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High heterogeneity in genome and phenotype of cancer populations made it

difficult to apply population-based common driver genes to the diagnosis

and treatment of cancer individuals. Characterizing and identifying the per-

sonalized driver mechanism for glioblastoma multiforme (GBM) individuals

were pivotal for the realization of precision medicine. We proposed an inte-

grative method to identify the personalized driver gene sets by integrating the

profiles of gene expression and genetic alterations in cancer individuals. This

method coupled genetic algorithm and random walk to identify the optimal

gene sets that could explain abnormality of transcriptome phenotype to the

maximum extent. The personalized driver gene sets were identified for 99

GBM individuals using our method. We found that genomic alterations in

between one and seven driver genes could maximally and cumulatively

explain the dysfunction of cancer hallmarks across GBM individuals. The

driver gene sets were distinct even in GBM individuals with significantly simi-

lar transcriptomic phenotypes. Our method identified MCM4 with rare

genetic alterations as previously unknown oncogenic genes, the high expres-

sion of which were significantly associated with poor GBM prognosis. The

functional experiments confirmed that knockdown of MCM4 could signifi-

cantly inhibit proliferation, invasion, migration, and clone formation of the

GBM cell lines U251 and U118MG, and overexpression of MCM4 signifi-

cantly promoted the proliferation, invasion, migration, and clone formation

of the GBM cell line U87MG. Our method could dissect the personalized

driver genetic alteration sets that are pivotal for developing targeted therapy

strategies and precision medicine. Our method could be extended to identify

key drivers from other levels and could be applied to more cancer types.

1. Introduction

Glioblastoma multiforme (GBM) is the most malig-

nant and invasive brain tumor, which shows the poor-

est overall survival among 33 types of cancers in The

Cancer Genome Atlas (TCGA) (Fig. S1). Frequent

genomic alterations in GBM participated in cancer

critical signaling pathways, which also showed obvious

mutual exclusive patterns in the same pathways

(Fig. S2). Cancer development was an evolution
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process of somatic cells under the selective pressure [1].

The accumulation of somatic genomic alterations

drove evolution progression, in which some key alter-

ations provided the cancer cells with proliferative

advantages [2]. Thousands of genomic alterations were

documented from the sequencing of cancer genomes.

Due to the high degree of intra- and inter-tumoral het-

erogeneity in the aspect of genomic alterations, little

were known about the functions of the genomic alter-

ations in specific conditions. Characterizing the func-

tions of genomic alterations and identifying the set of

driver genomic alterations in cancer individuals were

pivotal for understanding tumorigenesis and its evolu-

tion, which were closer to realize precision medicine.

In cancer studies, distinguishing the driver genomic

alterations from the rest was the fundamental task.

With the accumulation of sequencing data in cancer

genome, many methods were designed for identifying

driver genomic alterations based on the cancer

cohorts. MutSig and MuSiC assumed that the driver

genes more likely showed high mutation rate and

recurrent mutations [3]. Ciriello et al. [4] identified

oncogenic gene modules in which the alterations of

genes showed mutual exclusivity patterns and partici-

pated in same or similar functions. DriverNet identi-

fied the driver gene set by selecting the minimum gene

set of genes which could cover the maximum differen-

tially expressed genes in all cancer patients [5]. Core

gene modules were identified based on multilayer

factor-mediated dysfunctional regulatory networks and

showed significant functional coherence [6]. Driver

copy number alterations (CNAs) were identified based

on their directly mediating dysregulated ceRNA net-

works [7]. Although these methods could identify com-

mon driver genes among cancer cohorts, the highly

genetic heterogeneity of genetic alterations made it

hard to apply to cancer individuals.

Some methods were proposed to identify driver

genes in cancer individuals by trying to assess the

impact of gene mutations on the pattern changes of

gene expression. The potential driver genes with muta-

tions were identified based on the rank of genes from

differential genes mutations through network topology

[8]. Based on the consensus, modules were extracted

from personal mutation network bridging the muta-

tions and differentially expressed genes to assess the

impact of mutations [9]. The minimum of genes with

mutations were identified from personalized state tran-

sition network based on the gene expression of pair

normal-tumor samples to connect with differential

genes [10]. The rank of mutations were ranked through

the aggregated influence scores of dysregulated path-

ways based on the maximum weight subtree of prize-

collecting Steiner tree model [11]. The personalized key

genetic alterations were identified by estimating the

effect of their downstream risk pathways through inte-

grative dimension-omic data [12]. However, few

methods characterized the functions of driver genes

and estimated the explained extent of abnormality of

transcriptome by driver genes. Also, cooperatively

driving roles of driver genes were less identified.

