over trial

time. The easy task has lower surprisal overall, and decreases further around halfway through the

trial. Surprisal is higher in the hard task, but surprisal of the perfect animats decreases rapidly

Table 1. Descriptive statistics of the data. Note that the number of perfect animats in both tasks are substantially

larger than in Albantakis et al. [47]. This is likely due to optimization of the MABE framework, used for the evolution-

ary simulation, between then and now.

Easy task Hard task

Total number of LODs 50 100

Number of LODs with perfect fitness on final generation 34 8

Number of LODs with mean F = 0 on final generation 10 6

Number of LODs with at least 1 trial of mean F = 0 on final generation 20 31

Percentage of trials with mean F = 0 on final generation (out of 128 total trials) 22% 8.3%

Quartiles of F values on final generation min: 0

Q1: 0

Q2: 0.09

Q3: 0.69

max: 2.49

min: 0

Q1: 0

Q2: 0.18

Q3: 0.56

max: 4.11

Quartiles of surprisal values on final generation min: 0.09

Q1: 0.09

Q2: 0.22

Q3: 0.54

max: 3.58

min: 0.09

Q1: 0.36

Q2: 0.69

Q3: 1.97

max: 3.58

https://doi.org/10.1371/journal.pcbi.1011346.t001

Fig 2. Distributions of F and surprisal at the last generation of evolution depicted with half violin plot and half boxplot.

Distributions are shown for each task and for the hard task animats that evolved perfect fitness. The gray dots with horizontal lines

represent the calculated average of the distributions.

https://doi.org/10.1371/journal.pcbi.1011346.g002
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after the middle of the trial, and ends on a similar level as for animats in the easy task. This sug-

gests a shift towards lesser entropy in the goal priors towards the end of the trial (see the methods

section for more on this point). Fig 4B shows surprisal when trial time has been centered around

the animat’s first observation of the block (marked with a dashed line). Here it can be seen that

surprisal increases sharply when the block is observed, but decreases afterwards. Since goal priors

are much less entropic at the end of the trial, animats that deviate from the goal prior have higher

surprisal than in the early timesteps, leading to another increase for animats in the hard task. The

surprisal of the perfect hard task animats decreases after seeing the block, again ending at a level

resembling that of animats of the easy task.

In Fig 4C, we see the average F over trial time. Here the lines are almost flat for both tasks,

with the hard task being very slightly higher at the beginning of the trial, which corresponds to

the difference inF levels we see at the end of evolutionary time (Fig 3B). For perfect animats

there is a general increase in F towards the middle of the trial, after which it decreases again.

This suggests that the relatively higher average F of the perfect animats can be contributed to

something that happens during the middle of the trial, as opposed to being a general increase

in the level of F for this type of animat. Fig 4D shows the average F across trials, with trial

time centered around the animat’s first observation of the block. At the time of sensing the

block, F increases slightly for animats in the easy task, and strongly for perfect animats in the

hard task, while there seems to be no average difference when including all animats in the hard

task. This suggests that the increase in F we see for the perfect animats in the Fig 4C is related

to the animat’s observation of the block. Note that even though there are differences in average

F and surprisal, with very small standard errors on the mean due to the large number of simu-

lated trials, there is still large variation between individual animats (see S5 and S6 and S7 Figs).

Correlations between F and surprisal

Before presenting the correlation analysis, we show examples of per-timestep fluctuations

between F and surprisal for a few individual trials (Fig 5). Here we see examples of different

strategies for solving the task. The most common for adaptive animats is the “follow-strategy”,

Fig 3. Change in average fitness (A),F (B) and surprisal (C) over evolutionary time for the easy task (black), the hard task (blue) and perfect animats in the hard task

(red). The variables are first averaged across all values within each animat, then averaged across all LODs at each generation. The ribbons around the lines show the

standard error from averaging across LODs.

https://doi.org/10.1371/journal.pcbi.1011346.g003
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where animats follow either behind or underneath the block depending on whether they must

catch or avoid it (Fig 5B and 5D and 5F). The second is the “pass-over-strategy”, where ani-

mats let the block pass over them, which can be equally adaptive in catch trials (Fig 5A and 5C

and 5E; see Methods for visualizations of the behavior of perfect animats). These examples also

exemplify the way that both F and surprisal often change at the times when the animat

observes the block. Finally, we can see examples of positive correlations (Fig 5C and 5D and

5F), negative correlations (Fig 5B) and lack of correlations (Fig 5A and 5E) between F and sur-

prisal for a particular single trial.

