
RESEARCH ARTICLE

An integrated approach to the

characterization of immune repertoires using

AIMS: An Automated Immune Molecule

Separator

Christopher T. BoughterID*, Martin Meier-SchellersheimID*

Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and

Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America

* christopher.boughter@NIH.gov (CTB); mms@NIAID.NIH.gov (MMS)

Abstract

The adaptive immune system employs an array of receptors designed to respond with high

specificity to pathogens or molecular aberrations faced by the host organism. Binding of

these receptors to molecular fragments—collectively referred to as antigens—initiates

immune responses. These antigenic targets are recognized in their native state on the sur-

faces of pathogens by antibodies, whereas T cell receptors (TCR) recognize processed anti-

gens as short peptides, presented on major histocompatibility complex (MHC) molecules.

Recent research has led to a wealth of immune repertoire data that are key to interrogating

the nature of these molecular interactions. However, existing tools for the analysis of these

large datasets typically focus on molecular sets of a single type, forcing researchers to sepa-

rately analyze strongly coupled sequences of interacting molecules. Here, we introduce a

software package for the integrated analysis of immune repertoire data, capable of identify-

ing distinct biophysical differences in isolated TCR, MHC, peptide, antibody, and antigen

sequence data. This integrated analytical approach allows for direct comparisons across

immune repertoire subsets and provides a starting point for the identification of key interac-

tion hotspots in complementary receptor-antigen pairs. The software (AIMS—Automated

Immune Molecule Separator) is freely available as an open access package in GUI or com-

mand-line form.

Author summary

Over the past decade, the success of immunotherapeutics coupled with the declining costs

of sequencing have stimulated a near exponential growth in the identification of novel T

cell receptor, peptide, and antibody sequences for use in combating disease and dysregula-

tion. With these new datasets freely available to researchers, a wealth of analytical tools

have been created for standardized data analysis. However, these tools are largely frag-

mented, capable of processing only singular molecular species, likewise generating frag-

mented interpretations of complex adaptive immune environments. In this manuscript,
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we outline the capabilities of a new analytical tool, the AIMS: Automated Immune Mole-

cule Separator software, designed for the uniform analysis of all adaptive immune mole-

cules. AIMS accomplishes this cross-receptor compatibility using an amino acid sequence

encoding approach that captures key biophysical properties without requiring explicit

experimental structural data. The software can be extended to non-immune molecules,

making AIMS a widely applicable platform for the broader analysis of protein-protein

interactions.

Introduction

To control infection and disease, the adaptive immune system of higher organisms utilizes a

complex collection of receptors and signaling pathways specifically tailored to each individual

immunological challenge [1–4]. Over the past decade, researchers have increasingly leveraged

these receptors, specifically antibodies and T cell receptors (TCRs), to generate novel therapeu-

tics [5–11]. Generally, the success of natural immune responses or therapeutics are strongly

dependent on the ability of these receptors to recognize and appropriately respond to patho-

genic threats. However, recognition of pathogens is a dynamic challenge for the immune sys-

tem as the generation of its receptors is dependent on the identity of the pathogens, and the

pathogens themselves are frequently capable of generating compensatory mutations that, in

turn, require adaptations in the immune responses.

Both sides of this competition are subject to a balancing act; successful pathogens must

mutate and generate variants that reduce detection by the host immune system yet maintain a

sufficient level of biological fitness, whereas successful immune responses must recruit or gen-

erate receptors that bind with high affinity and specificity to a given pathogen yet ideally main-

tain sufficient breadth to adapt quickly to these pathogenic variants [12–14]. This biological

back and forth is encapsulated by the amino acid sequences that determine the interaction

strength between the molecular players involved in adaptive immune recognition. The costs

for determining these amino acid sequences of immune receptors has been decreasing rapidly

[15], thereby providing access to datasets exponentially increasing in size [16–20]. Likewise,

current sequencing technologies allow us to follow the evolution of viruses and identify vari-

ants of concern in real-time across the globe [21]. Characterization of the peptides presented

by MHC, also referred to as the immunopeptidome, relies on mass spectrometry-based identi-

fication. While this method severely limits the coverage of each experiment, single immuno-

peptidomic assays can yield thousands of identified pathogenic or self-peptides [22]. As these

sequence databases continue to expand, methods for analyzing their large datasets must keep

pace, helping researchers to identify key distinguishing features of the sequences identified in

any given immunological niche.

Excellent software exist for the analysis of TCR sequences [23–28], antibodies [25, 29–32],

and peptides [33–35]. Conversely, the analyses of viral sequences are largely dependent on

multi-sequence alignments, phylogenetic analysis, or custom pipelines from researchers in a

specific viral sub-field. While each of these approaches are powerful tools in their respective

fields, they make comparisons across immune repertoires difficult. Software that compares,

for instance, peptide and TCR repertoires typically give a simple binary “yes” or “no” to ques-

tions of binding, removing the underlying biophysical context that determines these interac-

tions. Further, a majority of the analyses are developed for a very specific task, such as

prediction of peptide binding to a specific MHC allele or identification of the evolutionary tra-

jectory of a given antibody sequence. General characterizations of a given immune repertoire
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are often done via an in-house analysis, focusing on simplified quantities such as net biophysi-

cal properties of sequences, as well as their lengths or conservation.

To facilitate more thorough analyses and comparisons of amino acid sequences, we devel-

oped the AIMS (Automated Immune Molecule Separator) software to take into account their

fundamental biophysical properties to characterize, differentiate, and identify clusters within

immune repertoires. While the initial input and encoding of sequences into AIMS is different

for each of the distinct molecular classes of immune repertoires, the downstream analysis is

identical and allows for cross-receptor comparisons and the identification of patterns in the

corresponding trends of interacting molecules. The application of AIMS for targeted investiga-

tions of specific biological systems has been previously described [36–38]. Here, we outline

applications of the software to each immune repertoire class with a specific focus on the soft-

ware’s integrated analytical capabilities for cross-repertoire analyses.

Results

Encoding amino acid sequences and their biophysical properties

Although the ideal repertoire analysis would build off of complex structures either determined

experimentally or predicted computationally, the former approach is inherently low-through-

put while the latter is unreliable, even for the most advanced structural prediction software to

date [28, 39]. The AIMS software, conversely, takes advantage of the structural conservation

inherent to immune molecules, selecting out only the regions involved in the interaction inter-

face. These conserved interacting regions, which are highly variable at the sequence level, are

then aligned in matrix form using a pseudo-structural approach that varies across the available

analysis modes for each molecular species. By incorporating general structural features, rather

than explicit contact predictions, AIMS reduces the bias of the analysis by minimizing the reli-

ance on assumptions of structural accuracy.

Among TCR-peptide-MHC complexes, the interaction interface is strikingly similar, with

crystal structures consistently finding nearly identical docking angles between the two [37, 40–

44]. TCRs contact the peptide and the MHC α-helices via their six complementarity determin-

ing region (CDR) loops, which are in turn connected via stem regions to their well conserved

framework regions. These stem regions adjacent to the CDR loops are never found within 5 Å
of the antigen [26], and are easily identified by highly conserved amino acids, allowing for the

exclusion of framework regions from the analysis. In a majority of structures, assuming the

conserved stem regions are defined as endpoints, the central 4–5 residues of the CDR3 loops

contact the central residues of the peptide [26] (Fig 1A and 1B). From these general structural

rules, we can inform the encoding of TCR sequences into AIMS, imposing a “central” align-

ment scheme as the standard.