In this manuscript, we proposed an integrative

method coupling random walk and genetic algorithm

to identify the personalized driver gene sets which

could explain the transcriptome abnormality to the

maximum extent (Fig. 1). Based on the topological

structure of protein interaction network, we could

characterize the functional influences of single or mul-

tiple genes with genomic alterations on dysregulated

cancer hallmarks in cancer individuals. The consistence

between the functional influences of driver genes and

dysfunctional activity of cancer hallmarks were as the

measure of explained extent of driver genes.

The approach was applied to GBM individuals. The

set of driver genes could significantly explain the

abnormal phenotype. We found that the driver gene

sets were distinct across GBM individuals, even in

GBM individuals with similar transcriptome pheno-

type. Our method could not only identify known can-

cer genes but also discover the novel and rare genes in

GBM individuals.

2. Materials and methods

2.1. Materials

We collected the profiles of gene expression, copy

number, and somatic mutations of GBM from TCGA.

The microarray-based gene expression profile detected

expression level of 11 273 genes in 378 GBM patients

and 10 normal samples. Based on the segmentation

data of copy number, we used Genomic Identification

of Significant Targets in Cancer (GISTIC, version 2)

[13] to identify the CNAs of the genes (including

high-level amplification and homozygous deletion) in

463 GBM patients. The mutation profile contained

8289 genes with at least one mutations in 291 GBM

patients. There were 99 common GBM patients which

were detected in all three aspects of gene expression,

copy number, and somatic mutations (Fig. S3). We

identified the personalized driver gene sets for these 99

GBM patients.

Protein interaction network was downloaded from

the Search Tool for the Retrieval of Interacting Genes

(STRING, verson 11.0; https://string-db.org/) which

contained known and predicted interactions [14]. We
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Fig. 1. The workflow for identifying personalized driver gene sets prioritized by coupling genetic algorithm and random walk. For each

cancer individual, all genes with genetic alterations (CNAs or mutations) were collected, genetic algorithm (an optimization algorithm) was

used to randomly candidate gene sets from genes with genetic alterations, random walk was used to evaluate the driver effect of each

candidate subset on genes in co-expression protein interaction network, and ssGSEA was used to calculate the enrichment scores of cancer

hallmarks based on the stable probabilities of genes as the driver scores (Dscores) of the subset. PCCs were used to measure the consis-

tency between the Dscores of the subset on cancer hallmarks and the dysfunctional enrichment scores (Escores) of cancer hallmarks in

transcriptomic change, and the subset with the significant and highest PCC were identified as the personalized driver gene sets for this

individual.
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selected the known interactions in human and trans-

ferred the protein IDs into entrez gene IDs to compose

the protein interaction network, which contained

16 225 genes and 440 278 interactions. We collected

the 50 hallmark genesets from the Molecular Signa-

tures Database (MSigDB, http://www.gsea-msigdb.

org) [15].

2.2. The overview of the method for identifying

driver gene sets in cancer individuals

We defined the driver gene sets as those genes whose

CNAs or mutations could explain the dysregulation of

cancer hallmarks in cancer individuals to the maximal

extent. To identify the driver genes, we developed an

integrative strategy which coupled genetic algorithm

and random walk (Fig. 1).

2.2.1. Identifying the dysfunctional cancer hallmarks in

cancer individuals

For each cancer individual, we calculated the fold

changes of gene expression for each individual by com-

paring with the mean expression level of genes in nor-

mal samples. Based on the fold changes of genes, we

used gene set enrichment analysis (GSEA) to identify

the dysfunctional cancer hallmarks at P = 0.05 [16].

2.2.2. Constructing co-expression protein interaction

networks

We integrated the gene expression profiles and protein

interaction network to construct the co-expressed

weighted network. For each pair of interaction, the

Pearson correlation coefficient (PCC) was calculated

using the expression of the gene pair in cancer popula-

tion. The absolute value of PCC was the weight of the

pair of interaction, which was proportional to

the interaction status of the gene pair. The maximum

component of the co-expression protein interaction

network was used for subsequent analysis.