Fig 6 shows the distribution of cross-correlations of F and surprisal across all trials of the

final generation for all LOD’s. For time lags close to zero, there are many correlations that are

far from 0 in both the positive and the negative direction, indicating that there is a relation

between the two measures, but that it varies between trials and LODs. In general there is a pos-

itive skew for perfect animats in the hard task, and an even stronger positive skew for animats

in the easy task. At larger time lags, correlation distributions are increasingly centered around

0, indicating that when F and surprisal correlate, they do so by fluctuating at the same times,

as opposed to in a lagged manner. Additionally, a multilevel linear regression confirmed that

there was a significant relation between the fluctuations (i.e., absolute change from last time-

step) of F and surprisal at lag 0 (β = 0.123, SE = 0.013, p<0.001, random slope across animats

(SD) = 0.018).

Fig 4. AverageF and surprisal over trial time for the easy task (black), the hard task (blue) and perfect animats in the hard task (red). A) average surprisal over

trial time. B) average surprisal over trial time, centered around the first observation of the block. C) averageF over trial time. D) averageF over trial time, centered

around the first observation of the block. Shading around lines is the standard error of the mean. See S5 Fig for the variability across LODs. Note that the averages on B

and D are based on a decreasing number of trials as the relative timestep gets further away from 0. In order for the relative timestep to go to 30, at a given trial, the

animat needs to see the block within the first few real timesteps.

https://doi.org/10.1371/journal.pcbi.1011346.g004
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Correlation profiles

In order to explore the mechanism behind the different directions of correlation (positive and

negative) between F and surprisal, we here again present the results of the animats performing

the hard task, but now split into three groups based on correlation profiles (negative, neutral

and positive correlations between F and surprisal).

Fig 7 shows the results at evolutionary time. Here, the correlation profiles are based on the

average correlation coefficients of animats at the end of evolution. The average fitness is

Fig 5. A-F) Within-trial representation of example animat behavior,F and surprisal. The gray box of each plot shows

information about the trial and the animat, and the correlation betweenF and surprisal. The x-axis shows timesteps

within the trial. The orange line denotes surprisal, and the green line denotesF. Each is plotted on an arbitrary y-axis

for better comparison where only the zero point is indicated. The lower half of each plot shows the right and left

sensory states (SR, SL) and motor states (MR, ML), with black lines indicating activation. Sensory states are active

when the block is perceived. Motor states are activated by the animat, and makes it move in the given direction; if both

motor states are active the animat stands still. Plots are chosen to show a variety of patterns of behavior,F and

surprisal. All examples are taken from animats in the hard task.

https://doi.org/10.1371/journal.pcbi.1011346.g005
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similar in the three groups (Fig 7A), however, both F and surprisal are on average lower for

animats with a positive profile (Fig 7B and 7C). We also see that animats with a negative profile

seem to have slightly higher surprisal on average than those with a neutral profile, which again

are slightly higher than the positive correlation profile animats.

In Fig 8 we see the differences between correlation profiles at trial time. Here, the correla-

tion profiles are based directly on the correlation coefficient at each trial separately. Since a

Fig 6. The distribution of correlation strengths betweenF and surprisal, across all trials on the last generation of all LODs. Shown for time lags around 0,

denoted above each of the graphs. Correlations are shown for all animats in the easy task (black), for all animats in the hard task (blue) and for only perfect

animats in the hard task (red). The lagging variable was F, meaning that for negative lags the correlations measure the relationship betweenF and future

surprisal, and vice versa for positive lags. Note that trials whereF = 0 throughout are excluded from this analysis.

https://doi.org/10.1371/journal.pcbi.1011346.g006
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given animat can have positive correlations on some trials, and negative on others, these plots

are not comparable to the end point of evolution in Fig 7 before. Considering surprisal (Fig 8A

and 8B), there is almost no difference between the groups, besides positive correlation trials

having lower average surprisal towards the end. However, in F there is a much clearer differ-

ence between the groups (Fig 8C and 8D). The most striking difference is seen in Fig 8D

where trial time is centered around the first observation of the block. We see that on trials with

positive correlations, F is generally on a low baseline. Average F then rises when the block is

observed, and falls again to a stable level. The pattern is the opposite on trials with negative

correlations. Average F is the most similar between correlation profile groups in the period

between the first block observation and the point at which average F returns to baseline level.

This explains why we see no average fluctuation in F when including all animats in the hard

task at the first block observation (Fig 4D), while still getting a broad distribution of correla-

tions coefficients. The inverse patterns of positively and negatively correlated trials cancel each

other out in the unified average. Additionally, the general difference of average F baseline lev-

els between positive and negative correlation profiles explains the relatively big difference

between these two groups in both evolutionary time (Fig 7B) and trial time (Fig 8C).