In the central alignment scheme, we align each sequence to the central residue of each CDR

loop. Whereas most analysis tools segregate TCR sequences by length, thereby artificially seg-

menting the data, the central alignment scheme of AIMS allows for receptors of all lengths to

be analyzed simultaneously while focusing on the key regions of the receptor. Due to the

length differences of the TCR sequences in a given dataset, signals from the CDR stem regions

will be averaged out, thus prioritizing signals from the center of the CDR loops. We can visual-

ize an example of this encoding for a test dataset of paired TCRα and TCRβ sequences from

the VDJ database [16] (Fig 1C). In this matrix, we can see that each amino acid is encoded as a

unique number in the matrix 1 to 21, or a unique color in the figure, with padded zeros

between CDR loops represented by white space in the figure. To control for potential artifacts

introduced by this approach, analysis can be repeated with “left” or “right” alignment of the

sequences, aligning to the N- or C-termini, respectively, of the given sequences (S1 Fig).
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The standard AIMS encoding for peptides is slightly different from this central TCR align-

ment scheme. For class I MHC, the flanking regions of bound peptides are frequently ‘buried’

as highly conserved anchor residues that bind to the MHC platform (Fig 1A and 1B). The

majority of TCR contacts are made with the central regions of the peptides that bulge out of

the MHC binding groove in the case of longer peptides [45]. However, exceptions to this para-

digm may not be uncommon, with TCRs capable of contacting the often-buried peptide N-ter-

minal residue [46] and the C-terminal residue potentially extending out of the MHC pocket

[47]. Nonetheless, the length distribution of peptides presented by class I MHC is narrow [33],

subverting some of the sequence length concerns present in the TCR analysis. As such, peptide

encoding in AIMS adopts a “bulge” scheme. The bulge scheme aligns the N- and C-terminal

residues to either edge of the matrix, along with a user-defined number of additional flanking

residues. Zeros are padded between these flanking regions and the remaining residues are cen-

trally aligned as in the case of the TCR sequences, again adopting the same numeric amino

acid encoding scheme (Fig 1D). We can see clearly for this subset of HLA-A2 presented Influ-
enza peptides taken from the Immune Epitope Database (IEDB) [48] the relative conservation

at anchor position 2, compared to the variability at the center of the peptide sequences. Impor-

tantly, this bulge alignment can also be applied to TCR and antibody sequences, putting more

focus on their conserved stem regions.

Fig 1. Example of AIMS encoding for the analysis of TCR-peptide interactions. (A) Rendering of a specific TCR-

pMHC interaction (PDB ID: 1OGA) with TCRα shown in blue, TCRβ in orange, MHC in white. (B) Inset shows a

zoom in on this TCR-peptide interface, with the MHC now translucent. Representative AIMS encoding of the single

TCR CDR3β sequence (C, central-encoding) or the peptide sequence (D, bulge-encoding) in panel A. Below these

single encodings are examples of full TCR repertoire (C) or immunopeptidome (D) AIMS-encoded matrices. Each

amino acid in the structures, the single encoded sequences, and the matrices is represented by a unique color.

https://doi.org/10.1371/journal.pcbi.1011577.g001
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AIMS is capable of analyzing other molecules with conserved structural features and local-

ized interfacial heterogeneity, including antibodies [36], MHC and MHC-like molecules [37],

and, more generally, any molecular subset that can be successfully aligned using existing

multi-sequence alignment software [38] (S2 Fig). The generalized AIMS encoding scheme

allows for any molecular biologist or bioinformatician to take advantage of the downstream

biophysical characterization tools of AIMS for their application of interest. All downstream

repertoire characterization follows from this initial encoding, and takes identical paths regard-

less of the immune repertoire under consideration (S3 Fig). In the following sections we will

outline the distinct AIMS modules, applying them to data that best demonstrates the utility of

the analyses we perform, rather than opting for a contiguous analysis to a single dataset. More

extensive descriptions of AIMS input and output options are provided in the supporting infor-

mation accompanying this manuscript.

Unsupervised clustering of a TCR repertoire from an unsorted dataset

To illustrate the implementation of dimensionality reduction and clustering modules in

AIMS, we generate a new analysis from the paired-chain data derived from VDJdb [16]. These

sequences are complete with metadata regarding their epitope specificity, MHC allele presen-

tation, and the haplotype of the individual each receptor was isolated from, if it was naturally

derived. As intuition and recent quantitative work have suggested [49], paired-chain TCR

sequence data greatly increases the information content from a given repertoire sequencing

experiment when compared to single chain sequencing. Using the dimensionality reduction

and clustering modules, we can determine precisely how strongly the analysis changes upon

inclusion of the CDR3α sequences (Fig 2).

We first generate the sequence encoding and biophysical property matrices (see S1 Table

for list of properties) for both the paired-chain dataset and the CDR3β-only dataset. From this

biophysical property matrix, the sequences are projected onto a three-dimensional space using

the uniform manifold approximation and projection (UMAP) dimensionality reduction algo-

rithm [50], and subsequently clustered using the density-based OPTICS (Ordering Points To

Identify the Clustering Structure) algorithm [51] (Fig 2A and 2B). It is important to note that,

for improved clarity, the projections shown here remove four outlier sequences with a proline

in CDR3α and CDR3β, a very rare amino acid in TCR CDR loops (see S4 Fig for projection

with outliers). From the UMAP projection and OPTICS clustering of Fig 2A and 2B we can

see that the number of distinct outlier populations is increased in the paired chain dataset, sug-

gesting the identification of a higher number of biophysically distinct sequences.

Visualizing just a subset of the clusters back as encoded matrices (Fig 2C and 2D) we see

that this is likely due to the clustering of the paired chain data picking up unique motifs in

both CDR3α and CDR3β, suggesting that these strong outliers can come from either chain.

These clusters can then be analyzed for cluster membership compared to their original dataset

identifiers, here based on the antigen recognized by each TCR (Fig 2E and 2F). Importantly,

cluster purity can be measured relative to the metadata of choice, such as antigenic species

source, allele of presenting MHC, organism haplotype, or virtually any other identifiable char-

acteristic that can be encoded as metadata for the sample (S5 Fig).

This visualization of antigen recognition for each cluster (Fig 2E and 2F) highlights subtle

differences between the paired-chain and single-chain datasets. We see that despite a nearly

equal number of clusters identified, the average cluster purity is higher for the paired chain

data at 0.50 ± 0.28 when compared to the single chain data at 0.37 ± 0.24, although not signifi-

cantly so. We notice however that the few pure or close to pure clusters are coming from the

same two antigens, NLVPMVATV and LLWNGPMAV, largely because these antigens make
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up 43% and 23% of the total dataset, respectively. Overall, these results show that while unique

CDR3α motifs are critically important for antigen recognition and for understanding the full

breadth of receptor diversity, a fairly accurate picture of sequence diversity and similarity can

still be generated from CDR3β sequences alone.

Going beyond receptor clustering and motif analysis

The biophysical analysis in this and the following section can be carried out with individual

clusters of sequences derived from unstructured data, as outlined in the previous section, or

from antigenically well defined populations (see S6 Fig or Boughter et al. [36] for examples). In

highlighting the features of the biophysical property analysis, we select the two antigenically

Fig 2. Comparison of the purity of receptor clustering using paired chain (left) or single chain CDR3B (right) data. Dimensionality

reduction using UMAP, followed by density based OPTICS clustering subsects the data into biophysically similar paired chain (A) and single

chain (B) receptors. The first ten of these clusters are then re-visualized in their AIMS-encoded matrix, with black lines marking different

clusters (C, D). The antigen specificity of each of these clusters is then quantified by percentages (E, F), with the colors corresponding to

specific peptides as shown in the key.

https://doi.org/10.1371/journal.pcbi.1011577.g002
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purest clusters of Fig 2 from both the paired-chain and single chain datasets with specificity to

the NLVPMVATV and LLWNGPMAV antigens (Fig 3A and 3B). From these cluster subsets,

we can appreciate that despite having nearly the same antigenic purity in each of these clusters,

the paired chain clusters surprisingly display increased CDR3β diversity. While we are able to

generate sequence logos for the distinct motifs in these clusters (S7A and S7B Fig), the AIMS

analysis pipeline permits a more thorough biophysical characterization of these clusters.