2.2.3. Selecting candidate genes by using random walk

with restart

For each cancer individual, we obtained genes showed

CNAs or mutations. We used the random walk with

restart (RWR) to estimate the driver effects of these

genes on the cancer hallmarks to select candidate

genes with potential driver roles.

For each gene, we mapped it as seed node into the

co-expression protein interaction network, and the dys-

regulated information derived from the seed node was

diffused to genes according to the topological structure

of the co-expression protein interaction network. The

dysregulated information could also restart from the

seed nodes with probability r. The formula for the RWR

principle was calculated as follows [17,18]:

Ptþ1 ¼ 1�rð ÞWPt þ rP0,

where P0 was the initial probability of genes in which

the probability of seed gene was 1 and others 0; Pt

and Pt + 1 were the probabilities of dysfunctional

information reaching at genes in the protein interac-

tion network at tth and (t + 1)th steps. W was the

normalized transfer probability matrix based on

the maximum component of weighted co-expression

protein interaction network, in which the sum of each

column was 1. The normalized transfer probabilities

from source nodes to target nodes were proportional

to the PCCs between them. The r were set to 0.3. The

random walk process was considered to reach the

steady state when maximum |Pt + 1 � Pt| were less

that 1e-10 and stopped. The value of Pt + 1 repre-

sented the stable probabilities by which the genes

receive the dysfunctional information from the seed

gene, representing the driver effect of seed node on

genes in the co-expression protein interaction network.

The value of Pt + 1 represented the extent to which the

genes were affected by the dysfunctional information

from the seed gene.

We identified the significantly affected cancer hall-

marks used GSEA based on the Pt + 1 at the threshold

of P = 0.05. The gene was considered as a candidate

driver gene if it significantly effect at least one of 50

cancer hallmarks. These candidate driver genes formed

candidate gene sets for the specific cancer individuals.

2.2.4. Searching the optimal driver gene sets using

genetic algorithm

We searched an optimal subset from the candidate

genes which could maximally explain abnormal tran-

scriptome of cancer individuals using genetic algorithm

[19]. The process of genetic algorithm for searching

optimal driver gene sets contained population initia-

tion, fitness evaluation, and three genetic operators

(including tournament selection, uniform crossover,

and mutation).

Population initiation

For candidate genes in cancer individual, an initial

population described by a random 0–1 binary matrix

was generated in which the number of columns (L)

was equal to the number of candidate genes. The
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number of rows (population size, N) varied with the

number of candidate genes. For each row, the values

of 1 represented corresponding candidate genes were

selected into subset, while values of 0 represented not.

Each row represented a random subset of candidate

genes, which was evaluated.

Fitness evaluation

We calculated the fitness of the random subsets of

candidate genes. For each subset, the candidate genes

in this subset as seed nodes were mapped into the co-

expression protein interaction networks, and the

driver effects of seed nodes on genes in networks

were calculated by the RWR. The stable probabilities

of RWR represented the driver effects of seed nodes

on genes in the co-expression protein interaction net-

work. We calculated the enrichment scores of the

dysfunctional cancer hallmarks based on the stable

probabilities using single sample gene set enrichment

analysis (ssGSEA) [20] and considered this enrich-

ment scores as the driver enrichment scores (Dscores)

of the seed nodes on the dysfunctional cancer hall-

marks. To estimate the extent to which the subset

can explain the abnormal transcriptome, we calcu-

lated expression enrichment scores (Escores) of the

dysfunctional cancer hallmarks based on expression

fold changes of genes using ssGSEA and calculated

the PCC between Dscores and Escores of the dys-

functional cancer hallmarks. The PCC was used to

measure the extent to which the subset can explain

the abnormal transcriptome. Thus, the PCC as the

fitness index to evaluate the subset. Subsets which

could explain the abnormal transcriptome well should

be evaluated with higher positive PCCs.

Tournament selection

During selection process, tournament selection was

used to subsets with higher PCCs. For each selection,

we randomly chose three subsets and compared their

PCCs, and the subset with highest PCC was selected.

The process was repeated N times, keeping the

population size.