Discussion

We evolved 50 animats in the easy task, out of which 34 reached perfect fitness, and 100 ani-

mats in the hard task, out of which only 8 reached perfect fitness (see Table 1). This shows that

there is a substantial difference in difficulty between the tasks, which seems to affect F. Fewer

animats showed no integration at the final generation in the hard task than in the easy task,

and only 8.3% of all trials at the final generation had a mean F value of 0 in the hard task,

whereas the easy task had a much higher percentage of such trials (22%). The maximum value

of F found in the hard task (F = 4.11) was much higher than the maximum value found in the

easy task (F = 2.49). There is a slight but clear difference in the distribution of F values at the

final generation (Fig 2), seemingly driven by a difference in the number of zero-F states

between the tasks, rather than a general level of higher F values. As such, it seems that the hard

Fig 7. Change in fitness (A),F (B) and surprisal (C) over evolutionary time averaged across LODs sorted into groups depending on animat correlation profiles at last

generation. The groups are: Negative (purple), neutral (grey) and positive (brown) correlations.

https://doi.org/10.1371/journal.pcbi.1011346.g007
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task puts more evolutionary pressure on the presence of integration rather than the level of

integration, compared to the easy task.

On the evolutionary timescale we see similar results forF as in Albantakis et. al [47],

although a considerably smaller difference between the tasks. Note that when using the median

(see S1 and S2 and S3) the difference between tasks is much clearer, but there the perfect ani-

mats of the hard task are more similar to the rest of the group. The same is true for F-levels in

trial time. There are both upper and lower bounds for F, so the deviations from low or high

baselines upon observing the block might be due to a regression towards the mean, where ani-

mats with higher baselines on average decrease in F when its internal state changes, and vice

versa. It is still interesting, and not a priori to be expected, however, that there is a baseline at

all, and that animats seem to return to it after seeing the block.

In both evolutionary and trial time, the results regarding our surprisal measure were largely

in line with expectations from the FEP. Average surprisal decreased as fitness increased over

evolutionary time, which reflects the fact that average surprisal measures the difference from

the empirically observed stably optimal behavior. Surprisal also increased at the time point

when animats first observed the block; even perfect animats cannot control when this happens,

which results in more variance and therefore more surprisal, and which also makes this the

most informative time at a given trial, in a classic Shannon information sense. At the end of

the trial, surprisal goes down on average, as animats become able to act in ways that make

their sensorium more similar to that of adaptive agents, and less entropic as well. Surprisal is

also lower in the easy task; that it is easier means that more animats successfully act in accor-

dance with the empirical goal prior.

Fig 8. Average fluctuations inF and surprisal on trial time split into trials with negative (purple, coef.< -0.1, N = 4489), neutral (grey, coef. in (-0.1, 0.1), N = 1532)

and positive (brown, coef.> 0.1, N = 5611) correlations betweenF and surprisal. A) average surprisal over trial time. B) average surprisal over trial time, centered

around the first observation of the block. C) averageF over trial time. D) averageF over trial time, centered around the first observation of the block. Shading around

lines is the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1011346.g008
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The results show a relation between F and surprisal. On the evolutionary timescale, this

relation is likely due to the fact that both measures are related to fitness, so that as fitness

increases, surprisal falls and F increases, resulting in a correlation between the ability to effi-

ciently minimize surprise on one hand and on-average higher intrinsic causal integration on

the other. On a within-trial timescale, we find that F and surprisal fluctuate at the same times,

namely when the block is first observed by the animat. This provides some initial evidence for

the claim that a change in (the surprisal of) sensory states for a system is related to a change in

its intrinsic causal structure. Or, in other words and contingent upon both theories, that a

change in sensation leads to a change in experience.

Applying the Free Energy Principle

In order to relate our results to the Free Energy Principle, it is important to consider whether

the animats fulfill the criteria for its application. The animats clearly and by construction pos-

sess stable Markov Blankets, composed of the sensory and motor nodes. However, they do not

actively maintain their Markov Blankets through their own internal dynamics. Thus, it is

harder to determine whether claiming they possess a non-equilibrium steady state is sensical

and we will not try to do so formally here. However, empirically we observe that animat behav-

ior converges towards stable patterns over evolutionary time, indicating a movement towards

a NESS. Similarly, within a single trial, a successful animat also manages to enter a stable sen-

sorimotor state of seeing or not seeing the block, depending on the task. Empirically, at least,

then, animats seem to both possess a Markov Blanket and act in ways that make them enter

and maintain an evolutionarily adaptive non-equilibrium steady state; it is indeed in these sta-

ble states where our surprisal measure is the lowest, further indicating that the measure is a

good approximation of the generative-model based surprisal that is upper-bounded by varia-

tional free energy in the Free Energy Principle. This is useful, given that re-constructing the

generative model implied by a given system’s actions, which is necessary for directly getting

the variational free energy, is rarely easy.

