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The CALIPR framework for highly accelerated myelin 
water imaging with improved precision and sensitivity 
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Quantitative magnetic resonance imaging (MRI) techniques are powerful tools for the study of human tissue, 
but, in practice, their utility has been limited by lengthy acquisition times. Here, we introduce the Constrained, 
Adaptive, Low-dimensional, Intrinsically Precise Reconstruction (CALIPR) framework in the context of myelin 
water imaging (MWI); a quantitative MRI technique generally regarded as the most rigorous approach for non-
invasive, in vivo measurement of myelin content. The CALIPR framework exploits data redundancy to recover 
high-quality images from a small fraction of an imaging dataset, which allowed MWI to be acquired with a pre-
viously unattainable sequence (fully sampled acquisition 2 hours:57 min:20 s) in 7 min:26 s (4.2% of the dataset, 
acceleration factor 23.9). CALIPR quantitative metrics had excellent precision (myelin water fraction mean coeffi-
cient of variation 3.2% for the brain and 3.0% for the spinal cord) and markedly increased sensitivity to demye-
linating disease pathology compared to a current, widely used technique. The CALIPR framework facilitates 
drastically improved MWI and could be similarly transformative for other quantitative MRI applications. 
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INTRODUCTION 
Quantitative magnetic resonance imaging (MRI) techniques can 
provide objective measures of tissue microstructure properties, 
but their clinical utility tends to be limited by lengthy acquisition 
times due to sampling a tissue parameter mapping dimension in 
addition to the spatial image dimensions. As a result, data are 
often acquired with relatively low image resolution or using accel-
eration methods that reduce image quality, which limits the sensi-
tivity of the resulting quantitative metrics. Faster semiquantitative 
techniques can be acquired instead, but these tend not to provide 
the same degree of reproducibility or specificity to tissue properties 
of interest. An approach for drastically accelerating quantitative 
MRI acquisition, while retaining sensitivity and specificity to 
tissue properties, would be of tremendous scientific and clini-
cal value. 

Multicomponent T2 mapping is a class of quantitative MRI tech-
niques, which characterize tissue by identifying MRI signal contri-
butions from multiple water pools, each with a distinct range of T2 
relaxation times. The most prolific multicomponent T2 mapping 
technique, myelin water imaging (MWI) (1), has proven valuable 
for the study of development, aging, disease, injury, genetics, and 
fundamental biology in the central nervous system (2–9). MWI 
can characterize signal from water trapped between myelin lipid bi-
layers [T2 < 40 ms in normal white matter (WM) at 3 tesla] and from 
water in intra- and extracellular spaces (40 ms < T2 < 200 ms) (1). 
Using MWI data, the total fraction of signal from short T2 myelin 

water [myelin water fraction (MWF)] and the geometric mean T2 of 
intra- and extracellular water (IET2) can be calculated. MWF cor-
relates strongly with quantitative histopathologic measures of 
myelin density (4, 10), and IET2 also shows clinical relevance (11). 

Multicomponent T2 mapping techniques have also proven valu-
able for application to a wide variety of other human tissues, such as 
in muscle for the study of diabetes and neuromuscular disease ac-
tivity, or in prostate for noninvasively identifying and differentiat-
ing grades of cancer tissue in prostate (12–15). 

However, multicomponent T2 mapping techniques involve ac-
quisition of many separate T2-weighted (T2w) images, on the 
order of 30 to 50 for MWI, which necessitates extremely lengthy 
data collection times using existing MRI acquisition and reconstruc-
tion approaches. 

Previous work accelerating MWI has drastically reduced acqui-
sition time from 26 min to acquire a single two-dimensional (2D) 
slice (1) to approximately 10 to 20 min for full brain coverage (16– 
19). A very common MWI acceleration approach is the use of the 
gradient and spin-echo (GRASE) pulse sequence, which uses addi-
tional gradient echoes to acquire three times the data in the same 
amount of time. The GRASE sequence is also often coupled with 
additional acceleration from under sampling, usually in the form 
of parallel imaging, providing a total acceleration factor of approx-
imately 6 to 12. However, GRASE suffers from blurring induced by 
the lower signal-to-noise ratio (SNR) gradient echoes and increased 
minimum echo spacing (ΔTE), sensitivity to motion, peripheral 
nerve stimulation (PNS), acoustic noise, and possible orientation 
effects (20, 21). Furthermore, GRASE is highly dependent on the 
MRI scanner gradient performance, making it more sensitive to 
gradient instabilities and limiting availability between scanners 
with different specifications. 

Compressed sensing (CS) is an increasingly common accelera-
tion approach (22, 23) that was recently used to reduce MWI acqui-
sition time by a factor of 10 using under sampling acceleration alone 
(19). Although it avoids the issues associated with GRASE, this 
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acceleration approach still requires data to be acquired with relative-
ly large voxel volumes (~10 mm3) to achieve acquisition times 
under 10 min. Furthermore, some blurring and loss of effective res-
olution can be introduced due to the limited ability to suppress 
under sampling artifacts when implementing a standard CS frame-
work that exploits only the spatial dimensions of the acquisition and 
does not include the parameter mapping dimension. 

Regardless of the acceleration approach, current MWI tech-
niques tend to acquire data at relatively low resolution to keep 
total acquisition times near 10 min, usually with highly noniso-
tropic voxels and total voxel volumes of about 10 mm3. To 
address these limitations, in this work we introduce, validate, and 
assess a novel comprehensive framework for drastically accelerating 
quantitative MRI, referred to as the Constrained, Adaptive, Low-di-
mensional, Intrinsically Precise Reconstruction (CALIPR) 
framework. 

The CALIPR framework was motivated by a series of recent ad-
vancements in MRI. It has been demonstrated that the principles of 
CS can be extended to exploit additional parameter mapping di-
mensions and facilitate higher under sampling acceleration 
factors (24). Furthermore, pivotal work by Huang et al., Tamir 
et al., and others (25–29) demonstrated that image reconstruction 
can be constrained to a subspace of these additional nonspatial di-
mensions to improve performance. For example, subspace con-
strained reconstruction for a fast spin-echo sequence allows 
information to be shared throughout the echo train while account-
ing for signal evolution in the reconstruction process. In alternative 
methods where this signal evolution is not accounted for, such as 
the GRASE sequence (30, 31) or fast spin-echo echo sharing (32), 
image blurring is caused by the broken Fourier relationship between 
k-space and image space. Recently, principal components analysis 

(PCA) denoising has been shown to be highly effective at reducing 
errors in quantitative MRI metrics, including those from diffusion 
(33) and multicomponent T2 mapping techniques (34). If PCA 
denoising was incorporated directly into image reconstruction, it 
could be used to exploit data redundancy even more effectively 
than when denoising already reconstructed images. Building 
upon these concepts, CALIPR is an extended CS framework, 
which exploits redundancy present in the data by reconstructing 
images that are constrained to lie within a low-dimensional PCA 
subspace. 

RESULTS 
Details of the CALIPR framework itself are described in Materials 
and Methods. The experiments described below fall into three sec-
tions. First, we validated the theoretical benefits of the CALIPR 
framework by retrospectively under sampling a post-mortem 
fixed brain MWI dataset, showing improved performance com-
pared to the currently adopted CS acceleration technique. Second, 
after implementing CALIPR for in vivo brain and spinal cord MWI, 
we demonstrated that the resulting quantitative maps have excellent 
reproducibility despite being acquired with very high under sam-
pling acceleration factors. Last, we showed that the intrinsic denois-
ing and high resolution of CALIPR provide increased sensitivity to 
demyelinating disease pathology, particularly for MWF, compared 
to a commonly used GRASE MWI approach. 