Uniform crossover

The population of subsets selected by tournament

selection were used to generate offspring representing

new subsets. At the crossover probability of 0.9, the

subsets were randomly selected to perform crossover.

The selected subsets were randomly crossovered in

pairs using uniform crossover and generated

offspring which replaced their parent subsets into

populations.

Mutation

We performed the mutation operator on the popula-

tion of subsets at the mutation probability of 0.01

and generated the new generation of population for

re-evaluation.

2.2.5. The driver gene set for cancer individuals

We set the maximum number of iterations propor-

tional to the number of candidate genes. When the

evolutionary process of genetic algorithm was stopped,

the subset of the candidate gene set with the highest

PCC were the driver gene set for cancer individuals.

2.3. Functional experiments of MCM4 and CXCL6

in human GBM cell lines

We performed the functional experiments including

cell proliferation, invasion, and migration assays to

validate the functional roles of MCM4 and CXCL6

in GBM.

2.3.1. Cell lines and cell culture

We obtained Human GBM cell lines U251 (RRID:

CVCL_0021), U87MG (RRID: CVCL_0022), A172

(RRID: CVCL_0131), and U118MG (RRID: CV

CL_0633) from Shanghai Cell Bank of the Chinese

Academy of Sciences (Shanghai, China). The Cell lines

of U251, U87MG, A172, and U118MG were authenti-

cated using Short Tandem Repeat analysis as

described in 2012 in ANSI Standard (ASN-0002) by

the ATCC Standards Development Organization. And

all experiments in this study were performed with

mycoplasma-free cells. We cultured them in Dulbecco’s

modified Eagle’s medium (L110KJ; Basalmedia,

Shanghai, China) supplemented with 10% FBS (04-

001-1ACS; Biological Industries, Beit Haemek, Israel)

at 37 °C in humidified atmosphere of 5% CO2 in air.

2.3.2. RNA interference and overexpression

We purchased the MCM4-sepecific short-interfering

RNAs (siRNAs) and CXCL6-sepecific siRNAs from

RiboBio (Guangzou, China). According to the manu-

facturer’s protocol of riboFECT™CP (RiboBio), we

transfected MCM4-sepecific siRNAs into U251 and

U118MG and CXCL6-sepecific siRNAs into U87MG.

The controls were transfected with corresponding
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scrambled siRNA (siRNA-NC). The MCM4 overex-

pression plasmid and blank plasmid were purchased

from GeneCopoeia (Guangzhou, China). According to

the manufacturer’s protocol (GeneCopoeia), we trans-

fected MCM4 overexpression plasmid and blank plas-

mid into U87MG. After 48 h of post-transfection,

western blotting was used to measure the effect gene

silencing or overexpression.

2.3.3. Western blotting

We used RIPA buffer (P0013B; Beyotime Biotechnol-

ogy, Shanghai, China) to extract proteins, used BCA

Protein Assay Kit (P0012; Beyotime) to measure the

protein concentrations, separated proteins by 10%

SDS/PAGE, and then transferred them onto PVDF

membranes (IPFL00010; Millipore, Billerica, MA,

USA). Immunoblots were blocked with 5% BSA in

1×TBS and then incubated overnight at 4 °C with pri-

mary antibodies. The primary antibodies were as fol-

lows: MCM4 (A9251; Abclonal, Wuhan, China),

CXCL6 (DF13470; Affinity, Cincinnati, OH, USA),

and GAPDH (60004-1-Ig; Proteintech, Wuhan,

China). The protein expression were measured and

visualized using BCIP/NBT staining (C3206;

Beyotime).

2.3.4. Cell proliferation assays

Cell counting kit 8 (CCK-8) cell proliferation assay is

a useful tool to determine the overall health of cells

and to measure cell survival. To test the effect of

MCM4 and CXCL6 on cell survival, we used the

CCK-8 (C0038; Beyotime) assay to detect the amount

of Formazan which was proportional to the number

of surviving or healthy cells. Human GBM cell lines

U251, U87MG, and U118MG with transfection plas-

mids were cultivated into 96-well plates with 100 μL of

cell suspension of 50 000 cells�mL�1 and were cultured

at 37 °C. After 24, 48, and 72 h incubation, we added

10 μL of CCK8 reagent in each plate and measured

the amount of Formazan and the absorbance at

450 nm. We used cell viability to measure the number

of healthy cells.