Specifically, from the high-dimensional biophysical property matrix for each of these clus-

ters, we can isolate single property masks (S7C and S7D Fig) which can be averaged across rep-

ertoires (Fig 3C and 3D) or across repertoires and positions (S7E and S7F Fig), generating

position sensitive or net average biophysical properties for the molecular subsets of interest.

These biophysical property visualizations can be used to more carefully compare and contrast

the clusters generated from the paired-chain and single chain datasets. We see from the posi-

tion-sensitive biophysical property averages that the physical properties of CDR3β are matched

in the paired-chain and the single-chain clusters, despite the significant difference in diversity

in this region. The positively charged segment of CDR3β in TCRs recognizing the

LLWNGPMAV peptide is seen in both datasets, while a corresponding negative segment is

found in the CDR3β of TCRs recognizing the NLVPMVATV peptide.

Fig 3. Isolation of individual sequence clusters and subsequent position-sensitive biophysical characterization of these sequences highlights the details

provided by AIMS analysis. A subset of clusters identified in Fig 2 are isolated and shown as their AIMS matrix encoding for the paired chain (A) and single-

chain (B) datasets. From these encodings, we can calculate the position sensitive biophysical properties for each cluster (C, D). Opaque lines with dots

represent the averages over each cluster, while wider translucent regions centered on these lines give the variance as calculated by a bootstrapping procedure

(Methods). Statistically significant differences (p< 0.05, calculated via non-parametric permutation test) are denoted by asterisks, with an asterisk over a solid

bar representing extended regions of statistically significant differences.

https://doi.org/10.1371/journal.pcbi.1011577.g003
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Given the lack of charged residues in the peptides, the conservation of charge in these pure

clusters is somewhat surprising. Conversely, the hydropathy score of the CDR3β chains is far

more variable within the paired-chain clusters, although the same general trend is again fol-

lowed when compared to the single-chain data, with two distinct peaks in hydropathy and a

region neither lacking nor enriched in hydrophobic residues. This is a common feature in the

clustering of sequences in AIMS, and may reflect the nature of the hydrophobicity metrics

used, or alternatively could be suggestive of the critical determinants of the formation of TCR-

pMHC complexes. While charges in the interface must be delicately arranged to form interfa-

cial interactions and offset the significant energetic penalties of desolvation, more hydrophobic

residues are free to effectively “fill in the blanks” and pack as best they can. While only the

position sensitive charge and hydropathy are highlighted in this section, any of the 61 standard

AIMS properties can be visualized either as position-sensitive averages across receptors, or as

net averages over position- and sequence-space.

Generating quantitative metrics of repertoire diversity and amino acid

patterning

While the biophysical characterization of immune repertoires can help answer questions

regarding the mechanisms of immune recognition, complementary analysis can help contex-

tualize these findings, relating biophysical properties back to patterns in the data resulting

from the source of the molecules (e.g. human, mouse, or virus) or other external influences

(e.g. selection or affinity maturation). In AIMS, we can further quantify entire repertoires,

cluster molecular subsets, or define antigenic groups using an array of statistical and informa-

tion theoretic approaches. Information theory is built for the analysis of sequences of inputs

and outputs [52]. Here, these inputs and outputs are the amino acids making up our immune

repertoires quantified via the observed probability distributions across these sequences. In tele-

communication, quantification of inputs and outputs determine the messages which can be

sent over a given channel, whereas in the study of immune receptors this same quantification

determines the range of pathogenic targets which can be recognized by a given immune sys-

tem. To illustrate this we switch from the VDJdb example to two subsets of isolated peptides

from the IEDB: Influenza A- and Ebolavirus-derived peptides presented by HLA-A*02:01 and

HLA-B*15:01, respectively [48]. Importantly, this analysis proceeds without an initial cluster-

ing step, and direct differences between the datasets are interrogated as-is.

Our approach leverages the inherent position-sensitivity of the encoded information to

build up a site-specific probability distribution (Fig 4A) for these peptide inputs. We see from

these position-sensitive probability distributions that the expected anchors at P2 and the C-ter-

minal positions (or P1 and P14 in the AIMS encoding of S8 Fig) have the strongest amino acid

preference, as expected for these positions [53, 54]. We see in comparing these two datasets

that only P2 leucine (20% enrichment) and P2 glutamine (16% enrichment) show up as dis-

tinct anchors for HLA-A*02 and HLA-B*15, respectively, because other strong anchors are

shared between these two alleles. Due to the limited overlap in the C-terminal anchors, we see

strong preferences towards HLA-B*15 peptides containing PO tyrosine and PO phenylalanine

(15% and 22% enrichments), and a similar preference towards PO isoleucine and PO valine

anchors for HLA-A*02 (21% and 20% enrichments). However, whereas conventional

sequence logo plots can generate similar inferences, albeit via a more indirect comparison, our

analysis takes these probability distributions a step further. First, from the position-sensitive

probability distribution, we can calculate information theoretic metrics such as the Shannon

entropy and the mutual information to quantify diversity and relationships among the peptide

preferences for these repertoires.

PLOS COMPUTATIONAL BIOLOGY A guide to AIMS: An Automated Immune Molecule Separator

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011577 October 20, 2023 8 / 26

https://doi.org/10.1371/journal.pcbi.1011577


We show the position-sensitive entropy for these two defined peptide populations as well as

the sequence coverage resulting from the bulge encoding scheme (Fig 4B). Immediately, we

see drops in the entropy in regions of high coverage corresponding to the anchor positions

(AIMS P1 and P14). Further, we see that even with peptides derived from single viral clades,

the diversity at the center of the peptides is nearly maximal, i.e. all 20 amino acids occurring at

nearly equal probability. Given the arguments for the necessity of cross-reactivity in T cells

[55], this massive diversity from singular datasets is perhaps unsurprising.

The mutual information is a quantification of the decrease in uncertainty resulting from a

known condition. In the case of amino acids it quantifies relationships between amino acid

correlations in distinct regions of a sequence. Looking at the difference in the mutual informa-

tion between the Influenza A- and Ebolavirus-derived peptides, we see strong trends of

increased information between the N- and C-terminal ends of the Ebolavirus-derived peptides

(Fig 4C). We further see that although only the Influenza A-derived peptides have a varied

Fig 4. Statistical and information theoretic AIMS analysis of Influenza A- and Ebolavirus-derived peptides. (A) Position sensitive amino acid

frequency difference between the two peptide datasets. (B) Position sensitive Shannon entropy quantification and encoding coverage of the two peptide

datasets. Statistically significant differences in the entropy (p< 0.05, calculated via non-parametric permutation test) are denoted by asterisks. The

coverage applies to all position sensitive metrics, and highlights that differences in the entropy and mutual information at positions 5 and 9 are largely due

to differences in coverage. (C) Position sensitive mutual information difference between the two peptide datasets. (D) Di-gram amino acid frequency

difference calculated between the two peptide datasets. In all difference plots, a deeper shade of purple represents a higher quantity for the HLA-A*02

presented Influenza A peptide dataset, while a deeper shade of orange represents a higher quantity for the HLA-B*15 presented Ebolavirus peptide dataset.