Validation with retrospective under sampling 
Figure 1A shows results from the full reference acquisition dataset 
acquired in fixed brain. CS and CALIPR reconstructions, shown in 
Fig. 1, B and C, respectively, were performed after retrospectively 

Fig. 1. Retrospective under sampling validation. Echo time (TE) images and quantitative MWF maps for a MWI dataset acquired in a post-mortem, single-hemisphere 
fixed brain sample. (A) Reference version, which reconstructed the entire acquired dataset with a CS reconstruction. (B) Retrospectively under sampled CS version, which 
used an acceleration factor of 14.6 (6.8% of the dataset). (C) Retrospectively under sampled CALIPR version, which used the same acceleration factor as (B) but with the 
additional CALIPR adaptive subspace constraint.  
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under sampling the dataset with acceleration factor 14.6 (6.8% of 
the dataset). CALIPR echo images and MWF maps demonstrated 
markedly improved suppression of under sampling artifacts com-
pared to CS. As the only difference between the CS and CALIPR 
iterative reconstructions was the subspace constraint incorporated 
into CALIPR, this comparison directly demonstrates the efficacy 
of enforcing a low-dimensional representation of the signal along 
the parameter mapping dimension. 

Reproducibility in healthy brain and spinal cord 
We developed CALIPR acquisitions for the brain and spinal cord 
MWI. Reproducibility was assessed by performing each acquisition 
twice, in separate exams with repositioning, for five healthy partic-
ipants. Further details are provided in Materials and Methods. 

Figure 2 shows individual slices of CALIPR quantitative maps 
from each exam, along with voxel-wise difference maps, for one 
of the reproducibility subjects. The reproducibility results showed 
excellent qualitative agreement between exams, with limited magni-
tude and spatial extent of differences. 

Agreement between exams is further visualized with Bland- 
Altman plots in Fig. 3, which do not show evidence of a significant 
systematic bias (mean bias, Fig. 3A brain MWF: +0.3%, Fig. 3B 
brain IET2: +0.3 ms, Fig. 3C spinal cord MWF: 0.0%, and Fig. 3D 
spinal cord IET2: +0.4 ms). 

CALIPR MWF region of interest (ROI) results and correspond-
ing reproducibility metrics are summarized in Table 1 for the brain 
and in Table 2 for the spinal cord. MWF mean repeatability coeffi-
cient (RC), coefficient of variation (COV), and intraclass correlation 
coefficient (ICC) were 0.7, 3.2%, and 0.92 for the brain and 2.2, 
3.0%, and 0.86 for the spinal cord. 

For CALIPR IET2, reproducibility is summarized in table S1 for 
the brain and table S2 for the spinal cord. IET2 mean RC, COV, and 
ICC were 0.05, 0.26%, and 0.98 for the brain and 0.35, 1.4%, and 
0.74 for the spinal cord. 

Comparing MWF values from exams 1 and 2, a small significant 
bias was found in the posterior internal capsule (two-sided one- 
sample t test; mean bias, +0.6%, P = 0.005) and in temporal WM 
(+0.4%, P = 0.04). There was no significant difference in IET2 
values for any of the 16 brain or 5 spinal cord ROIs. 

Sensitivity to demyelinating disease pathology 
To assess sensitivity to pathological tissue changes, we acquired data 
from a subject living with relapsing-remitting multiple sclerosis 
[male, age 60 years, expanded disability status scale of 2.0 (35), 
and disease duration of 12 years] using CALIPR and with the com-
monly used GRASE MWI approach for comparison. Figure 4 shows 
conventional anatomical imaging (Fig. 4A), CALIPR MWI 

Fig. 2. Reproducibility of MWI metrics in brain and spinal cord. Individual slices of the (A) brain MWF, (B) brain geometric mean of IET2, (C) spinal cord MWF, and (D) 
spinal cord IET2 for a single healthy participant. Columns show results from two separate CALIPR MWI exams, aligned in the subject’s structural image space (T1-weighted 
for the brain and T2*-weighted for the cord), along with their voxel-wise difference maps.  
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(Fig. 4B), and GRASE MWI (Fig. 4C) results for a single axial slice 
with multiple focal lesions. 

Compared to GRASE, the CALIPR image at echo time (TE) of 
192 ms shows sharper delineation of anatomical structure borders, 
such as the ventricles and cortical gyri. The CALIPR images also 
show less evidence of artifacts related to under sampling or noise. 
This denoising effect is especially evident for long TE images, such 
as TE of 336 ms, which have lower SNR due to T2 decay. 

Multiple sclerosis lesions appeared more conspicuous in 
CALIPR echo images compared to GRASE. The CALIPR echo 
images showed comparable quality to the conventional T2w ana-
tomical image and even improved visualization of T2 hyperintense 
lesions at very late echo times, where healthy brain tissue has almost 
no signal remaining. In Figs. 5 and 6, sagittal, coronal, and axial 
fluid-attenuated inversion recovery (FLAIR) image slices are 
shown (Figs. 5A and 6A) along with close-up views of a region cen-
tered around a large lesion (Figs. 5C and 6C). 

For MWF in Fig. 5, CALIPR showed increased sensitivity to the 
signal changes expected in a demyelinating disease lesion (Fig. 5B) 
and much sharper congruence between lesion tissue visible on 
FLAIR and low MWF values compared to GRASE (Fig. 5D). In 
Fig. 6, CALIPR and GRASE show relatively similar evidence of in-
creased IET2 within lesions. 

DISCUSSION 
We have demonstrated the utility of CALIPR as a comprehensive 
framework for rapid acquisition of precise, sensitive multicompo-
nent quantitative T2 relaxation data. Our validation experiments 
demonstrated vastly improved performance of CALIPR compared 
to conventional CS, one of the main methods currently used for 
MWI (19). This result was expected, as the CALIPR framework 
extends the principles of CS (incoherent sampling acquisition and 
sparse representation reconstruction) to the additional parameter 
mapping dimension intrinsic to quantitative MRI. Unlike most pre-
vious MWI techniques, where the same k-space data points are ac-
quired throughout the echo train, the CALIPR framework extends 
the principle of incoherent sampling by acquiring a different 
pseudo-random k-space sampling scheme for each TE. On the re-
construction side, instead of reconstructing data from each TE in-
dividually, the CALIPR framework reconstructs data from the entire 
echo train together, which allows information to be shared between 
TEs to better inform the reconstruction. This joint reconstruction 
also allows the CS principle of sparse representation to be extended, 
by explicitly constraining the reconstruction to a subspace of the 
principal signal evolution components. 