2.3.5. Cell invasion assays

We used Transwell assay to detect the invasion ability

of U251, U87MG, and U118MG with transfection plas-

mids. One hundred microliter of cell suspension of

1 × 105 cells�mL�1 were seeded in each plate on upper

chambers (3422; Corning, Tewksbury, MA, USA),

while 600 μL of complete medium containing 10%

serum was placed in the lower chambers. After incuba-

tion for 48–72 h at 37 °C, we used a cotton swab to

gently remove the cells which still remained cells on the

upper chambers. 0.1% crystal violet dye (C0121; Beyo-

time) was added into the upper and lower chambers.

The cells which had invaded to the lower surface of the

membrane were stained for 15 min and were photo-

graphed and counted. The experiments were repeated in

triplicate independently.

2.3.6. Cell migration assays

We used cell scratch assay to detect the migration ability

of U251, U87MG, and U118 with transfection plas-

mids. For each GBM cancer cell, a confluent of cell

layer in a 24-well plate was scratched using a pipette tip

(T-300-R-S; Axygen, Tewksbury, MA, USA) and was

washed with PBS three times and cultured in medium

containing 10% serum at 37 °C. After 24 h from the

scratch, the cells were imaged by microscopy. We used

ImageJ (National Institute of Health) to measure the

area recovery (AR) which was calculated as follows:

AR24 h ¼ Scratch_area 0 hð Þ�Scratch_area 24 hð Þ
Scratch_area0 h

:

2.3.7. Clone formation assay

The clone formation abilities (CFA) of U251,

U87MG, and U118 with transfection plasmids was

determined using clone formation assay. 200, 400, and

800 cells were seeded into each plate of 6-well plate

and cultured in incubator with 5% CO2 and saturation

humidity at 37 °C. The culture was terminated once

the visible clone occurred in incubator. After washed

and fixed, the incubator was added 2 mL of Crystal

Violet Staining Solution and stained for 15 min. The

clone number was counted as those with more than 50

cells under the microscope. The clone formation ability

was calculated as follows:

CPA ¼ Clone_number

Total_cell_number
:

3. Results

3.1. Extensive phenotypic and genomic

heterogeneity across GBM individuals

Cancer heterogeneity posed challenges in cancer diag-

nosis and therapy. We investigated whether there

existed obvious phenotypic heterogeneity among 378

GBM individuals in the level of transcriptome. The

expression change of genes in each GBM individual
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were calculated by comparing with the expression

levels of genes in 10 normal samples and identified the

significance of dysfunctional status of 50 cancer hall-

marks using GSEA. We clustered GBM individuals

into subgroups and found different activation patterns

of cancer hallmarks across subgroups (Fig. 2A). For

example, one subgroup of GBM individuals showed

specific significant activation in immune signatures

(such as INTERFERON_ALPHA_RESPONSE,

INFLAMMATORY_RESPONSE, and IL6_JAK_-

STAT3_SIGNALING) and development signatures

such as EPITHELIAL_MESENCHYMAL_TRANSI-

TION. While in another subgroup, proliferation

signatures (including E2F_TARGETS, G2M_CHECK-

POINT, and MYC_TARGETS_V1) showed specific

and significant activation. The density of PCC of dys-

functional cancer hallmarks centered to 0 among GBM

individuals (Fig. 2B).

We further investigated the genomic heterogeneity

among GBM individuals from the view of CNAs and

mutations. There were 293 GBM individuals with both

profiles of expression and copy number. 68.3% GBM

individuals harbored less than 100 genes with CNAs

(Fig. 2C), with the median of 53 genes with

CNAs (Fig. 2D). We measured the similarity in CNAs

among GBM individuals using Jaccard coefficients cal-

culated by vegdist in R package VEGAN [21]. The distri-

bution of similarity in CNAs was biased (Fig. 2E),

which was with median of 0.0045 (Fig. 2F). The num-

ber of mutant genes in the 111 GBM individuals with

both profiles of expression and mutations ranged from

5 to 103 (Fig. 2G), which showed the median number

of mutant genes at 56 (Fig. 2H). The max Jaccard

coefficients in mutations among GBM individuals were

less than 0.05 (Fig. 2I), the median similarity in muta-

tions was 0.0081 (Fig. 2J). These results showed that

Fig. 2. The extensive heterogeneity in GBM populations. (A) The dysfunctional profile of cancer hallmarks in 378 GBM patients. (B) The

correlation of dysfunctional activities among GBM patients. (C) The frequency of CNAs across GBM population. (D) Boxplot for the number

of genes with CNAs in GBM patients. (E) The similarity of GBM individuals in CNAs. (F) Boxplot for the distribution of similarity in CNAs. (G)