Raw distributions for each individual dataset (S9 Fig) and identification of statistically significant regions (S10 Fig) can be found in the supporting

information.

https://doi.org/10.1371/journal.pcbi.1011577.g004
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length distribution, leading to the wider central entropy peak, there is a clear signal in these

long peptides, suggesting a specific subset of amino acid usage in the peptides that tend to be

longer. Generally in immune repertoire analysis, mutual information may represent instances

of co-evolution or receptor cross-talk, as has been discussed in analysis of polyreactive anti-

body sequences [36]. The goal of this information-theoretic analysis is to identify key regions

of increased diversity, conservation, or crosstalk.

As a final step, we can attempt to identify the source of the patterns in the short-range

mutual information through the analysis of di-gram amino acid probabilities. Removing the

position sensitivity of the peptides in each dataset, we can count the raw occurrence probabili-

ties of each peptide di-gram using a sliding window, building up a probability distribution for

each amino acid pair, where the order of occurrence matters (Fig 4D). Interestingly, although

there are strong differences in the raw amino acid occurrence probabilities for each dataset (S8

Fig), the di-gram differences are often concentrated in particular regions. For instance,

although valine and isoleucine are more frequently found in Influenza A dataset, the valine-

isoleucine digram is more common in the Ebolavirus dataset. In addition to the standard anal-

ysis pipeline outlined here, the analysis can be extended to include N-gram motifs, providing

the potential to identify regions with a propensity for certain tri-grams or higher-order motifs.

Care must be taken when utilizing these N-gram formulations, however, as extension to the

extreme such as in the analysis of nine-gram motifs for peptide datasets will identify statisti-

cally significant but not particularly meaningful data.

Comparisons to existing software

While the AIMS analysis pipeline has been developed to address more than just TCR reper-

toire analysis and clustering, it shares some features with existing software such as GLIPH [26]

and TCRdist [24, 56]. These software packages aim to identify TCR sequences enriched above

background populations or to cluster sequences with similar amino acid motifs, taking differ-

ent approaches but generating comparable results to the AIMS clustering outlined above. For

GLIPH, we compare our ability to identify distinct motifs using the standard AIMS analysis,

whereas in comparing to TCRdist we more quantitatively compare the TCRdist “distance”

metric to the corresponding AIMS distance between TCRs.

As a representative motif comparison, we examine the output of GLIPH from Glanville

et al. [26] as applied to the Influenza antigen M1 presented by HLA-A*02:01 (Fig 5). In addi-

tion to the benchmarking of the results of each software, we can compare and contrast the dis-

tinct paths to these results. One such difference between AIMS and GLIPH is that there is no

“reference population” needed as input for AIMS. AIMS takes the identified M1-reactive

sequences (Fig 5A), generates the previously discussed biophysical property matrix, and identi-

fies biophysically distinct clusters in a projected space of these biophysical properties (Fig 5B).

Unlike the more diverse clusters of Fig 2 resulting from the analysis of a broad input reper-

toire, this more targeted analysis of tetramer-sorted sequences results in more homogeneous

clustered sequences (Fig 5C). From these clusters, we can then identify the key sequence motifs

of each cluster and compare these to the GLIPH results (Fig 5D).

AIMS identifies thirteen biophysically distinct clusters, three of which fully encapsulate the

results of GLIPH. We note that while GLIPH identifies the motifs SIRS, IRS, and SIR as dis-

tinct, AIMS identifies these sequences in the single cluster SXRS. Further, coloring the

sequences by a description of the most basic amino acid properties shows that many of the dis-

tinct GLIPH motifs are biophysically degenerate. While the GLIPH results seem to suggest

that arginine is a requisite for recognition of the highly hydrophobic peptide GILGFVFTL, we

see suggested arginine enrichment is relaxed in the AIMS results, instead suggesting the need
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for smaller amino acids (S, T, G, A) or nonpolar residues. Importantly, it is clear that a hydro-

philic amino acid is well tolerated or in fact required for recognition, as six of the seven

highlighted AIMS clusters have such a conserved residue in CDR3β.

We can furthermore quantitatively compare the AIMS analysis to TCRdist, an analysis soft-

ware that clusters and annotates inputs of large TCR repertoires based on similarity. The “dis-

tance” metric critical to the TCRdist pipeline provides a useful quantitative comparison point

for our AIMS analysis. Importantly, this distance metric is fundamentally based upon the

BLOSUM62 substitution matrix [57]. The BLOSUM62 substitution matrix implicitly encodes

biophysical similarities and differences between amino acids, whereas the AIMS encoding

explicitly encodes all of these biophysical properties in a single high-dimensional matrix. As

such, we should expect similar, but not necessarily identical results when calculating the TCR

distances using both TCRdist and AIMS.

Using the mouse TCR repertoire data of Dash et al. [24], we first generated the AIMS

encodings for either the CDR3 loops of the sequenced TCRs (Fig 6A) or for all six CDR loops

of these same TCRs (Fig 6B) with the intention of matching the two main distance output

options in TCRdist. We next generated the high-dimensional biophysical property matrices

for each of these AIMS-encoded matrices, normalized each feature as discussed previously,

and removed highly correlated vectors from each matrix. While the next step in the standard

Fig 5. Comparison of AIMS TCR clustering analysis to GLIPH results. (A) The Influenza-reactive TCRs identified by Glanville et al. [26] are encoded

into an AIMS matrix using the bulge-encoding. (B) Each sequence is then processed using the standard AIMS pipeline, and then projected onto two

dimensions using UMAP and clustered using the DBSCAN algorithm. (C) These clusters are then re-visualized as an AIMS matrix. (D) Finally, the motifs

identified by GLIPH can be directly compared to the motifs identified by AIMS via the clustering in panel C. Biophysical properties of each amino acid in

the motif are colored according to the key, and an “X” in the AIMS motif represents “any amino acid with this biophysical property”, i.e. the orange “X”

can represent S, T, G, or A.

https://doi.org/10.1371/journal.pcbi.1011577.g005
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AIMS analysis pipeline is the reduction of these high dimensional matrices, the UMAP and

PCA projections do not conserve the distances between points. As such, we instead calculate

the raw Euclidean distances in the high-dimensional space, and directly compare these to the

TCRdist values.

From these panels, we see strong correlation for the CDR3-only distances (Fig 6C, ρα = 0.73

and ρβ = 0.72) and a stronger correlation for the full CDR loop calculations (Fig 6D, ρα = 0.83

and ρβ = 0.75). In both datasets, we see that as the TCRs get more dissimilar, the AIMS dis-

tances seem to level off even as the TCRdist metric continues to get larger. This may be due in

part to well known issues with the calculation of distance metrics in high-dimensional spaces

[58], but is likely not a point of concern in the standard AIMS analysis as clusters are generated

in the projected spaces (i.e. in the UMAP or PCA projection). In recent applications of TCRdist

[56], a distance cutoff of 20 has been used to define similar CDR3 loops of TCRs. Using this

same definition and then a distance cutoff of 60 for all six CDR loop distances, we see that the

correlation coefficients improve for more similar TCRs, with CDR3 (all CDR) correlation coef-

ficients of 0.85 (0.86) for the α-chain and 0.85 (0.82) for the β chain. Comparisons with a wider

range of antigens from Mayer-Blackwell et al. [56] show similar agreement (S11 Fig).