The acquisition and reconstruction work in tandem to improve 
performance using these CS principles. The acquisition sampling 
results in noise-like under sampling artifacts, which are incoherent 
along the parameter mapping dimension (they differ between TEs), 
meaning that they are intrinsically nonsparse and will be suppressed 

Fig. 3. Bland-Altman plots. Bland-Altman plots for CALIPR reproducibility subjects’ (A) brain MWF, (B) brain geometric mean of IET2, (C) spinal cord MWF, and (D) spinal 
cord IET2 ROI results from separate exams. Mean values from both exams are plotted on the x axis, and differences are plotted on the y axis. Solid lines indicate the mean 
bias (difference) of all data points [(A) +0.3%, (B) +0.3 ms, (C) +0.0%, and (D) +0.4 ms). Dotted lines indicate the positive (+1.96 SD) and negative (−1.96 SD) 95% limits of 
agreement. Brain ROIs include all WM, all gray matter (GM), and combined WM and GM from T1w image segmentations, along with nine additional WM ROIs [all JHU WM 
labels combined: genu of corpus callosum (CC); splenium of CC; whole CC; posterior internal capsule; and frontal, occipital, parietal, and temporal lobes masked to WM] 
and four additional GM ROIs (cortical GM, caudate, thalamus, and putamen). Spinal cord ROIs include the whole cord, WM, GM, dorsal column, and lateral corticospi-
nal tracts.  
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by the sparsity-promoting reconstruction. Alternatively, true image 
features are coherent along the parameter mapping dimension (they 
are strongly correlated between TEs) and can therefore be sparsely 
represented and easily recovered during reconstruction. 

CALIPR MWI metrics had excellent reproducibility in both the 
brain and spinal cord, with improved reproducibility metrics 

compared to previous techniques, despite the use of much higher 
under sampling acceleration factors. Our mean brain MWF RC of 
0.7 is better than those previously reported for MWI using 2D mul-
tislice GRASE (2.1 with parallel imaging under sampling accelera-
tion factor of 2.0) (18) or 3D multi-echo spin echo (MESE) with 
conventional CS (1.5 with under sampling acceleration factor of 
10.0) (19). Our mean brain MWF COV of 3.2% compares favorably 
with those previously reported for MWI using single-slice 2D MESE 
(19%, 12.6%) (36, 37), 3D MESE (4.0%) (38), 3D GRASE (13.4% for 
a single subject) (39), 2D multislice GRASE (6.7% with parallel 
imaging under sampling acceleration factor of 2.0) (18), and 3D 
MESE with conventional CS (6.2% with acceleration factor 10.0) 
(19). Our mean brain MWF ICC of 0.92 is better than those previ-
ously reported for MWI using 3D MSE (intrasite 0.76) (38), 3D 
GRASE (0.83) (40), 2D multislice GRASE (0.80 with parallel 
imaging under sampling acceleration factor of 2.0) (18), or 3D 
MESE with conventional CS (0.79 with under sampling acceleration 
factor of 10) (19). For the spinal cord, our mean MWF COV values 
in whole cord (WC), gray matter (GM), dorsal column (DC), and 
lateral corticospinal tracts (LCSTs) (1.8, 5.3, 2.0, and 3.4%, respec-
tively) were lower than those previously reported for 3D GRASE 
with parallel imaging under sampling acceleration factor 2.0 in 
the same ROIs (6.1, 11.5, 7.7, and 8.1%, respectively) (41). The im-
proved reproducibility of CALIPR MWI is extremely encouraging 
for use in longitudinal studies, which have often been hindered 
by a limited sensitivity to detect small changes over time (42). 

Table 1. CALIPR brain MWF reproducibility. Reproducibility results for the brain myelin water fraction (MWF) from repeated CALIPR scans, acquired in separate 
exams, for five healthy participants. Mean and SD of the region of interest (ROI) values are shown along with the following reproducibility metrics: the 95% limits 
of agreement (LOAs) (LOA negative|LOA positive), repeatability coefficients (RC), coefficients of variation (COVs), and intraclass correlation coefficients (ICCs). Brain 
ROIs include all WM, all gray matter (GM), and combined WM and GM from T1-weighted image segmentations, along with nine additional WM ROIs [all JHU WM 
labels combined: genu of corpus callosum (CC); splenium of CC; whole CC; posterior internal capsule; and frontal, occipital, parietal, and temporal lobes masked to 
WM] and four additional GM ROIs (cortical GM, caudate, thalamus, and putamen).     

CALIPR MWF (%)           

ROI Exam 1 Exam 2 LOA RC COV (%) ICC    

WM and GM 6.4 ± 0.8 6.3 ± 0.8 −0.3 | 0.4 0.2 1.3 0.99 

WM regions 

WM 8.8 ± 1.4 8.7 ± 1.4 −0.7 | 1.1 0.6 2.4 0.97 

All JHU 11.6 ± 1.8 11.0 ± 2.1 −1.0 | 2.1 1.0 3.3 0.94 

Genu 11.9 ± 2.4 11.5 ± 2.3 −1.2 | 2.0 1.0 3.3 0.96 

Splenium 13.2 ± 1.9 12.3 ± 2.3 −0.6 | 2.6 1.4 4.2 0.92 

Whole CC 12.0 ± 1.9 11.4 ± 2.3 −1.0 | 2.3 1.2 4.0 0.94 

Posterior Internal Capsule 16.3 ± 1.5 15.7 ± 1.5 0.2 | 1.0 0.8 1.9 0.96 

Lobe WM 

Frontal 7.3 ± 1.2 7.5 ± 1.0 −0.7 | 0.5 0.4 2.1 0.98 

Occipital 9.1 ± 1.5 9.0 ± 1.8 −0.8 | 1.1 0.6 2.5 0.98 

Parietal 8.7 ± 1.6 8.5 ± 1.6 −0.7 | 1.2 0.6 2.7 0.97 

Temporal 6.5 ± 1.1 6.1 ± 1.2 −0.1 | 1.0 0.6 3.8 0.95 

GM regions 

GM 3.9 ± 0.5 3.9 ± 0.4 −0.3 | 0.3 0.2 1.8 0.97 

Cortical 3.5 ± 0.5 3.4 ± 0.4 −0.3 | 0.4 0.2 2.1 0.97 

Caudate 5.8 ± 0.7 5.3 ± 0.7 −1.8 | 2.8 1.3 8.1 0.60 

Thalamus 9.5 ± 1.1 9.5 ± 0.8 −1.7 | 1.8 0.9 3.8 0.82 

Putamen 4.7 ± 0.6 4.6 ± 0.5 −0.7 | 1.1 0.6 4.5 0.84 

Mean 8.7 ± 1.3 8.4 ± 1.3 −0.7 | 1.4 0.7 3.2 0.92  

Table 2. CALIPR spinal cord MWF reproducibility. Reproducibility results 
for the spinal cord MWF from repeated CALIPR scans, acquired in separate 
exams, for 5 healthy participants. Mean and SD of the ROI values are shown 
along with the following reproducibility metrics: the 95% LOAs (LOA 
negative|LOA positive), RCs, COVs, and ICCs. Spinal cord ROIs include the 
whole cord (WC), WM, GM, dorsal column (DC), and lateral corticospinal 
tracts (LCSTs).   