Importantly, in a sense, the only probabilistic, continuous adaptation happening in our

simulation happens on the evolutionary timescale, since animats are deterministic systems on

the trial timescale. That raises the question of whether applying the Free Energy Principle, and

the accompanying interpretation of the system as a probabilistic Bayesian belief updater,

makes sense on the deterministic trial timescale. We will not make strong conclusions here,

except to note that even though the animats are deterministic logic networks, they might still

look as if, or be well describable as if they were doing probabilistic Bayesian inference. Indeed,

it can be difficult not to interpret the animats’ block-identifying and -following behavior as

goal-directed, planning based and inferential processes, despite knowing of their deterministic

internal structure. In other words, the animats might behaviorally seem to be goal-directed

Bayesian believers, even if they are just a simple network on the inside. This might seem like

an unjustified anthropomorphization of a purely mechanical system, but should rather be read

as an interpretation of the system’s functional relevance. Under the FEP, systems are not so

much anthropomorphized as they are statisticomorphized, that is, deliberately interpreted as

doing statistical inference. This might sometimes be a useful reframing of the mechanical sys-

tem, partly because it can still be used when the entire internal structure of the system isn’t

known, and partly because it lends a functional and goal-oriented interpretation to the behav-

ior and structure of a network, which otherwise is just an arbitrary set of connected nodes to

an outside observer. Here, the animats’ internal mechanistic structure is known in all detail.

Moreover, multiple mechanistic implementations can lead to perfect fitness and similar behav-

ior in the block catching task. Comparing a re-constructed generative model of individual
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animats to their actual mechanistic implementation may elucidate how generative models

should be interpreted more generally.

IIT and the FEP

One important question when relating IIT and the FEP is whether they are at all conceptually

compatible. IIT is explicitly concerned with intrinsic physical-causal interactions (identifies

conscious experience with an intrinsic physical-causal perspective). The conceptual stance

when using the FEP is more varied: it is functionalist (occupied with abstract computational

processes underwriting behavior) as opposed to physicalist; it is often instrumentalist (treats

the computational constructs as a tool for describing behavior) with some advocating for a

realist stance (where computations are considered real in their own right); and it is in impor-

tant ways extrinsic (insofar as it is oriented towards representational relationships between

internal states or beliefs and the external environment), although it at the same time stresses

(more akin to an intrinsic account) that an agent’s beliefs and mind are technically only a func-

tion of the sensorimotor exchanges in the Markov Blanket that hides the real world from it. If

one takes an instrumentalist view of the FEP, where the free energy minimization is thought of

as a useful interpretation of a system’s behavior, the two approaches are clearly conceptually

compatible. The theories might still be compatible under a realist interpretation, perhaps par-

ticularly if computational processes, which in IIT are normally not considered real, could be

identified as causally integrated (and therefore real) mechanisms; however, some justifications

for realist interpretations of the FEP often rest on extrinsic accounts of realism, as for example

when based in representationalism [30] or contribution to objective goals [29]. Ontological

commitments are in general stronger and more deliberate within IIT, which means that a con-

ceptual compatibility between the two approaches might ultimately depend on which of the

different possible ontological stances compatible with the FEP one chooses to commit to.

An obvious, and important, empirical question which becomes apparent when relating the

two frameworks is then: is the intrinsic experience of a system homomorphic to the statistical

beliefs implicit in its behavior? This, or even a complete identity between the two, is often

casually assumed by functionalist theories of consciousness. However this, at least in theory

and perhaps also in practice, does not always need to be the case. According to IIT, systems

with different internal causal structures, and therefore different intrinsic experiences, can be

functionally identical [2], and therefore seem to hold the same Bayesian beliefs. However,

there might be good reason to believe that, at least most of the time, intrinsic experience and

functionally implicit statistical beliefs are closely related. Systems that seem functionally identi-

cal in a given context can have widely different circumstantial constraints, such as energy cost,

because of different internal structures, meaning that they would not be equally able to keep

existing in a given environment. Apart from making such systems functionally heterogeneous

on this longer timescale, this suggests that the more efficient solution (e.g. lowest energy con-

sumption) will probably be the most likely, reducing the amount of functionally identical but

internally different systems that in practice exists in nature. FEP’s findings that internal struc-

tures of systems come to resemble the environment [20,51] also indicate that systems in shared

environments might come to have similar intrinsic experiences. However, that the animats in

our study show different baseline levels of F, despite evolving in identical environments and

with identical constraints, suggests that the intrinsic causal structures of such integrated sys-

tems can vary in ways potentially substantial for the quality of experience (although it is hard

to assess the magnitude of differences in F values).

IIT does not inherently claim that intrinsic experience will necessarily depend directly on

sensory inputs. However, sensory inputs contribute to determining the internal state of the
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system, which in turn determines the system’s state-dependent causal structure and F value.