These new AIMSdist metrics directly inspired by TCRdist can then be used to more quanti-

tatively assess the comparison between AIMS and GLIPH (S12 Fig), highlighting that AIMS is

able to recapitulate these results and provide added insights into more biophysically distinct

sequence clusters. Thus, in searching through the high-dimensional biophysical space for the

same distinct repertoire clusters as GLIPH and TCRdist, AIMS provides not just the identifica-

tion of these clusters but also the biophysical similarities within these clusters; effectively

Fig 6. Quantitative comparison of distance metrics used in AIMS and TCRdist. Both the CDR3-only sequences (A)

and the full-CDR sequences (B) of Dash et al. [24] are encoded into AIMS matrices. Sequence distances calculated via

TCRdist and AIMS are then directly compared for these CDR3-only sequences (C) or full-CDR sequences (D) for the

TCRα- and β-chains. Correlation coefficients between these distance metrics are reported for the full set of sequences and

for closely related sequences, which are delineated by the dashed vertical lines.

https://doi.org/10.1371/journal.pcbi.1011577.g006
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providing the explanations for why sequences are grouped into the same clusters. Further,

comparisons between clusters or even separate datasets can be made at a level deeper than the

motif scale. In highlighting the functionality and unique strengths of AIMS, we set out to show

that previous results from TCRdist and GLIPH can be reproduced, and that these results can

subsequently be expanded upon with new analyses.

Discussion

Immune molecules and the pathogens which they protect against represent a unique case

study for bioinformatic analysis approaches. The polymorphic regions of TCRs, antibodies,

and MHC molecules in humans are concentrated in select regions of these proteins, specifi-

cally in their key intermolecular interaction sites, while the rest of their three-dimensional

structures are exceptionally well conserved. This structural conservation and localized variabil-

ity appears to point towards molecular modeling as a key tool, but modern computational

approaches are either too costly i.e., slow and inefficient, or too inaccurate to allow for detailed

conclusions regarding the proximity of specific amino acids [28, 39, 59]. Many of the best per-

forming machine learning approaches are “black box” algorithms that do not allow the user to

determine how or why certain classifications are made. While more interpretable structural

modeling approaches are capable of approximate placement of TCR protein backbones on the

pMHC surface, even the best structure prediction software struggles to place receptor side

chains in the proper position on the antigenic surface [28, 39]. Proper placement of these side

chains, to angstrom-level precision, is key for proper inference of the interaction strength

between receptors and their cognate antigens.

AIMS was developed specifically as an interpretable tool for immune repertoire analysis,

capable of utilizing the information provided by conserved structural features of immune mol-

ecules for unique analytical approaches while reducing the potential for errors arising from

insufficient resolution offered by structural predictions. The generality of the AIMS analysis

pipeline allows for the simultaneous characterization of all adaptive immune molecules,

including peptides, conserved viral structures, antibodies [36], MHC molecules [37], T cell

receptors, and broadly any protein subset with structurally conserved features and localized

diversity [38]. Currently the standard AIMS pipeline analyzes each of these molecular subsets

individually, and subsequently allows users to compare and contrast biophysical features of

paired TCR-pMHC or antibody-antigen interactions. Recently developed features and further

ongoing work is aimed at incorporating mixed repertoire analysis from the pipeline initializa-

tion. These features will provide insights into the intricacies and inter-relationships of all of

the molecular players involved in an adaptive immune response.

Of the existing software packages available for the analysis of molecular subsets of adaptive

immunity, T cell receptor repertoire analysis is the most mature of the fields, and therefore

serves as the primary point of comparison for AIMS. Despite not being developed explicitly

for T cell receptor analysis, we find that AIMS can reproduce the results of two of the most

popular programs developed for TCR analysis, namely GLIPH and TCRdist [24, 26, 56].

GLIPH and TCRdist both utilize distance based metrics to identify unique motifs from TCR

repertoire datasets. Extending sequence analysis beyond clustering, AIMS quantifies the bio-

physical differences between identified clusters of sequences to determine the various

approaches TCRs take to recognize single antigenic targets. In the analysis of large experimen-

tal datasets, users have the option of clustering using GLIPH or TCRdist, and subsequently

importing these sequences into AIMS for the downstream analysis, providing an opportunity

to extend the analysis from where other approaches conclude.
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One key AIMS approach not discussed in this manuscript is a more targeted, supervised

learning approach that is also available for the identification of specific differences in distinct

repertoire datasets. This supervised learning approach utilizes a linear discriminant analysis

(LDA)-based classifier to simultaneously sort individual sequences into their respective classes

and identify key features that delineate distinct repertoires. While other algorithms may per-

form better in classifying repertoire data, the strength of LDA lies in its interpretability. Unlike

other machine learning methods, the vectors most important for discriminating between dis-

tinct repertoires are included as output, along with their associated linear weights. Further

details on linear discriminant analysis can be found in the extended methods. In this targeted

supervised approach, users immediately identify key position-sensitive differences between

their datasets.

AIMS fundamentally is built around the identification of biophysically distinct molecular

subsets. Independent of any biases in the experimental approaches used, AIMS aims to find

the receptor subsets that most strongly span the biophysical space of the input dataset. While

still susceptible to some of the issues that plague all analysis in the regime of strong undersam-

pling, by focusing on those receptors that are the most biophysically distinct, rather than those

that are the most similar according to a variety of distance metrics, we can identify the limits

of molecular recognition. This may under-emphasize the importance of convergence towards

certain motifs in immune responses, but it enhances our understanding of the diverse paths

adaptive immune systems take towards solving the same problems of pathogenic recognition.

It is important to note that the analytical tools provided by AIMS are best utilized both as a

means of identifying differences between datasets and as an exploratory tool. Many of the deci-

sions made at each stage of the analysis can alter the downstream interpretations, so users are

encouraged to test different alignments, projection methods, clustering algorithms, and clus-

tering options. While choices in alignment do not strongly alter the underlying structure of

the input dataset (S12 Fig and S2 Table), they can generate differential emphasis on distinct

features. Further, as seen in S4 Fig, the inclusion or exclusion of certain sequences can distort

the projected spaces used for sequence clustering. Thorough investigation should include mul-

tiple iterations of analysis, testing how single or paired chain data alter outputs, and how inclu-

sion of mixed or single antigenic specificities in a given AIMS run can provide new and

exciting insights. Importantly, AIMS can be easily extended by adding code with the desired

additional functionalities, building on the algorithms already present in the software.

Materials and methods

This section serves as a reference for reproducing the analyses used to create the figures in this

manuscript. For a more conceptual overview, readers are referred to the Extended Methods

section. For a more practical discussion of the implementation of AIMS using either the graph-

ical user interface (GUI) for non-computational researchers or the Jupyter notebooks and

command line interface (CLI) for more advanced users, we direct the reader to download the

code through GitHub [https://github.com/ctboughter/AIMS] and follow the walkthroughs

available at [https://aims-doc.readthedocs.io/en/latest/].

AIMS encoding

All sequencing data is first processed into an AIMS-readable format, a simple comma-sepa-

rated value file with each column corresponding to each structural feature (CDR loops for

TCRs, α-helices and β-strands for MHC, or specific regions of interest for multi-sequence

alignments). These files are then read into AIMS, parsing out sequences with missing residues,

improper characters, or fewer structural features of interest than those defined by the user.
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The sequences are then aligned according to user input. For datasets with multiple structural

features, alignment is performed independently on each feature. Only “Central” and “Bulge”

alignment strategies require special consideration, as both deal with an alignment to a

sequence center. The “center” of sequences with an even number of amino acids is chosen to

be the amino acid preceding the midway point of the sequence. “Bulge” alignments require

additional input specifying the total number of amino acids “padded” on either side of the cen-

trally aligned region. A pad length of 6 (3 AA of the N- and C-termini) was used for peptide

analysis of Fig 4, while a pad length of 8 (4 AA of the N- and C- termini) was used for Fig 5.