CALIPR MWF (%)         

ROI Exam 1 Exam 2 LOA RC COV (%) ICC  

WC 28.0 ± 1.1 28.3 ± 1.5 −2.3 | 1.7 1.4 1.8 0.85 

WM 30.1 ± 1.1 30.4 ± 1.7 −2.0 | 1.3 1.1 1.4 0.91 

GM 19.7 ± 3.1 19.9 ± 2.1 −4.6 | 4.2 2.9 5.3 0.84 

DC 35.3 ± 3.4 34.1 ± 2.2 −1.5 | 4.0 2.1 2.0 0.91 

LCST 29.3 ± 3.2 29.9 ± 2.1 −5.6 | 4.3 3.5 4.3 0.78 

Mean 28.5 ± 2.4 28.5 ± 1.9 −3.2 | 3.1 2.2 3.0 0.86   
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Although MWF absolute values vary somewhat with sequence 
parameters, such as echo spacing or repetition time (TR), we can 
compare the rank of MWF values between notable brain and 
spinal cord ROIs to previous work. MWF values reported in litera-
ture show a clear trend of decreasing brain MWF between the pos-
terior internal capsule, splenium of the corpus callosum (CC), genu 
of the CC, all WM, and all GM, as well as decreasing spinal cord 
MWF between the DC, WM, LCST, and GM (43). Previous MWI 
atlases have reported mean WM/GM MWF contrast ratios of 2.0 in 
the brain and 1.5 in the spinal cord, in good agreement with the 
values found here (2.0 in the brain and 1.5 in the spinal cord), 
despite our relatively small sample size and demographic range 
compared to atlas-based studies (43). 

Agreement of the ranking of MWF values between ROIs and of 
the MWF contrast between tissue types bolsters our confidence in 
the validity of our results, especially when noting the heterogeneity 
of MWF values within WM. In particular, post-mortem studies 
have identified a gradient in myelin content between the splenium 
and genu of the CC (44), which is identifiable in the results present-
ed here and the wider MWI literature, but is often not reflected in 
the metrics produced by alternative myelin-sensitive MRI tech-
niques (43). 

We demonstrated markedly improved sensitivity to demyelinat-
ing disease pathology using CALIPR compared to GRASE, which is 

likely due to a combination of factors. We implemented CALIPR 
with a relatively simple 3D MESE sequence, which provided 
several advantages. When comparing the GRASE and MESE se-
quences, the additional echo-planar imaging gradient echo readouts 
used by GRASE increase the minimum echo spacing, which reduces 
image SNR due to T2 decay and reduces the ability to detect and 
characterize the short T2 myelin water signal. GRASE also introduc-
es image blurring dependant on T2* because high-frequency k- 
space is acquired with additional T2* weighting (not pure T2). Com-
pared to GRASE, the MESE sequence allowed a larger number of 
echoes to be sampled (56 instead of 48 for GRASE) using shorter 
echo spacing (6.0 ms instead of 8.0 ms for GRASE). 

Furthermore, the CALIPR framework links the spatial and pa-
rameter mapping dimensions, effectively spreading under sampling 
between both, so that the higher number of echoes (larger param-
eter mapping dimension) can be leveraged to facilitate higher under 
sampling acceleration factors. This allowed the CALIPR sequence to 
be acquired with >3× the total acceleration of GRASE (23.9 versus 
7.5), which can be leveraged to acquire data with the same resolu-
tion in a fraction of the time or to acquire much higher-resolution 
data in the same acquisition time. 

Fig. 4. Anatomical and MWI results for a subject living with multiple sclerosis. 
A representative image slice from anatomical and MWI results in brain for a subject 
living with relapsing-remitting multiple sclerosis (male, age 60 years, expanded 
disability status scale of 2.0, and disease duration of 12 years). (A) From left to 
right, the columns show T1-weighted (T1w), T2w, fluid-attenuated inversion recov-
ery (FLAIR), and proton density (PD) anatomical images. For (B), our proposed 
CALIPR MWI approach and (C) a commonly used GRASE MWI approach, from 
left to right the columns, show two MWI images at different echo times (TE) as 
well as quantitative MWF and geometric mean of IET2 maps. The same slice is 
shown for all images and maps, which were aligned in the subject’s T1w 
image space. 

Fig. 5. Comparison of MWF sensitivity to demyelinating disease pathology. 
From left to right, columns show sagittal, coronal, and axial orientation views, re-
spectively, for a subject living with relapsing-remitting multiple sclerosis (male, 
age 60 years, expanded disability status scale of 2.0, and disease duration of 12 
years). (A) Full slices of a FLAIR anatomical image are shown with red boxes high-
lighting a region centered around a particularly large FLAIR hyperintense lesion. 
Close-up views of this region are shown in (B) for MWF from our proposed CALIPR 
MWI approach, in (C) for FLAIR, and in (D) for MWF from a commonly used GRASE 
MWI approach. All images and maps were aligned in the subject’s T1-weighted 
image space to ensure that the exact same region could be compared.  
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The relative simplicity of the MESE sequence is also perfectly 
suited to generating sampling schemes, which are maximally inco-
herent: A substantial contributing factor to the strong performance 
of the CALIPR framework. In comparison, the GRASE sequence 
has a high degree of intrinsic sampling coherence introduced by 
the echo-planar imaging readouts. Although the GRASE sequence 
is valuable for many MRI applications, this limitation precludes 
much of the potential benefits of attempting to use incoherent 
under sampling pattern and generally encourages GRASE to be 
paired with more conventional parallel imaging-based methods. 

In combination, the shorter echo spacing and increased acceler-
ation of CALIPR improve its ability to resolve signal components in 
the parametric dimension and anatomical features in the spatial 
dimensions. 

Furthermore, the lower PNS and acoustic noise of the MESE se-
quence, compared to GRASE, makes it available for more subject 
groups, including those whose ability to undergo MRI is condition-
al (such as people with metallic implants) or populations that are 
particularly sensitive to noise (such as pediatric subjects). For 
example, even the high-resolution CALIPR brain MWI sequence 
studied in our reproducibility experiments can be operated in 

normal PNS mode (<80% of the limit), while the previously pre-
sented GRASE sequence cannot (94% of PNS limit). 

For our implementation of CALIPR MWI for the spinal cord, in 
addition to the brain, very few modifications were required to adapt 
the sampling scheme and reconstruction code. Sampling schemes 
were all generated using the same pattern, differing primarily by 
matrix size to match the acquisition. Iterative reconstructions dif-
fered only by L1 wavelet regularization factors, which were empir-
ically optimized for the brain and the spinal cord (0.004 and 0.001, 
respectively). This flexibility is a fundamental benefit of under sam-
pling-based acceleration (using a specific sampling pattern and re-
construction) compared to acceleration methods, which are more 
dependent on scanner specifications. 

In this study, we performed MWI analysis with a non-negative 
least squares algorithm developed by Kumar et al. (45), which ex-
ploits 3D spatial correlations (in addition to commonly used tem-
poral regularization) to improve the accuracy and noise robustness 
of the resulting quantitative metrics. To facilitate comparison with 
previous studies, which have not had access to this analysis, and to 
disentangle effects of the CALIPR framework versus spatially regu-
larized analysis, the reproducibility analysis presented in this study 
was duplicated using temporal regularization only. These results, 
available in Supplementary Materials, confirmed that additional 
spatial regularization improves the precision of MWI metrics 
(mean COV: brain MWF, 3.2%; cord MWF, 3.0%; brain IET2, 
0.26%, and cord IET2, 1.4%) compared to those generated with 
temporal regularization only (mean COV: brain MWF, 3.7%; cord 
MWF, 3.2%; brain IET2, 0.28%; and cord IET2, 2.0%). A compar-
ison of the temporal and spatial analyses is shown in fig. S1 for the 
same subject and slice as Fig. 2. 

As for any approach where data are under sampled and strong 
regularization or constraints are applied, it is essential to under-
stand the underlying assumptions made by the CALIPR framework 
subspace constraint. We implicitly assume that: (i) a principal com-
ponent basis can provide an accurate, compact representation of our 
data; (ii) this accurate, compact representation of our data can still 
be generated in the presence of incoherent noise or artifacts; and 
(iii) we can design a k-space sampling scheme such that the 
under sampling artifacts are incoherent. 