The frequency of mutations across GBM population. (H) Boxplot for the number of genes with mutations in GBM patients. (I) The similarity

of GBM individuals in mutations. (J) Boxplot for the distribution of similarity in mutations.
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there existed extensive heterogeneity in genome alter-

ations among GBM individuals. The extensive hetero-

geneity in both phenotype and genome alterations

suggested that distinct driving pathogenesis mecha-

nisms underlying each GBM individual, which indi-

cated it necessary to identify the personalized driver

gene sets driving the carcinogenesis in GBM

individuals.

3.2. Identifying the personalized driver gene sets

in GBM individuals

The personalized driver gene sets were defined as the

genes with genetic alterations which could maximally

explain the dysfunction of cancer hallmarks in cancer

individuals. We developed an integrative method to

identify the personalized driver gene sets in cancer

individuals, which coupled random walk and genetic

algorithm to search the optimal subsets of genes

(Fig. 1). In our method, for each GBM individual, we

collected all genes with genetic alterations (CNAs or

mutations) and used random walk to select candidate

genes with potential driver ability. To identify the

driver gene set in individual, we used genetic algorithm

to randomly search the subsets of candidate genes,

used the random walk to evaluate the driver effect of

each subset on genes in co-expression protein interac-

tion network, and calculated the enrichment scores of

cancer hallmarks based on the stable probabilities

of genes as the driver scores (Dscores) of the subset.

Further, we measured the consistency between the

Dscores of the subset on cancer hallmarks and the

dysfunctional enrichment scores (Escores) of cancer

hallmarks in transcriptome change using PCC, and the

subset with the significant and highest PCC were iden-

tified as the personalized driver gene sets for this

individual.

We used the integrative method to identify personal-

ized driver gene sets for 99 GBM individuals with all

three profiles of expression, copy number, and muta-

tion. These driver gene sets involved 215 driver genes,

which showed obviously mutually exclusive across the

GBM individuals (Fig. 3A). The numbers of driver

genes ranged from 1 to 7 across GBM individuals

(Fig. 3B). Meanwhile, 70.51% of driver genes were

only identified in one GBM individual (Fig. 3C). We

selected 38 driver genes identified in at least two GBM

individuals and test their enrichment among different

clinical classification using chi-square test (Fig. S4).

The results showed that most of driver genes did not

show any enrichment in specific clinical classification.

Although some genes (such as PIK3R1 and VCAN)

showed enrichment tendency in some clinical

classifications, these correlations need to be further

determined with larger populations in future due to

the lower number of samples and low frequency of

driver genes.

We used SIFT (Sorting Intolerant From Tolerant),

PolyPhen2 (Polymorphism Phenotype v2), and VEP

(Variant Effect Predictor) to explore the impact of

gene alterations on their proteins. Among 210 missense

mutations, 107 mutations were predicted as deleterious

by SIFT, and 123 mutations were identified as damag-

ing by PolyPhen2 (Fig. S5A). For other types of 38

mutations, 36 mutations were determined having high

effect (Fig. S5B). In total, 172 of 248 mutations

(69.4%) in driver genes were predicted as damaging

effect on proteins by at least one method.