Under the FEP, more specifically, sensory observations should affect the configuration of

internal states in ways that reflect the most probable cause of the observation, which in turn

might facilitate a stronger relation between contextualized sensory inputs and intrinsic experi-

ences. In our simulation, we see initial evidence for this: F indeed fluctuates when the observa-

tion of the block affects the internal states (which should also be the time when there is high

extrinsic information content of the animat’s sensory states).

Venues for further work

The relationship between intrinsic experience and adaptive behavior guided by implicit statis-

tical beliefs is difficult and important, but is often casually assumed or ignored by modern cog-

nitive science and neuroscience. Working with both the FEP and IIT might help elucidate this

relation. One obvious direction is to get a generative model for an active inference agent where

F can also be calculated. This would first require constructing an active inference model

which can reproduce the behavior of the animats on the block catching task. Given that the

environment, action space and time are all discrete, this can be done as a Markov Decision

Process (MDP) model. Subjecting such an optimal active inference agent to the exact same

sensorimotor exchanges as a given animat would then provide the optimal Bayesian beliefs,

precisions and variational free energy of an active inference agent in that situation, which can

then be compared to F and the conceptual structure. It is also an option to fit such MDP-

based active inference models to the behavior of the animats, as one might to a human partici-

pant (as in [31]). Comparing different models like this would allow for inferring which ani-

mats seem to have which model structures, and for example correlate F with having a

conceptual structure with a longer temporal and counterfactual depth (as is suggested by Karl

Friston [36]), which seems compatible with the fact that the more advanced animat behaviors

indeed display an ability to distinguish between more contexts, and to plan further ahead in

time.

In general, the work to relate the FEP and IIT, and probably much of consciousness science

and neuroscience in general, would benefit greatly from some thorough conceptual work clari-

fying the relations between the terms and concepts in the different theories. Words such as

complexity, intrinsicality, and ‘thing’ are used with potentially different meanings, or at least

different operationalizations, in the two theories. There is much to do in terms of investigating

the conceptual and formal relations between the constructs in IIT and FEP, but this comes

with potential for great gains. As an example, there might be in practice a relationship between

a stable Markov Blanket and the borders of a system’s main complex—perhaps maintaining a

causal border like the Markov Blanket also often results in complexes not stretching beyond

that border. Perhaps not. The relation between extrinsic and intrinsic causal borders, that is,

what it means to be a thing to the outside observer, and what it means to be a thing to oneself,

is so far not clear. In general there is much work to be done in order to bridge the two frame-

works, not to mention the colossal work being done within each framework to further develop

and improve them separately.

Methods

Simulation details

The simulation was done using the simulation framework MABE [52]. This framework, and

the particular settings and environment implemented, have been used to study IIT in an evolu-

tionary context before [53]. We base our study on the code used in [47]; all code and simulated

data can be found on a time-stamped repository at osf.io/uzpca.
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The task environment was a two-dimensional space that had a width of 16 square units and

a height of 36 square units. The left and right side of the environment were connected, so if

something moved across the edge of the environment it would appear on the opposite side.

On each trial, a horizontal block of varying length would move across the task environment in

a series of timesteps. On each timestep the block would move one unit down and one unit to

the side until it reached the bottom of the task environment. Blocks would move consistently

and unidirectionally during each trial reaching the bottom in 35 timesteps. The first timestep,

where the animats are initialized in the same all-off state, and the last timestep, where animats

are no longer performing the task but instead enters a win-or-lose state, were not used, mean-

ing that the analyzed trials consisted of 33 timesteps.

Within the environment, an animat is represented as a three unit block at the bottom of the

task environment. It constituted a small Markov brain [49] consisting of two sensory nodes,

two motor nodes and four hidden nodes, all with two possible states (on and off). The animats’

sensors were positioned on the outermost units of the animat block. They would activate the

corresponding sensory nodes if a block was in a direct line above it. The animat would then

move left or right when the corresponding motor node was activated. If both motor nodes

were in the same state, either on or off, the animat would not move. Within the network of the

animat’s Markov brain it was possible to form connections between all nodes, except that sen-

sory nodes could not have inputs and motor nodes could not have outputs. The hidden nodes

and the motor nodes would activate based on inputs according to a specific logic, which is also

adapted during evolution.

When the falling block reached the bottom of the task environment, it would be considered

a catch if the animat was overlapping with the block, otherwise the animat would have avoided

the block. The task was for the animat to catch blocks of a certain length and avoid blocks of

other lengths. In [47] there were 4 different task conditions, but here we only focus on task 1

(block lengths 1: catch and 3: avoid) and task 4 (block lengths 3, 6: catch, and 4, 5: avoid),

which in our paper is called the “easy task” and the “hard task” for simplicity.