In the Supplementary Materials, we provide results from simu-
lations related to these assumptions. In fig. S2, we demonstrate that 
subspaces with only ~6 to 8 components manage to span the vast 
majority of signal features in our data, with negligible errors in the 
resulting images and signal evolutions. The principal component 
subspace does therefore provide a compact, accurate representation 
of multi-echo T2 relaxation for the case of ideal, low-noise data (as-
sumption 1). 

Figure S3 shows that the addition of independent, Gaussian-dis-
tributed noise to each TE of the original dataset has a negligible 
effect on these early subspace components. This result is intuitive, 
because the singular value decomposition used for subspace gener-
ation represents an expansion of the data in a coordinate system 
where the covariance matrix is diagonal. In fig. S4, we further dem-
onstrate that a subspace generated from data with additional inco-
herent noise or artifacts still provides a compact, accurate 
representation of the multi-echo T2 relaxation data (assumption 2). 

In fig. S5, we display the CALIPR framework k-space sampling 
scheme and data reconstructed with varying amounts of regulariza-
tion for the same representative subject shown in Fig. 2 from the 

Fig. 6. Comparison of geometric mean of IET2 sensitivity to demyelinating 
disease pathology. From left to right, columns show sagittal, coronal, and axial 
orientation views, respectively, for a subject living with relapsing-remitting multi-
ple sclerosis (male, age 60 years, expanded disability status scale of 2.0, and disease 
duration of 12 years). (A) Full slices of a FLAIR anatomical image are shown with red 
boxes highlighting a region centered around a particularly large FLAIR hyperin-
tense lesion. Close-up views of this region are shown in (B) for IET2 from our pro-
posed CALIPR MWI approach, in (C) for FLAIR, and in (D) for IET2 from a commonly 
used GRASE MWI approach. All images and maps were aligned in the subject’s T1- 
weighted image space to ensure that the exact same region could be compared.  
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CALIPR brain MWI reproducibility experiments. The unregular-
ized Fourier transform reconstruction images in fig. S5 show that 
the variable-density Poisson distribution sampling scheme, gener-
ated with a different random seed for each TE, results in under sam-
pling artifacts that are both spatially and temporally incoherent 
(assumption 3). 

We note that fig. S4 also demonstrates the clear tradeoff between 
noise and bias for different subspace sizes. Small subspace sizes have 
a strong denoising effect but introduce bias (they fail to contain 
some signal features). Large subspace sizes avoid introducing bias 
(because they contain all the true underlying signal features) but 
at the cost of failing to suppress incoherent noise and artifacts 
(which are contained in the later subspace components). For a sub-
space size of ~6 to 8, these simulations show unstructured image 
and signal residuals, suggesting that underlying signal features 
have been captured, and there is negligible evidence of bias. 
However, with ~6 to 8 subspace components, there is still a 
strong denoising effect (fig. S4), which should improve the accuracy 
and precision of the data. 

On the basis of these simulations, the fixed subspace size of 12 
used for CALIPR reconstructions throughout this work should 
provide a conservative, accurate representation of the data that 
will err on the side of capturing all signal features at the risk of re-
taining some noise artifacts (compared to use of a smaller subspace 
size). In fig. S6, we investigate the subspace representation of actual 
reconstructed data for the same representative subject shown in 
Fig. 2 from the CALIPR brain MWI reproducibility experiments. 

Figure S6A shows the 12 reconstructed subspace coefficient 
images (with image intensities normalized to make all the coeffi-
cient images visible), and fig. S6B shows the contributions of each 
of these components toward the reconstructed signal. The increas-
ingly unstructured spatial patterns and negligible amplitudes of 
contributions from later subspace components (especially K > 6) 
provide further evidence that the fixed subspace size of 12 accurately 
spans the signal feature space and that the inclusion of more com-
ponents would tend to only increase noise contributions. 

Our simulations echo the results of Does et al. (34), who recently 
showed that PCA denoising was extremely effective at reducing 
MWF root mean square error, by a factor of approximately 2 to 4, 
for simulated MWI data. On the basis of these results, they predict-
ed that the precision of MWF values calculated from typical in vivo 
MWI data could be improved by a factor of about 3 (34). Our strong 
reproducibility results are due, in part, to the effects of PCA dimen-
sionality reduction, which is expected to improve conditioning of 
the fundamentally ill-posed multicomponent T2 mapping 
problem. By incorporating a form of data driven PCA directly 
into the reconstruction itself, the CALIPR framework provides 
images and quantitative maps with intrinsically higher precision 
than conventional techniques. 

Previous subspace constrained image reconstructions for quan-
titative MRI applications typically generated a single subspace using 
simulated signals, based on an assumed model of the data, and used 
it for all future reconstructions (25, 46). Alternatively, the signal 
evolutions could be generated on the basis of simulations that 
used quantitative values from a reference acquisition (27) or 
could be taken from the reference acquisition itself. These ap-
proaches can provide an extremely compact representation, appro-
priate for conventional, qualitative imaging techniques, and avoid 
the need to generate a new subspace for each acquired dataset. 

However, generating the subspace from simulated or reference ac-
quisition signal evolutions enforces a priori expectations of the 
signal. Signal characteristics that fall outside of these expectations 
will be excluded from the reconstructed images and subsequent 
quantitative maps, inducing a logical circularity bias where the re-
constructed signal is explicitly constrained to lie within a subspace 
of the expected signal. This bias is of particular concern for quan-
titative MRI techniques in the presence of unique signal character-
istics, for example, when imaging tissue with pathology (such as 
lesions in demyelinating diseases). The CALIPR framework miti-
gates this potential bias by using an adaptive subspace, created 
from the data itself after a preliminary reconstruction step. This 
adaptive subspace makes the CALIPR framework agnostic to expec-
tations of the acquired signal, and, because the subspace creation is 
an automated process, it avoids the need to generate a new subspace 
when imaging fixed tissue, phantoms, or even different anatomy 
(such as spinal cord instead of brain). Previous advanced MRI tech-
niques such as time-resolved dynamic MRI have used similar ap-
proaches, where reconstruction subspaces are generated from the 
acquired data (47). 

In their study of PCA image denoising for multicomponent T2 
mapping, Does et al. (34) showed that PCA denoising reduced noise 
by a factor of approximately 2.5 for the first echo image of MWI 
data, with even larger noise reductions for images later in the 
echo train where SNR is lower due to T2 decay. This effect is 
evident when comparing the CALIPR echo images (Fig. 4B) with 
those of GRASE (Fig. 4C); the CALIPR images have a noticeable 
less noisy appearance, especially visible for long TE images. The 
pronounced denoising effect at later echo times is also apparent 
in our simulation results (fig. S4), where later echo times show rel-
atively lower image and signal evolution errors, especially for 
smaller subspace sizes where the denoising effect is stronger. This 
intrinsic denoising contributes to the high SNR appearance of the 
CALIPR images and quantitative maps. Ultimately, this denoising 
effect also contributes to the improved conspicuity of lesions and 
more subtle pathology demonstrated by CALIPR, especially for 
the MWF metric, which is based on short T2 components that are 
notoriously difficult to characterize. 

