Skip to main content
. Author manuscript; available in PMC: 2023 Nov 1.
Published in final edited form as: IEEE Trans Knowl Data Eng. 2020 Dec 21;34(10):4854–4873. doi: 10.1109/tkde.2020.3045924

TABLE 3:

A summary of relation-learning based HNE algorithms. (Additional notations: f: a non-linear activation function; [x]+:max{x,0};F: the Frobenius norm of a matrix; 𝓕,𝓕1: the fast Fourier transform and its inverse; x¯: the complex conjugate of x; l1: the inverse of relation l; ×i: the tensor product along the i-th mode; Θ: the set of learned parameters; Eu,El: 2D reshaping matrices of eu and el [82]; vec: the vectorization operator; *: the convolution operator; M(eu,el): a matrix aligning the output vectors from the convolution with all kernels [84].)

Algorithm wuv(l) d(eu,ev) 𝓙R0 Applications
TransE [4] 1(u,v)El eu+elev v(ev1) KB completion, relation extraction from text
TransH [118] eu,l+elev,l2,ev,l=evwlTevwl l(wl1)+v[ev1]++l[(wlTel)2el2ϵ2]+
TransR [80] eu,l+elev,l2,ev,l=Alev v[ev1]++l[el1]++v[Alev1]+
RHINE [76] edge weight of (u,v) with type l euev2 if l models affiliation, eu+elev if l models interaction N/A link prediction, node classification
RotatE [114] 1(u,v)El euelev2,eu,ev,eln l(el1) KB completion, relation pattern inference
RESCAL [119] Al(euev)2 v[ev1]++l[AlF1]+ entity resolution, link prediction
DistMult [81] Al(euev)2,Al=diag(el) v(ev1)+l[el1]+ KB completion, triplet classification
HolE [120] er𝓕1(𝓕(eu)¯𝓕(ev))2 v[ev1]++l[el1]+
ComplEx [121] Aleuev2,Al=diag(el),eu,ev,eln vev2+lel2
SimplE [122] 12(Al(euev)2+Al1(eveu)2),Al=diag(el),Al1=diag(el1)
TuckER [123] C𝓦×1eu×2el×3ev N/A
NTN [20] CelTtanh(euT𝓜lev+Ml,1eu+Ml,2ev+bl) Θ22
ConvE [82] Cσ(vec(σ([Eu;El]*ω))W)ev N/A
NKGE [83] same as TransE or ConvE, where eu=σ(gu)eus+(1σ(gu))eun Θ22
SACN [84] Cf(vec(M(eu,el))W)ev N/A