150 evolutionary runs were simulated. Each run consisted of 60,000 generations and each

generation of 100 animats. In the first generation, the animats had no connections between

their system nodes. After each generation, the animats of the next generation were sampled

from the animats of the current generation with replacement. The better an animat performed,

the more it was sampled compared to other animats. After the animats of the next generation

had been sampled they would mutate according to a genetic algorithm, resulting in changes in

the nodes’ internal logic and their connections. For each run, data was recorded on the best

performing animat’s line of descent (LOD) every 500 generations. Thus, 121 animats were

recorded for each of the 150 LODs. Each animat performed 128 trials, each of 33 timesteps

(excluding the first and the last timestep). Depending on the task difficulty, the animat would

encounter two or four blocks of different lengths. Out of the 150 simulation runs, there were

50 runs of the easy task, which is the same number of simulations as in [47]. However, we sim-

ulated 100 runs of the hard task, in order to both get a better sample size when grouping the

data and get a larger number of perfect animats. For more details on the simulation environ-

ment and the evolutionary algorithm, see the methods section of [47].

Calculating F

The IIT analysis was carried out in python using the PyPhi package [54]. Here we use the third

iteration of the IIT formalism (“IIT 3.0”) as described in [2]. The following section will

describe in short the procedure for calculating F, summarized in Fig 9. At the moment, calcu-

lating F is only possible for discrete systems in discrete time [55]. F must be calculated for
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each timestep of interest, and thus, is state dependent. First a Transition Probability Matrix

(TPM) is made, representing the internal logic of the system’s elements. Every set of elements

within the larger system are then evaluated as candidate systems, including the whole system.

Elements outside each candidate system are called background conditions and are fixed in

their current state during the analysis of each specific candidate system. Integrated conceptual

information F is then calculated for each candidate system, where the candidate system with

the highest F is the system’s main complex. In principle, non-overlapping sets of elements

may form additional complexes that would also be considered conscious.

When analyzing a candidate system, one first derives its TPM from the full system’s TPM.

From the candidate system’s TPM one can calculate its unconstrained cause and effect reper-

toires. A cause repertoire is a (product) probability distribution across system states at the previ-

ous timestep, the probability of each state being the probability that it preceded the current state

(for details see [2]). An effect repertoire is a (product) probability distribution of how likely sys-

tem states at the following timepoint are to occur given the current state. The unconstrained

cause and effect repertoire are calculated given no information about the current state.

Next, the powerset of candidate mechanisms are found, i.e. all possible subsets of the candi-

date system including the whole system. Then for each candidate mechanism all possible pur-

views of the mechanism are evaluated. A purview consists of a mechanism at the current

timestep and the same or a different set of elements at the previous timestep (cause purview)

or the next timestep (effect purview). The purviews are evaluated in order to find the purviews

over which a maximum of integrated information φ is specified for the cause and effect sepa-

rately (φcause and φeffect). φ is calculated as the earth mover’s distance between the cause or

effect repertoire of the purview (the probability distribution given the purview) and the parti-

tioned cause or effect purview under the minimum information partition (with the minimum

distance to the repertoire of the non-partitioned purview). The minimum information parti-

tion is found by iterating over all possible partitions and calculating this distance. The sets of

elements pertaining to the cause and effect purviews that specify a maximum of φ are the

mechanism’s core cause or core effect, respectively. The overall φ value of the mechanism itself

is the minimum of φcause and φeffect. In the case that this is a non-zero value, the mechanism

and its cause-effect repertoire constitute a concept.

When all concepts of the candidate system are found, these concepts constitute a conceptual

structure. To calculate integrated conceptual information F, the candidate system is parti-

tioned in all possible ways. The partitioning is now unidirectional, so that either the input or

the output of an element can be cut, but not both. For each of the partitioned systems, the con-

ceptual structure is derived. F is then calculated as the distance between the conceptual struc-

ture of the non-partitioned system and the conceptual structure of the system under the

minimum information partition, using an extended version of the earth mover’s distance.

Again, the minimum information partition here is the way to partitioning the system, such

that there is a minimum distance. Note that both here and at the level of mechanisms, using

the minimum information partition quantifies how much the mechanism or the system can-

not be reduced to its parts and thus how much it is integrated to be “something” above and

beyond its parts.