Because the CALIPR echo images are of comparable quality to 
the conventional 3D T2w image, shown in Fig. 4A, acquisition of a 
separate anatomical T2w image may be rendered redundant for 
exams including CALIPR MWI. Furthermore, the CALIPR brain 
MWI acquisition provides images with 56 different T2 weightings. 
The very long TE images available from CALIPR MWI make tissue 
pathology appear extremely pronounced and would be difficult to 
acquire with sufficient SNR using conventional fast spin-echo 
techniques. 

This study had several limitations worth considering. We did not 
compare CALIPR with an in vivo gold standard reference MWI 
scan. True gold standard acquisitions for high-resolution quantita-
tive MRI techniques tend to be harrowed by motion artifacts related 
to their extremely long acquisition times (~3 hours to acquire a fully 
sampled brain MWI dataset using the CALIPR sequence). Attempts 
to acquire a smaller volume often suffer from artifacts related to 
outer volume signal for 3D acquisition or slice profile and magne-
tization transfer effects for 2D acquisition (48). Our gold standard 
reference acquired for a post-mortem fixed brain sample allowed us 
to develop, assess, and compare CALIPR without the influence of 
variation from extraneous factors such registration quality  
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between scans, motion artifacts, or differing SNR due to variations 
in subject positioning. 

There were some limitations to using a post-mortem fixed brain 
sample; despite the clear improvement shown using the CAPLIPR 
approach compared to conventional CS, some loss of detail and al-
terations were observed. This was, in fact, expected because, to 
ensure the comparison was as fair as possible, we used a set of 
fixed conditions to isolate the improvements made by use of the 
adaptive subspace constraint (i.e., not using the optimal CALIPR 
sampling pattern used later for the reproducibility, sensitivity, and 
multicenter experiments). Further, fixed brain MWI is a notorious-
ly difficult experiment because the fixation process changes the re-
laxation times, resulting in an extremely short window of T2 < ~20 
to 30 ms for the myelin water component (4). This means that the 
number of echoes with myelin water signal above the noise floor is 
much lower than for in vivo MWI, leading to pronounced under 
sampling effects for the short T2 myelin water signal. Overall, this 
intrinsic difficulty was an advantage for our validation work, as it 
provided a stringent testing ground for optimization of the sam-
pling scheme and other parameters. 

Comparing MWF and IET2 values from exams 1 and 2 in our 
reproducibility experiments, we found a small bias for MWF 
values in the posterior internal capsule (mean bias +0.6%, P = 
0.005) and temporal WM (+0.4%, P = 0.04). However, given that 
they constitute two weakly significant results out of the 42 two- 
sided one-sample t tests performed (MWF and IET2 in 16 brain 
and 5 cord ROIs), these results are likely spurious and would not 
survive a correction for multiple comparisons. 

Throughout this study, we used a fixed subspace size of 12 com-
ponents based on empirical optimization. Tamir et al. (27) have 
provided a thorough explanation of how subspace constrained re-
construction modulates image noise and detailed the inherent 
tradeoff between introducing bias (increasing model error) for 
too small a subspace and failing to suppress noise (reducing 
model precision) for too large a subspace. We found that a subspace 
size of 8 performed well in most scenarios without clear evidence of 
bias, but given the intended nature of quantitative MRI techniques, 
we chose to err on the side of failing to suppress noise due to use of a 
relatively large subspace. The method used for determining the size 
of the subspace remains an open topic that can be addressed with a 
variety of approaches. Subspace size can be chosen based on a Mar-
chenko-Pastur distribution from random matrix theory (33, 34, 49), 
chosen based on a normalized model error tolerance (27), or, as in 
this work, fixed at a specific value based on empirical optimization 
(46). Instead of explicitly constraining the reconstruction to a sub-
space of PCA components, the reconstruction could include the 
entire basis set but with additional regularization applied to that di-
mension to promote sparsity. Last, alternative approaches may be 
able to provide an even more compact sparse representation than 
PCA, for example, by learning a low-dimensional manifold repre-
sentation of the data (50, 51). 

Limited availability of MWI techniques across different scanner 
vendors, software levels, and hardware specifications has substan-
tially restricted the utility of MWI and has led to the development 
of pseudo-quantitative MRI techniques with inferior specificity for 
myelin (52–54). Although we leave a rigorous multivendor compar-
ison for future studies, in the Supplementary Materials, we demon-
strate an early implementation of CALIPR MWI for an additional 
MRI vendor (GE, shown in fig. S7). This proof of concept 

demonstrated that the CALIPR framework is relatively easy to trans-
late between scanners with different software or hardware specifica-
tions. We are currently developing CALIPR MWI for a third high- 
field MRI manufacturer, with the goal of providing an openly avail-
able, robust framework capable of performing rapid, precise, sensi-
tive MWI on the three largest vendors. To fully realize the potential 
of CALIPR MWI, further work is required to harmonize matched 
MWI sequences across scanner manufacturers and characterize the 
intersite reproducibility. 

At the time of this study, the CALIPR framework is already being 
applied to study myelin content in the brain and spinal cord of sub-
jects living with multiple sclerosis (~120 subjects). We have also ac-
quired data in a large number of healthy participants to facilitate the 
creation of a normative atlas for use in future comparisons. 

In conclusion, the CALIPR framework drastically reduces the ac-
quisition time of MWI by acquiring a small fraction (~4%) of the 
dataset and then exploiting data redundancy to recover high- 
quality images. Intrinsic denoising properties contribute to the im-
proved reconstruction performance compared to conventional CS 
MRI acceleration and the high precision found for CALIPR MWF 
and IET2 metrics in the healthy brain and spinal cord. In the 
context of demyelinating disease pathology (the hallmark applica-
tion for quantitative MRI biomarkers of myelin), a combination of 
improved spatial and parametric resolution leads to markedly in-
creased sensitivity to pathology for CALIPR compared to a 
current, widely used MWI technique. We implemented CALIPR 
for MWI of brain and cervical spinal cord and have demonstrated 
implementation for two of the three largest MRI manufacturers. 

In addition to providing rapid, high-resolution MWI with im-
proved precision and sensitivity to pathology, the inherent flexibil-
ity of this framework can be leveraged to bring similar benefits to 
other MRI techniques. In particular, this work could be similarly 
transformative for other quantitative MRI techniques where high 
dimensionality can be leveraged to reduce acquisition times and 
improve precision of the resulting metrics. By simultaneously im-
proving data quality for research applications and reducing acqui-
sition time for clinical applications, the CALIPR framework 
facilitates quantitative myelin imaging without compromise and 
negates the need to settle for acquiring less-informative MRI. 

MATERIALS AND METHODS 
Experimental design 
This study was approved by the University of British Columbia 
Clinical Research Ethics Board. All volunteers provided written in-
formed consent. 

Validation, reproducibility, and sensitivity experiments were 
performed at 3.0 tesla on an Ingenia Elition X scanner (software 
version R5.7.1, Philips Healthcare, Best, The Netherlands). Brain 
imaging used a 32-channel head coil, while spinal cord imaging 
used a 16-channel head-neck coil with a 12-channel posterior 
spine coil. 

CALIPR acquisition 
To allow for prospective under sampling with a user defined sam-
pling scheme on Philips scanner software, we modified the Univer-
sity of Amsterdam Academic Medical Center (AMC) “PROspective 
Undersampling in multiple Dimensions” (PROUD) software patch 
(55, 56) to allow for use with MESE pulse sequences. User defined  

S C I E N C E  A D VA N C E S | R E S E A R C H  R E S O U R C E  

Dvorak et al., Sci. Adv. 9, eadh9853 (2023) 1 November 2023                                                                                                                                                  9 of 14 



sampling files were provided to specify which phase-slice encoding 
matrix data points to acquire at each TE in order. This provided 
complete flexibility to acquire any sampling on a cartesian grid. 