We estimated the driver extent of personalized

driver gene set by calculating the PCCs between

Dscores and Escores of dysfunctional cancer hall-

marks. The results showed that the personalized driver

gene sets could significantly explain the activation of

dysfunctional cancer hallmarks in 91.8% of GBM

individuals (P = 0.05, Fig. 3D; Fig. S6). For example,

we identified the driver gene set including ATR,

COL4A2, and FLT1 in GBM individual TCGA-12-

0821, and the Dscores of dysfunctional cancer hall-

marks showed significant correlation with Escores of

these cancer hallmarks (PCC = 0.86 and P = 1.25e-

08). The PCCs in 90 of 98 GBM individuals were

higher than 0.4, and the median PCC was 0.628

(Fig. 3E). The personalized driver gene-hallmark net-

works were built by finding the genomic alterations of

driver genes which could contribute to the dysregula-

tion of core genes enriched in the dysfunctional cancer

hallmarks, which were further assembled into a com-

prehensive driver gene-hallmark network (Fig. 3F). We

found that dysfunctional cancer hallmarks were driven

by different driver genes in a mutually exclusive man-

ner (Fig. S7). For example, the activation of prolifera-

tion signature of E2F_TARGETS was identified in 53

GBM individuals, which was driven by 58 driver genes

(including some known GBM genes such as TP53,

EGFR, ATR, PDGFRA, and RB1).

3.3. Dissecting the functional mechanism of

personalized driver gene sets

We dissected the driver mechanism of personalized

driver gene sets contributing to the dysregulation of

cancer hallmarks in each GBM individual. For exam-

ple, in GBM individual TCGA-19-1390, the personal-

ized driver gene set (including PDGFRA, PARP1,

CREBL2, and DAB1) was identified, which could

explain the transcriptome dysregulation to the
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maximum extent. In TCGA-19-1390, 23 cancer hall-

marks were significantly dysfunctional of using GSEA

based on the fold change of transcriptome (Fig. 4A).

The proliferation signatures were significantly acti-

vated, such as E2F_TARGETS (P = 1e-10),

G2M_CHECKPOINT (P = 1e-10), and MYC_TAR-

GETS_V1 (P = 1e-10) (Fig. 4B). The Dscores of dys-

functional cancer hallmarks driven by the driver gene

set were significantly correlated with the Escores

enriched by the expression fold change (PCC = 0.89,

P = 9.8e-09, Fig. 4C). The genomic alterations of

PDGFRA, PARP1, CREBL2, and DAB1 cooperatively

contributed to the abnormality of cancer hallmarks.

The PCCs between Dscores and Escores were signifi-

cantly elevated with the number of driver genes

increasing (Fig. 4D). To further investigate the roles of

driver genes on dysfunctional cancer hallmarks, we

constructed the personalized driver gene-hallmark net-

work by identifying dysfunctional cancer hallmarks

which were also significantly driven by the driver genes

(P = 0.05 and normalized enrichment score > 0,

Fig. 4E). Each of driver genes contributed to at least

four dysfunctional cancer hallmarks. PDGFRA was

associated with nine dysfunctional cancer hallmarks

(including four proliferation signatures and two devel-

opment signatures). PDGFRA was reported as core

GBM driver gene [22]. The abnormality of PDGFRA

could characterize proneural subtype in glioblastoma

[23]. PDGFRA mutation promoted cell proliferation

and survival [24]. We found that seven dysfunctional

cancer hallmarks were driven by at least two driver

genes. The proliferation signature of E2F_TARGETS

was cooperatively driven by PDGFRA, DAB1, and

CREBL2. We found that major core enrichment genes

Fig. 3. The driver gene sets in GBM individuals. (A) The driver genes identified for 98 GBM individuals. (B) The number of driver genes in

GBM individuals. (C) The number of GBM individuals with certain numbers of driver genes. (D) The significant correlation coefficients driven

by driver gene sets across GBM individuals. (E) The distribution of correlation coefficients across GBM population. (F) The comprehensive

driver gene-hallmark network. Red nodes represent driver genes and orange nodes represent cancer hallmarks.
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of E2F_TARGETS based on transcriptome abnormal-

ity were influenced by the genomic alterations of these

three genes (Fig. 4F). The similar phenomena were

also observed for the signature of G2M_CHECK-

POINT (Fig. 4G). These results suggested that geno-

mic alterations of these driver genes contributed to the

carcinogenesis in a cooperative and complement

manner.