Approximating surprisal

In order to calculate surprisal, we first construct empirical goal priors, an empirical approxima-

tion of the expected sensory states an adaptive animat would have. Based on this probability

distribution, we calculate the surprisal at each timestep in each trial for each animat.
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Specifically, the empirical goal prior is the probability distribution over sensory states

observed in perfect animats at the end of evolution (with four possible states being the four

constellations of either active or inactive sensory nodes). The distribution is created by count-

ing how often each sensory state occurs across trials on the final generation for all animats

with perfect fitness. Separate probability distributions are created for each perfect animat, for

each combination of task type (catch or avoid) and block movement (left or right), and for

each timestep during the trial. We make separate probability distributions for each perfect ani-

mat because there are multiple optimal strategies, so that averaging across them would result

Fig 9. A summary of the procedure for calculatingF.

https://doi.org/10.1371/journal.pcbi.1011346.g009
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in probability distributions that do not appear for any one animat. Similarly, we create differ-

ent probability distributions for different task types and block directions because these contex-

tual conditions result in different kinds of sensory states being related to adaptive behavior.

Finally, we make different probability distributions for each timestep because there are qualita-

tively different patterns of sensory states in the beginning of a trial, compared to the end of a

trial, where adaptive animats are able to converge on a pattern of sensory states. We do not dis-

tinguish between different block starting positions, nor between different block lengths within

the same trial type, as these do not affect the kind of observations that are related to adaptive

behavior.

Surprisal is then calculated as the negative log probability of a given sensory state occurring

given the timestep, task type and block direction:

IðoÞ ¼ � lnðPðoÞÞ

with I being the surprisal, o the observations and P(o) the empirically observed probability

over sensory states, given a timestep, a task type and a block direction. Surprisal is calculated

separately for each of the probability distributions belonging to each of the perfect animats.

The distribution which results in the lowest average surprisal for one animat at one generation

across trials is then used as its surprisal score at each timestep, ensuring that surprisal is calcu-

lated relative to the perfect strategy which is the closest to the strategy employed by that ani-

mat. Fig 10 shows depictions of these goal priors, relative to which the empirical surprise is

calculated. Here we see sensory state probability distributions for each of the perfect animats,

in each of the four types of trials, over trial time. We see how goal priors become much less

entropic as trials end, because animats are better able to act in ways that ensure their senso-

rium remains in a state that is associated with adaptive behavior. We also clearly see the differ-

ent strategies employed by the animats: most animats use the following strategy, where they

either see or do not see the block (depending on task type) for the entirety of the trial after

inferring its size; or they use a pass-over strategy where they see the block twice. Technically,

the goal prior is meant to be an evolutionarily selected expectation for receiving sensory inputs

corresponding to self-maintaining and self-replicating behavior. In this example, that would

be an expectation for succeeding on trials, from which expectations for catching or following

blocks would follow, in turn giving rise to expectations of specific sensory-motor patterns. Our

empirical goal priors, however, are defined directly for sensory states, and are not technically

expectations on what is relevant for survival (success on tasks). Nevertheless, they implicitly

are expectations for trial success, given that they are expectations for behavior observed in the

agents which perform the task perfectly.

These empirical goal priors are used to calculate an approximation of the surprisal that

would be associated with an animat encountering a given set of sensory states, if it were to be

performing active inference under a generative model of its environment. Such a model is sim-

ply a probabilistic specification of the relations between environment states, sensory states and

animat action states: P(o, s, u, θ). Here, o are the animat’s observations (the sensory states), s
are the states of the environment (block length, block direction, block position, own position

etc.), u are the active states of the animat (moving left or right or standing still), and θ are the

probabilistic relations between each of these, the parameters of the generative model. Note that

s and u would be inferred by an animat at within-trial time, while the parameters θ would be

learnt over evolutionary time. Note also that the generative model would not necessarily corre-

spond exactly to the generative process in the environment, since models in addition to

becoming more accurate also become simpler with free energy minimization, abstracting away

irrelevant parts of the environment.
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Fig 10. Empirical goal priors (EGPs) of the LODs in the hard task, which reached perfect fitness. For each perfect animat, 4 EGPs

were constructed based on distinguishing first, catch and avoid trials, but also, left and right trials. The top row of blocks represent the

avoid EGPs and the bottom row the catch EGPs. Those based on left trials are on the left and those based on the right trials are on the

right. Each block consists of 8 heat maps, one for each of the LODs. The heat maps have 33 columns, one for each timestep (minus the

first and last), and 4 rows, one for each possible sensory state. The sensory states are denoted by two binary digits, the first representing

the left sensor and the second the right sensor (0 = off, 1 = on). Each cell in the heatmap represents the probability of the given sensory

state at the given timestep. The color coding is constructed such that white represents a 0.25 probability. As the probability decreases

below 0.25 colors become increasingly gray, and as the probability increases above 0.25 colors become increasingly orange. Probabilities

with a value of 1 have a dark purple color to indicate states of certainty.