Generation of biophysical property matrices

The initial AIMS encoding is used as the template for all downstream analysis. If the sequence

encoding matrix utilizes a bulge scheme, then all resultant position-sensitive figures adopt this

same alignment. This is accomplished via a simple dictionary, where each amino acid is associ-

ated with 62 other values (1 value for positional encoding visualization and 61 for biophysical

properties) to generate an i x j x k property matrix. Importantly, a Z-score normalization trans-

forms each individual biophysical property in our dictionary, not the given dataset. Propensi-

ties for biophysical interactions can optionally be scored using the pairwise interaction scores

of S3 Table. In the analysis throughout this manuscript, vectors with a correlation coefficient

above 0.75 with another vector, and all empty vectors (i.e. those corresponding to white space

in the positional matrices) are dropped from the biophysical property matrix. Biophysical

property measurements (like position sensitive charge, net hydrophobicity, etc.) utilize the

full, non-parsed matrices, whereas all projection and clustering is done on these parsed

matrices.

Dimensionality reduction and unsupervised clustering

Dimensionality reduction modules to collapse the high-dimensional biophysical property

matrices using either principal component analysis (PCA) or uniform manifold approxima-

tion and projection (UMAP) utilize the SciKit-learn [60] and UMAP [50] Python packages.

The parsed biophysical property matrices discussed in the previous section are first subject to

dimensionality reduction with specified parameters of n_components = 3 for both UMAP and

PCA, svd_solver = full for PCA, and n_neighbors = 25 for UMAP. These parameters are

defaults in AIMS but can be changed by the user. For the purposes of reproducibility, the

UMAP random seed was set to 617 for all projections in this manuscript. A discussion of

reproducibility when using UMAP can be found within both the AIMS and UMAP Read the

Docs pages. All other parameters are SciKit-Learn defaults.

The outputs from these projection algorithms are then fed into either the OPTICS (order-

ing points to identify the clustering structure) [51] or DBSCAN (density-based spatial cluster-

ing of applications with noise) [61] algorithms. For all clustering in this manuscript, the

default AIMS specified parameters are used; min_samples = 10 for OPTICS and eps = 0.15 for

DBSCAN. All other parameters are SciKit-Learn defaults. It is important to note that these two

parameters should typically be the most variable across applications of AIMS, with the

“proper” settings varying strongly across different projection algorithms and input datasets.

Information theoretic calculations

Information theory, a theory classically applied to communication across noisy channels, is

incredibly versatile in its applications, with high potential for further applications in immunol-

ogy [52, 62–66]. In AIMS, we utilize two powerful concepts from information theory, namely

Shannon entropy and mutual information.
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Shannon entropy, in its simplest form, can be used as a proxy for the diversity in a given

input population. This entropy, denoted as H, has the general form:

HðXÞ ¼ �
X

X

pðxÞ log
2
pðxÞ ð1Þ

Where p(x) is the occurrence probability of a given event, and X is the set of all events. We can

then calculate this entropy at every position across AIMS-encoded matrices, where X is the set

of all amino acids, and p(x) is the probability of seeing a specific amino acid at the given posi-

tion. In other words, we want to determine, for a given site in the AIMS matrix, how much

diversity (or entropy) is present. Given there are only 20 amino acids used in naturally derived

sequences, we can calculate a theoretical maximum entropy of 4.32 bits, which assumes that

every amino acid occurs at a given position with equal probability.

Importantly, from this entropy we can calculate an equally interesting property of the data-

set, namely the mutual information. Mutual information is similar, but not identical to, corre-

lation. Whereas correlations are required to be linear, if two amino acids vary in any linked

way, this will be reflected as an increase in mutual information.

In AIMS, mutual information I(X; Y) is calculated by subtracting the Shannon entropy

described above from the conditional Shannon entropy H(X|Y) at each given position as seen

in Eqs 2 and 3:

HðXjYÞ ¼ �
X

y2Y

pðyÞ
X

x2X

pðxjyÞ log
2
pðxjyÞ ð2Þ

IðX;YÞ ¼ HðXÞ � HðXjYÞ ð3Þ

Putting these equations into words, we are effectively asking how the knowledge of the

identity of an amino acid at one site changes the entropy at another site. If the entropy at the

“test site” is zero, i.e. H(X) = 0, then no matter what we know of the amino acid identity at

another site the change in entropy at the test site will still be zero, and therefore the mutual

information will be zero. Likewise, if the entropy remains unchanged at this test site despite

the knowledge of the amino acid identity at another site, the mutual information will again be

zero. There is only a meaningful mutual information between a test site and a given amino

acid site if the knowledge of that given amino acid reduces the entropy at the test site. The

mutual information cannot be negative, so the reverse situation, i.e. an increase in diversity

with the knowledge of amino acid identity at a given site, cannot occur.

Statistical considerations in AIMS

The position sensitive averages in AIMS in particular are critical for comparing repertoires

from distinct sources or subsets of repertoires, and are capable of identifying different modes

of recognition for these molecules. Importantly, these averages are difficult to directly compare

statistically, as they are not normally distributed due to the discrete nature of the 20 amino

acids composing protein sequences. As such, the AIMS standard for plotting properties of

these repertoires is to bootstrap a normal distribution of receptor averages, with the boot-

strapped average and the bootstrapped standard deviation plotted in the final figure. The boot-

srapped distribution is sampled 1000 times as a default. Statistical significance in AIMS is then

calculated using either a two-sided nonparametric Studentized bootstrap or a two-sided non-

parametric permutation test as outlined in “Bootstrap Methods and Their Application” [67].

In this manuscript, the two-sided nonparametric permutation test was exclusively utilized

to calculate statistical significance. Here, the test statistic z is set to a simple difference of
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means, and we randomly permute the data into two bins. We then count the number of per-

mutations where the randomly permuted test statistic is greater than or equal to the empirical

test statistic. The p-value is then calculated as:

p ¼
1þ ]ðz2 � z2

0
Þ

Rþ 1
ð4Þ

where z is the permuted test statistic and z0 is the empirical test statistic. R is then the num-

ber of tested permutations, here 1000, and ]ðz2 � z2
0
Þ is the count of permutations where

the square of the permuted test statistic is greater than the square of the empirical test statis-

tic. Assorted p-value cutoffs are reported within the figure legends throughout the

manuscript.

Generation of simulated TCR Datasets

To benchmark quantitative comparisons between different implementations of the AIMS

analysis and existing software such as GLIPH and TCRdist, we created a new AIMS module

for the generation of simulated TCR datasets. Results of these comparisons can be found in S2

Table. These simulated datasets are generated via a random selection of human V- and J-gene

segments, followed by a random deletion of 0–2 amino acids from these selected segments.

From there, user inputs determine the number of randomly added amino acids and the proba-

bility distributions of these amino acids. It is important to note that the V- and J-gene selection

probabilities, the deletion probabilities, and the added amino acid probabilities are pseudo-

randomly generated, and are not meant to match biological frequencies.

Our test simulated dataset was comprised of 15,000 total receptors, from three discrete sim-

ulated datasets of 5,000 receptors with lengths varying from 11–14 amino acids. The three

datasets are named after the amino acid insertion distributions they draw from, with all three

datasets excluding cysteine and proline from the distribution. The “Random” dataset sets the

probability of insertion of all other amino acids to 1/18. The “KRQN” dataset sets the probabil-

ity of insertion 20-fold more likely for positive charged amino acids K and R and 10-fold more

likely for hydrophilic amino acids Q and N. Likewise, the “DEHY” dataset sets the probability

of insertion 20-fold more likely for negatively charged amino acids D and E and 10-fold more

likely for amphipathic amino acids H and Y. Such strong trends should generate relatively

clean separations using any clustering approach.

This list of 15,000 single chain sequences from these three generated datasets are used as the

input for each analysis. In AIMS analysis, the “Standard” approach uses the central encoding

scheme, vector normalization and an entropy re-weighting of the biophysical property matrix.