For our under sampling scheme, depicted in Fig. 7A and also in 
fig. S5, we used a temporally incoherent sampling scheme by gen-
erating a variable-density Poisson distribution with a different 
random seed for each TE. An elliptical k-space shutter was 
applied before the sampling distributions were projected onto a 
grid with a uniform under sampling factor of 2 in the phase direc-
tion. The uniform under sampling grid was used to effectively 
spread more of the incoherent aliasing artifacts across this direction 
of the imaging receive coils, as it tends to have a better g factor. 

Fully sampled central calibration regions were acquired at the 
first two TEs to ensure sufficient characterization of stimulated 
echoes effects, which is essential for accurate estimation of refocus-
ing flip angles and T2 relaxation components during MWI analysis 
(57–59). The central calibration region also allows for estimation of 
coil sensitivity maps directly from the data, making the acquisition 
self-contained (without the need for separate coil reference 
prescans). 

Last, although these central calibration regions slightly reduce 
the overall incoherence of the sampling scheme, they also ensure 

that sufficient low-frequency k-space data are acquired to detect 
the short T2 relaxation components that are of paramount impor-
tance for MWI. 

The sampling scheme was empirically optimized using retro-
spective under sampling reconstructions before final validation 
work was performed to verify performance in prospective under 
sampling conditions. Sampling schemes to be used for accelerated, 
prospectively under sampled acquisitions were generated offline in 
MATLAB (R2019b) for the appropriate matrix size. 

CALIPR reconstruction 
The CALIPR reconstruction process outlined in Fig. 7B involves 
four steps: 

1) This step is simply a conventional CS reconstruction of the 
dataset, without down sampling or otherwise modifying the data. 
It uses an iterative reconstruction with L1 wavelet spatial regulari-
zation to generate images at each echo time. 

2) An intensity threshold is applied to mask out background 
noise regions, and then these multi-echo signals undergo singular 
value decomposition. This generates a basis set composed of prin-
cipal components of the signal evolution across echo times. The 
data can now be represented in this basis of principal components 

Fig. 7. CALIPR framework acquisition and reconstruction. A graphical overview of the CALIPR framework methodology. For (A) acquisition and (B) reconstruction. For 
(A) image acquisition, the pulse sequence phase encoding gradients are modified to sample data incoherently across the additional nonspatial dimension present for 
many magnetic resonance imaging techniques. For (B) reconstruction, images from an initial naïve reconstruction are used to generate a subspace, calibrated for that 
specific dataset. A second and final reconstruction is then performed, explicitly constrained to this low-dimensional subspace. This combined acquisition and reconstruc-
tion framework exploits redundancy present in additional, nonspatial dimensions of the data by sampling in a way that makes under sampling artifacts less coherent and 
therefore more easily suppressed by a sparsity-promoting reconstruction, while true image features remain coherent and easily recoverable.  
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instead of the original basis of echo times. The principal component 
basis is then truncated by keeping only some of the first components 
(12 components were used throughout this study). This truncated 
principal component basis is the subspace used in the next step as a 
reconstruction constraint. 

3) A second iterative image reconstruction is performed, identi-
cal to that in step 1 but with an explicit subspace constraint. This 
iterative reconstruction also uses L1 wavelet spatial regularization 
but solves for coefficient images corresponding to amplitudes of 
each subspace component (rather than images at each echo time, 
as in step 1). 

4) Last, images at each echo time are calculated from the results 
of step 3 by summing the contributions of the subspace coefficient 
images at each echo time. These echo time images can then be used 
for subsequent MWI analysis and calculation of quantitative 
metric maps. 

The forward problem for the conventional CS reconstruction in 
step 1 can be written as 

min
x

1
2
ky � MFSxk2

2 þ λkTðxÞk1 

for acquired data y, sampling mask M, Fourier transform F, coil sen-
sitivity maps S, images at each echo time x, regularization factor λ, 
and wavelet transform T(x). 

In step 2, singular value decomposition provides Φ, a basis set 
composed of signal evolution principal components. A low-dimen-
sional subspace, ΦK, can be created by truncating this basis set, re-
taining only K principal basis components, where x � ΦKΦH

K x. 
In step 3, we reconstruct the data a second time but now enforc-

ing an explicit subspace constraint by representing the data in a 
lifted space where we solve for K different subspace coefficient 
images, α ¼ ΦH

K x. For the extended CS forward model in step 3, 
the reconstruction problem becomes 

min
α

1
2
ky � MFSΦKαk2

2 þ λkTðαÞk1 

for subspace ΦK and ultimately solving for subspace coefficient 
images α. The sparsity enforcing term (with wavelet transform T ) 
remains unchanged except that it now operates on the subspace co-
efficient images instead of the echo time images. We refer the reader 
to the earlier Discussion section for an analysis of assumptions, 
caveats, and quality controls related to this subspace approximation. 

Last, in step 4, images at each echo time are calculated from the 
subspace coefficient images as x = ΦKα. 

Reconstructions were solved offline in MATLAB (R2019b) using 
FISTA (60) with the BART software package (61). Coil sensitivity 
maps were estimated from the echo 1 calibration region using 
ESPIRiT (62). To reduce reconstruction times (subspace recon-
struction: ~12 min for the brain and ~8 min for the cord), k- 
space data were compressed to eight virtual channels (63) and re-
constructions were solved on a graphics processing unit (GPU, 
NVIDIA Titan RTX). 

In figs. S5 and S6, we show underlying details of the CALIPR 
framework reconstruction, both for the same representative 
subject shown in Fig. 2, from the CALIPR brain MWI reproducibil-
ity experiments. Figure S5 displays the sampling scheme and effects 
of reconstruction with different regularization, including an un-
regularized Fourier transform and coil combination where the in-
coherent under sampling artifacts are clearly visible. 

Figure S6A provides a visualization of the 12 reconstructed sub-
space coefficient images, with image intensities normalized to make 
all coefficient images visible. In fig. S6B, the mean amplitude of each 
subspace coefficient image is plotted on a logarithmic scale. Note 
that the later subspace components (K > 6) have increasingly un-
structured spatial patterns and amplitudes of contributions that 
are orders of magnitude smaller than early components, which sug-
gests that the fixed subspace size of 12 should conservatively provide 
an accurate, low-error representation of signal features in 
each dataset. 

Myelin water imaging analysis 
For MWI analysis, we used a modified version of the multicompo-
nent T2 analysis algorithm previously introduced by Kumar et al. 
(45), which uses spatial and temporal regularization to iteratively 
refine the resulting flip angle map and T2 distributions. Compared 
to the version published previously, the analysis used here had 
relaxed criteria for the refinement of the spatial regularization 
factors and used fewer spatial analysis iterations (two instead of six). 

Validation experiments 
A reference MWI sequence was developed using a post-mortem, 
single-hemisphere fixed brain sample donated by a subject with 
multiple sclerosis. The use of a fixed brain sample facilitated devel-
opment, optimization, and validation in controlled conditions, 
without the influence of factors such as subject motion and image 
coregistration. 