https://doi.org/10.1371/journal.pcbi.1011346.g010
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The marginalization of P(o, s, u, θ) required to produce P(o) is in most cases computation-

ally intractable. This is the reason that a variational free energy upper bound is used instead,

forming the heart of active inference under the free energy principle. We here circumvent this

step by approximating P(o) empirically. This allows us to investigate the animats’ surprisal

without reconstructing their generative models P(o, s, u, θ), but also distances us somewhat

from the Free Energy Principle in two ways. Firstly, the approximation is not necessarily per-

fect. The actual generative models that best account for the animats’ behavior might vary,

either in their goal priors, so that some animats might expect to fail the task, or in how they

expect states of the environment to interact, so that the animat might have bad predictions

about the consequences of its actions. The former case would of course be removed by evolu-

tion, and the latter case is exactly what distinguishes adaptive from non-adaptive animats, for

those animats with ill-specified generative models will often have incorrect expectations, lead-

ing to higher surprisal despite their attempts at minimizing it. The second way in which we

depart from the Free Energy Principle is that the variational free energy is an upper bound on

surprisal, where the difference between variational free energy and surprisal is the divergence

from the animat’s current model of the world, relative to the Bayes-optimal model given the

sensorium. The difference between surprisal and the variational free energy is also not cap-

tured by our approximation; this is not necessarily a problem, however, since the goal of free

energy minimization in the FEP is after all the implicit minimization of surprisal.

It is also worth noting that there exist other formal frameworks for describing and produc-

ing task-optimal behavior, and that some of these may also be relatable to our surprisal mea-

sure. Perhaps most relevant is KL-control, a control-theoretic approach where an agent

chooses actions that minimize the divergence between a target and an expected distribution of

(sensed or inferred) states [56]. Active inference generalizes KL-control by additionally mini-

mizing the ambiguity of sensory observations [25], but since there is no ambiguity in the cur-

rent task, behavior based in KL-control and in active inference is likely to be very similar. This

should mean that our surprisal measure is likely to also reflect aspects of KL-control like the

expected control cost. This construct, however, differs from our surprisal measure in it not

being linked to making sensory observations, but rather being a component of action planning

and selection. More importantly, while active inference is grounded in the FEP, and is used as

a theoretical framework for understanding self-organization and life generally, control theoret-

ical approaches more commonly are used in machine learning and engineering contexts. Our

interest here is to investigate the relationship between IIT as a theory of consciousness and the

FEP as a cognitively interpretable account of adaptive behavior grounded in self-organization

(as opposed to an approach for machine learning that may or may not be useful). Our focus is

thus on surprisal in its capacity as a proxy measure reflecting the FEP, and not on how it might

relate to control-theoretical approaches like KL-control.

Computational analysis of the relation between F and surprisal

The computational analyses beyond calculating F and surprisal, as well as the production of all

plots, was coded in the programming language R [57]. All analysis scripts can be found at the

project’s OSF page: osf.io/uzpca.

The cross-correlation analysis was carried out using the ccf function of the tsibble package

[58]. Cross-correlations with lags ranging between -16 and 16 were calculated for each trial of

all last generation animats (see S4 for distributions across all lags). Since the correlation coeffi-

cient can’t be correlated when one of the variables is always 0, all trials with a constant F value

of 0 were excluded (24.8% of trials in the easy task and 8.9% of trials in the hard task). The lag-

ging variable was F, meaning that for negative lags the correlations measure the relationship
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between F and future surprisal, and vice versa for positive lags. Correlation profiles were

derived from the 0 lag correlation coefficients. Neutral profiles had correlation coefficients

between -0.1 and 0.1, negative profiles had coefficients below that range and positive profiles

above it. For analysis in trial time each trial was assigned a correlation profile independent of

what LOD or animat it belonged to. For analysis on evolutionary time each LOD was assigned

a profile based on the average correlation coefficient across all trials of the final generation

animat.

We performed a multilevel linear regression to test for a correlation at the last generation

between fluctuations (i.e., absolute change from last timestep) in F and surprisal at lag 0, with

random intercept for animat a and trial τ, as well as a random slope for animat a. Here, the

first timestep of each trial was excluded as a change from last timestep cannot be calculated at

the beginning of the trial.

jDFj ¼ b0a;t þ b1a � jDIj

For the analysis in trial time, only trials belonging to animats on the final generation were

used. For the analysis in evolutionary time, all F and surprisal values were first averaged across

all timesteps for each animat to create an evolutionary time series for each LOD. These were

smoothed by averaging each generation with the previous 5 generations. This was done in

order to resemble the methods in [47]. Then all LODs were averaged across each generation to

create the average evolutionary run. The whole process was done separately for each group.

Although the animats of the hard task ending with perfect fitness were a group on their own

throughout the analyses, they were also included in the general group of hard task animats.
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