This matrix is then projected onto 3 UMAP dimensions and clustered using the DBSCAN

algorithm. The remaining entries in S2 Table are deviations from this standard, with the analy-

sis name highlighting which step is changed. So “AIMS Left” utilizes the left alignment scheme,

while “AIMS PCA-Kmeans” utilizes the PCA for projection of the data and Kmeans for clus-

tering. TCRdist and AIMSdist clusters are determined using a hierarchical clustering approach

with a cutoff of 30 TCRdist units and 4 AIMSdist units. GLIPH clusters are defined by the

identified statistically significant motifs with a length of 3 or more and 10 or more sequences

per motif, as the clustering algorithm did not converge after 48 hours of continuous

calculation.

It should be noted that a true metric of “clustering success” is difficult to quantitatively

determine. As such we report a range of statistics for each analysis. For instance, while hierar-

chical clustering of TCRdist and AIMSdist metrics give nearly 100% cluster purity, the large

number of clusters (nearly 400 for AIMSdist and over 500 for TCRdist) may make these results

PLOS COMPUTATIONAL BIOLOGY A guide to AIMS: An Automated Immune Molecule Separator

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011577 October 20, 2023 17 / 26

https://doi.org/10.1371/journal.pcbi.1011577


hard to parse. Further, the number of clusters per dataset is unevenly weighted. We note that

while AIMS standard analysis cluster purity appears to be low (75%) the majority of the “con-

taminants” are from the randomly generated dataset, which likely includes sequences enriched

in positive or negative charge. In a way, such “impurities” may be desired in the analysis of

especially TCRs, as crossreactivity may make it likely that TCRs from distinct datasets have

similar biophysical properties. As a final note, GLIPH performs the worst of nearly all analyses,

clustering only 28% of the sequences with single sequences belonging to multiple clusters. This

is likely because GLIPH is not meant for the analysis of simulated data, making such compari-

sons inherently unfair.

Extended methods

Dimensionality reduction and unsupervised clustering

In the analysis of immune repertoires, and broadly of amino acid sequences, thorough charac-

terization of these sequences requires the generation of a high-dimensional space comprised of

assorted descriptive properties. To systematically analyze this high-dimensional space of data,

AIMS employs both linear and non-linear dimensionality reduction techniques with extensive

flexibility in the application of these techniques given to users.

Often, we recommend starting with the linear dimensionality reduction, principal compo-

nent analysis (PCA). PCA is a highly interpretable dimensionality reduction technique that

projects the data onto linear combinations of the input vectors corresponding to the orthogo-

nal vectors spanning the dimensions of highest variance in the data. PCA is a powerful and

interpretable tool for analysis of high-dimensional datasets, as the identified principal compo-

nents are fundamental linear algebraic properties of the matrix. Due to the linear nature of

PCA, the precise biophysical properties used to create the principal components are easily

inferred from the data. Unfortunately, in the analysis of immune repertoires, the axes of high-

est variance are not always those that best separate the key biophysical features in a given data-

set. In antibody and TCR data particularly, the vectors of highest variance in the data will

generally be in the center of the CDR3 loops. While this frequently also means that CDR3 will

be the most distinguishing feature of a given antibody or TCR sequence, this need not always

be the case.

If needed, users can instead turn to the nonlinear dimensionality reduction techniques, spe-

cifically t-stochastic neighborhood embedding (t-SNE) and uniform manifold approximation

projection (UMAP). Fundamentally these nonlinear algorithms attempt to reduce dimension-

ality while preserving distance between and within clusters of data points in the original input

space. Users should become familiar with each algorithm by reading the relevant literature,

but certain key features will be discussed here. Perhaps most importantly, both t-SNE and

UMAP as implemented in python are inherently stochastic algorithms. This means that if

users want reproducible analysis, care must be taken to first specify a specific seed from which

the stochastic algorithm will start from. Further, as nonlinear algorithms the resultant projec-

tions are not easily interpreted, making the identification of biophysical differences in localized

clusters of data points difficult. Notably however, some of the downstream analytical tools in

AIMS can help overcome this shortcoming.

Once the data have been projected onto a lower-dimensional space, users must define their

clustering algorithm of choice. The default, Kmeans clustering, is the most conceptually

straightforward, breaking the data into N clusters, where N is defined by the user. Kmeans

clustering is especially useful if users should expect a priori some specific number of clusters

arise within their data. In using AIMS for more exploratory studies, density-based clustering is

recommended instead, using either OPTICS or DBSCAN algorithms. These algorithms are
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not biased by a user-defined number of clusters, and instead identify clusters based on local-

ized concentrations of data points. Each algorithm comes with its own advantages and disad-

vantages, so again users are encouraged to read further on these to inform their analysis. In the

body of this manuscript, UMAP is used to reduce the dimensionality, while the OPTICS algo-

rithm is used to cluster the data.

Linear discriminant analysis

As discussed briefly in the main text, linear discriminant analysis (LDA) is described in greater

detail in Boughter et al. [36] and Nandigrami et al. [38]. Briefly, LDA is useful for two distinct

purposes, the generation of classifiers to be used in future applications, and the identification

of key features that discriminate between two well-defined datasets. Importantly, both of these

applications require large amounts of well-defined data to be confident in the results and a dis-

crete number of labels that can be applied to these data. Unlike much of the data used as exam-

ples here, which are more heterogeneous or comprised of mixed populations of data. Despite

this, here we briefly define how linear discriminant analysis works in AIMS.

LDA is conceptually similar to PCA, in that the data are projected onto axes generated via

a linear combination of the input vectors. However, in LDA the classes which each sequence

belongs to are added as input, and the identified axes are those which both minimize within-

class distance while maximizing distance between classes. Further, unlike PCA, users must

be aware of a potential for overfitting. To avoid this, AIMS includes multiple pre-processing

steps before the LDA calculation, including the removal of highly correlated vectors in the

biophysical property matrices and a range of algorithms for the selection of a subset of key

vectors. When the LDA calculation is completed, the key outputs used in AIMS are the linear

weights for each input vector. These weights can then be sorted by magnitude to identify the

key properties that best discriminate between the input datasets. These properties can then

be visualized in AIMS using the standard biophysical property analysis. For the generation of

interpretable classifiers using LDA, more advanced knowledge of machine learning is

recommended.

Supporting information

S1 Fig. Alternate numerical encoding alignment schemes in AIMS using the same reper-

toire data as Fig 1C. Each of these schemes are independently applied to individual key struc-

tural features by aligning to the (A) N-terminal amino acids, (B) C-terminal amino acids, or

(C) “bulge” encoding as discussed in the peptide analysis described in the main text. Here the

bulge padding is set to 6, i.e. 3 amino acids padding the N- and C- termini are separated for

alignment, and the remaining amino acids are centrally aligned.

(TIFF)

S2 Fig. Examples of the input flexibility available in AIMS, with molecular structures on

the left and AIMS encodings of subsets of these structures on the right. (A) Antibody

encoding of all six CDR loops, structure via Borowska & Boughter et al. [68]. (B) Multiple

sequence alignment encoding as discussed in Nandigrami et al. [38]. (C) MHC and MHC-like

encoding of the α-helices and β-strands of these related molecules, structures via PDBs: 2XPG,

1ZT4. (D) Multiple sequence alignment encoding of Influenza hemagglutinin (HA) protein,

structure via PDB: 1RUZ. Influenza MSA via 3DFlu [69].