The reference acquisition was acquired with a 3D MESE se-
quence (field of view (FOV) of 240 mm by 192 by 100 mm, acquired 
resolution of 1.7 mm by 1.7 mm by 1.7 mm, reconstructed resolu-
tion of 1.5 mm by 1.5 mm by 1.5 mm, 56 echoes, ΔTE of 5.6 ms, TR 
of 1252 ms, and fully sampled acquisition time of 2 hours:47 min:25 
s) in 2 hours:8 min:10 s with an extremely conservative CS under 
sampling acceleration factor of 1.3 (76.9% of the dataset). 

Three reconstructions were performed and kept identical for 
comparison (iterative CS reconstruction, coil sensitivity maps, L1 
wavelet regularization, etc) apart from the following differences: 

1) The Reference version used the entire acquired dataset. 
2) The accelerated CS version used data retrospectively under 

sampled by a spatially incoherent variable density Poisson distribu-
tion with an acceleration factor of 14.6 (6.8% of the dataset). 

3) The accelerated CALIPR version used data retrospectively 
under sampled by a spatially and temporally incoherent variable 
density Poisson distribution with the same acceleration factor 
(14.6, 6.8% of the dataset) and the addition of the CALIPR subspace 
constraint. 

The resulting echo images were analyzed using parameters ap-
propriate for fixed brain, and MWF maps were generated for 
comparison. 

Reproducibility experiments 
We implemented CALIPR for in vivo MWI of the brain and cervical 
spinal cord. 

The brain acquisition used a slightly modified version of the 
aforementioned fixed brain reference sequence (3D MESE, FOV 
of 240 mm by 200 mm by 100 mm, acquired resolution of 1.7 
mm by 1.7 mm by 1.7 mm, reconstructed resolution of 1.0 mm 
by 1.0 mm by 1.0 mm, 56 echoes, ΔTE of 6.0 ms, TR of 1252 ms, 
and fully sampled acquisition time of 2 hours:57 min:20 s) acquired  
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in 7 min:26 s with an under sampling acceleration factor of 23.9 
(4.2% of the dataset). 

The spinal cord acquisition used a 3D MESE sequence (FOV of 
180 mm by 152 mm by 60 mm, acquired resolution of 1.0 mm by 1.0 
mm by 5.0 mm, reconstructed resolution of 0.62 mm by 0.62 mm by 
2.5 mm, 48 echoes, ΔTE of 8.0 ms, TR of 1120 ms, and fully sampled 
acquisition time of 45 min:27 s) and was acquired in 8 min:23 s with 
an under sampling acceleration factor of 5.4 (18.4% of the dataset). 
The cord imaging FOV was centered at the C3/C4 level of the cer-
vical spinal cord and angled so that slices were perpendicular to 
the cord. 

Five healthy participants without documented history of brain 
or spinal cord disease or injury participated in the study (four 
male, median age of 27 years, range 23 to 33 years). Anatomical 
images were acquired for each subject to use for ROI segmentation 
and as an anchor image space during analysis: a sagittal 3D T1- 
weighted magnetization-prepared rapid gradient-echo image 
(T1w) for the brain and an axial 2D multislice T2*-weighted 
multi-echo gradient echo image (T2*w) for cord. 

For both brain and cord, each CALIPR MWI acquisition was 
performed twice, in separate exams with repositioning (a total of 
four exams). Advanced Normalization Tools, Spinal Cord 
Toolbox (SCT), and FMRIB Software Library tools were used for 
image analysis (64–66). 

For brain, T1w and MWI echo 1 images underwent N4 bias field 
correction for low-frequency intensity nonuniformities (67). Tissue 
segmentations were initialized by registration with the OASIS tem-
plate and priors (68) and then refined using Atropos n-tissue seg-
mentation (69). Images were masked to brain only before MWI 
echo 1 images were rigidly aligned with the corresponding subject’s 
T1w image. 

T1w images were registered to a template created in-house using 
data from 100 healthy volunteers (70). Optimized ROIs were gener-
ated using the probabilistic joint label fusion framework (71) and 
warped to each subject’s T1w image space. Brain ROIs include all 
WM, all GM, and combined WM and GM from T1w image segmen-
tations, along with nine additional WM ROIs [all Johns Hopkins 
University (JHU) WM labels combined: genu of CC; splenium of 
CC; whole CC; posterior internal capsule; and frontal, occipital, pa-
rietal, and temporal lobes masked to WM) and four additional GM 
ROIs (cortical GM, caudate, thalamus, and putamen). 

For the spinal cord, we produced cord and cerebrospinal fluid 
(CSF) segmentations for the T2*w and MWI echo (final TE) 
images (72, 73), as well as GM segmentations for the T2*w images 
(74). For each subject, images were masked to cord and CSF only 
before the MWI final echo image was rigidly aligned with the cor-
responding subject’s T2*w image. 

T2*w images were registered with the T2*-weighted SCT PAM50 
template (75), centered at the C3/C4 level of the cord, and registra-
tions were refined using the T2*w GM segmentation to improve 
alignment of intracord structure. To reduce the influence of 
partial volume effects, the resulting probabilistic cord ROIs were 
thresholded to only include voxels with probability >0.5. Spinal 
cord ROIs include the WC, WM, GM, DC, and LCSTs. 

We quantified results within each ROI by their median to 
account for the skewed distribution of metric values within ROIs, 
and we chose similar ROIs and statistical measures to previous 
studies to facilitate comparisons (18, 41, 76, 77). MWF and IET2 
results from exams 1 and 2 were compared using Bland-Altman 

plots. The 95% limits of agreement, RCs, COVs, and ICCs were cal-
culated as in recent MWI studies (18, 19). For MWF and IET2 in 
each ROI, a two-sided one-sample t test was performed on the dif-
ference between exams 1 and 2 to test for significant biases. 

Sensitivity experiments 
We also aimed to assess the sensitivity of CALIPR MWI to patho-
logical tissue changes and compare the sensitivity to a common, 
currently adopted MWI technique. To that end, we acquired data 
from a subject living with clinically definite relapsing-remitting 
multiple sclerosis fulfilling the 2017 revised MacDonald criteria 
for diagnosis (78) [male, age 60 years, expanded disability status 
scale of 2.0 (35), and disease duration of 12 years]. 

The imaging protocol included typical anatomical imaging for a 
multiple sclerosis exam: T1w, T2w, and T2w FLAIR, and proton 
density–weighted images acquired with 3D fast spin-echo 
sequences. 

CALIPR MWI brain data were acquired as described in the “Re-
producibility experiments” section. For comparison, we also ac-
quired a commonly used 3D multi-echo GRASE sequence (FOV 
of 230 mm by 192 mm by 100 mm, acquired resolution of 1.0 
mm by 2.0 mm by 5.0 mm, reconstructed resolution of 1.0 mm 
by 1.0 mm by 2.5 mm, 48 echoes, ΔTE of 8.0 ms, TR of 1079 ms, 
and fully sampled acquisition time of 44 min:55 s) acquired in 6 
min:10 s with echo planar imaging (EPI) factor of 3 and parallel 
imaging under sampling acceleration factor of 2.5 (40.0% of the 
dataset) for a total acceleration factor of 7.5. 

CALIPR and GRASE MWI data were processed as described in 
the “Reproducibility experiments” section. Echo images were shown 
in addition to MWF and IET2 maps for comparison of source MWI 
data quality. All results are shown for data aligned in T1w image 
space to ensure that the exact same anatomical locations were 
being compared. 

Supplementary Materials 
This PDF file includes: 
Supplementary Text 
Figs. S1 to S7 
Tables S1 and S2 
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