(TIFF)

S3 Fig. A graphical overview of the standard AIMS analytical pipeline. (A) Visual represen-

tation of the high-dimensional biophysical property matrix. (B) Representative parsed
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biophysical property matrix reshaped into two dimensions. (C) Exemplary dimensionality

reduction, clustering, and re-visualization of the data in B. (D) Simplified matrix representa-

tion of the linear discriminant analysis workflow. Final repertoire characterization steps using

(E) biophysical property analysis or (F) information theoretic analysis of this specific example

dataset. Here and throughout AIMS outputs, “sequence position” refers to the encoded posi-

tion in the AIMS alignment matrix. Vertical black lines in panels E, F, delineate core structural

features (here, distinct CDR loops). All position-sensitive figures utilize the same AIMS encod-

ing. Lines and colored boxes help guide the reader through the workflow.

(TIFF)

S4 Fig. VDJdb repertoire dimensionality reduction and clustering analysis including pro-

line-containing outlier sequences. Shown are the three-dimensional clustering results for the

paired chain (A) and single chain (B) data and the two-dimensional projections of these same

figures for the paired chain (C) and single chain (D) data. CDR3β amino acid sequences of

these outliers are highlighted in the center of the figure. Both sequences were confirmed to be

the outliers in the paired chain and single-chain data.

(TIFF)

S5 Fig. Cluster purity quantification for an array of metadata from the VDJ database when

comparing paired chain (left column) and single chain (right column) clustering results.

Antigen species source for each cluster member, with a cluster purity of 0.52 ± 0.26 (paired, A)

and 0.39 ± 0.24 (single, B). Presenting MHC of each tested epitope for each cluster member,

with a cluster purity of 0.68 ± 0.35 (paired, C) and 0.646 ± 0.37 (single, D). Organism haplo-

type for each cluster member, with a cluster purity of 0.46 ± 0.26 (paired, E) and 0.38 ± 0.22

(single, F). Legends are comprehensive for panels A, B, C, and D but only show a subset of the

groups for panels E, F.

(TIFF)

S6 Fig. Biophysical and information theoretic analysis, as in Figs 3 and 4, for the defined

antigenic sequences reactive to either Influenza or EBV peptides as used in Glanville et al.

[26]. (A) Initial AIMS encoding separated by antigenic reactivity, using the central alignment

scheme. (B) Example of a biophysical property mask applied to the data in (A), here specifically

showing the position- and sequence-sensitive normalized charge of each sequence. (C) Net

biophysical properties, i.e. averaged over all positions and all sequences, for each antigen speci-

ficity. (D) Position sensitive charge and hydropathy, i.e. averaged over the y-axis of panel B,

for each antigen specificity. Information theoretic analysis concludes the characterization of

an antigen-specific repertoire, with the position sensitive entropy (E) and mutual information

difference (F). Statistical significance of differences between these two populations are calcu-

lated for panels C, D, and E using a non-parametric permutation test (Methods). Averages and

standard deviations in panels C, D, and E calculated using a bootstrapping procedure (Meth-

ods), with standard deviation in panels D and E represented as a shaded region about the solid

line averages. ns—not significant, *—p< 0.05, solid bar with * above—contiguous region of

p< 0.05.

(TIFF)

S7 Fig. Detailed biophysical analysis done in parallel with Fig 3 for the paired chain (left

column) and single chain (right column) selected clusters. (A, B) Sequence logos of the

selected clusters of Fig 3A and 3B, as generated by WebLogo [70]. (C, D) Biophysical property

masks of charge (top) and hydropathy (bottom) for each cluster of sequences. The position-

sensitive biophysical property masks of Fig 3C and 3D are generated by averaging over the y-

axis of these plots. (E, F) Net averaged biophysical properties, i.e. averages over the x- and y-
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axes of panels C and D, of four out of the sixty-one available AIMS properties for each cluster

of sequences. Statistical significance of differences between these two populations are calcu-

lated for panels E and F using a non-parametric permutation test (Methods). *—p< 0.05, **—
p< 0.025, ***—p< 0.01, ****—p< 0.001.

(TIFF)

S8 Fig. Associated figures for the peptide analysis of Fig 4. (A) AIMS-encoding using the

bulge alignment scheme of the dataset of Influenza A and Ebolavirus derived peptides. (B)

Position-independent amino acid frequencies for the HLA-A2 presented Influenza A peptides

and the HLA-B15 Ebolavirus peptides. Statistical significance of differences between these two

populations are calculated for panel B using a non-parametric permutation test (Methods).

*—p< 0.05.

(TIFF)

S9 Fig. Raw distributions for the population differences highlighted in Fig 4. Position-sen-

sitive amino acid probability distributions for (A) Influenza A and (B) Ebolavirus derived pep-

tides. Position-sensitive mutual information calculated between each encoded sequence

position for (C) Influenza A and (D) Ebolavirus derived peptides. Amino acid digram frequen-

cies for (E) Influenza A and (F) Ebolavirus derived peptides.

(TIFF)

S10 Fig. Associated figures for the statistical significance of the peptide analysis of Fig 4.

Statistical significance is shown for the amino acid frequency difference (A), the average Shan-

non entropy difference (B), the mutual information difference (C), and the digram frequency

difference (D). Statistical significance of differences between these two populations are calcu-

lated using a non-parametric permutation test (Methods). For all tests, a threshold of p< 0.05

is used, denoted by either the solid red line in panel B or the presence of a filled (black) square

in the matrices of panels A, C, and D.

(TIFF)

S11 Fig. Quantitative comparison of distance metrics used in AIMS and TCRdist. Here

only the sequence distances calculated via TCRdist and AIMS between full-CDR sequences of

Mayer-Blackwell et al. [56] are compared directly for the TCRα- and β-chains. Correlation

coefficients between these distance metrics are reported for the full set of sequences and for

closely related sequences, which are delineated by the dashed vertical lines at a TCRdist of 60

units. TCRs are isolated from human T cells in response to each antigen listed above the plots

(A-F) or for the full dataset of TCRs (G).

(TIFF)

S12 Fig. Quantitative comparison of clustering performance of AIMS and GLIPH on the

same dataset. The AIMS clusters (A) are generated from the curated Influenza A reactive

sequences from Glanville et al. Supplementary Table 1 [26] subject to a UMAP projection and

DBSCAN clustering (eps = 0.15) of the biophysical property matrix. while the GLIPH clusters

(B) are taken directly from Glanville et al. Supplementary Table 7 [26]. Calculating the AIMS

distances between the sequences within the AIMS clustering (C) or the GLIPH clustering (D)

shows highly similar patterns for the most similar sequences, suggesting both methods are

capable of identifying highly pure clusters, albeit with a higher resolution in AIMS. AIMS

additionally identifies highly biophysically distinct yet self-similar clusters (sequences 50–150)

compared to the previously identified specificity groups.

(TIFF)
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S13 Fig. Comparison of the effect of different alignment strategies on the AIMS distance

using all TCRs in the Glanville et al. dataset [26]. We see that largely the distances are pre-

served for similar TCRs, yet there is some divergence in the calculated metric at higher dis-

tances for comparisons between the bulge- and center-alignments (left) and the left- and

center-alignments (right).

(TIFF)

S1 Table. List of all of biophysical properties used for this study. For hotspot detecting vari-

ables (HS) a simplified form of the description is used. For more in-depth descriptions, the

original reference should be used.

(CSV)

S2 Table. A quantitative comparison of the accuracy of TCR sequence clustering using a

simulated dataset between the different modes of AIMS analysis and TCRdist and GLIPH

software. Details of the simulated dataset and the details of the comparisons can be found in

the methods. While “purity” may be considered a useful metric of successful clustering, differ-

ent approaches will yield different types of clustered receptors, so it is unlikely that a “best”

approach exists.

(CSV)

S3 Table. Table used for the second version of the AIMS scoring of pairwise amino acid

interactions. The table attempts to recapitulate the interactions between amino acids at the

level of an introductory biochemistry course.

(CSV)
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