3.4. Distinct driver mechanisms contributed to

similar GBM phenotype

We explored whether there existed distinct driver

mechanisms for similar phenotype by comparing

driver mechanisms among GBM individuals. Pheno-

type similarity of GBM individuals were measured by

transcriptome similarity. The GBM individuals with

similar phenotype were identified using the PCCs of

transcriptomes. We found that the transcriptome of

GBM individual TCGA-32-2634 showed most signifi-

cant similarity with that of TCGA-19-1390

(PCC = 0.93, P = 0, Fig. 5A). The dysfunctional can-

cer hallmarks in TCGA-32-2634 also showed similar

significance with that of TCGA-19-1390 (Fig. 5B). The

top five of dysfunctional cancer hallmarks showing

most significant activation including E2F_TARGETS

(P = 1e-10), EPITHELIAL_MESENCHYMAL_-

TRANSITION (P = 1e-10), G2M_CHECKPOINT

(P = 1e-10), MYC_TARGETS_V1 (P = 1e-10), and

_MTORC1_SIGNALING (1.05e-07) (Fig. 5C). The

personalized driver gene set identified for TCGA-32-

2634 included TP53, RB1, KIT, and LAMA3, which

could significantly explain the dysregulation of dys-

functional cancer hallmarks (PCC = 0.76, P = 1e-05,

Fig. 5D). The personalized driver gene sets for these

two GBM individuals were completely distinct

(Fig. 5E). In the driver gene-hallmark network of

TCGA-32-2634, the proliferation signatures were

cooperatively driven by the mutations in TP53 and

RB1 instead of PDGFRA, CREBL2, and PARP1 in

TCGA-19-1390 (Figs 4E and 5F). RB1 mutation con-

tributed to dysregulation of core enrichment genes of

E2F_TARGETS, in which TP53 mutations provided

complement driver roles (Fig. 5G). TP53 and RB1

drove the common core enrichment genes, which were

also driven by PDGFRA, CREBL2, and PARP1, to

Fig. 4. The driver gene set identified by TCGA-19-1390. (A) The dysfunctional cancer hallmarks in TCGA-19-1390. (B) The correlation

between dysfunctional scores and enrichment scores driven by driver genes. (C) The cancer hallmarks were significantly driven by the driver

genes. P was calculated by R function cor.test(). (D) The cumulative contributions of driver genes on the dysfunction of cancer hallmarks.

(E) The dysfunction of cancer hallmarks driven by the driver genes including PARP1, PDGFRA, DAB1, and CREBL2. (F) The signature

E2F_TARGETS cooperatively driven by PARP1, PDGFRA, and CREBL2. (G) The signature G2M_CHECKPOIN cooperatively driven by PARP1

and PDGFRA.
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activate the signature of E2F_TARGETS (Fig. 5H).

The transcriptomes of GBM individual TCGA-06-

0241 and TCGA-41-2571 showed significant similarity

with that of TCGA-19-1390 (PCC = 0.93, P < 2.2e-16

for TCGA-06-0241 and PCC = 0.935, P < 2.2e-16 for

TCGA-41-2571). The personalized driver gene sets of

TCGA-06-0241 (PCC = 0.78, P = 1.5e-06) and

TCGA-41-2571 (PCC = 0.75, P = 1.7e-05) were also

distinct from those of TCGA-19-1390 (Fig. S8). These

results showed that distinct driver mechanisms existed

among GBM individuals with similar phenotype, sug-

gesting that it was essential to dissect the personalized

driver mechanism in cancer individuals regardless of

phenotype similarity.

3.5. The novel driver genes in GBM individuals

We collected eight cancer gene sets (including the Can-

cer Gene Census (CGC) [25], Tumor Suppressor gene

(TSGene) database 2.0 [26], Integrative OncoGenomics

(IntOGen) [27], Bailey et al. (299 driver genes by

TCGA) [28], Bushman’s Lab (http://www.bushmanlab.

org/links/genelists), Rahman [29], Tamborero et al.

[30], and the Network of Cancer Genes (NCG) 5.0

[31]). We found that 61.9% of 215 driver genes identi-

fied by our method were recorded in at least one of

eight cancer gene sets (Fig. S9A, Table S1). The top

10 genes including TP53, RB1, PTEN, CHEK2,

BRCA1, CYLD, EGFR, PDGFRA, CDKN2C, and

ATR were recorded in seven of eight cancer gene sets,

which were well known to be associated with the

development of GBM. By comparing the personalized

driver genes in GBM individuals with the known can-

cer gene sets, there were at least one cancer genes in

87.8% of GBM individuals, and all of the identified

driver genes were cancer genes in 31.63% GBM indi-

viduals (Fig. S9B). By performing enrichment analysis,

we found our identified driver genes significantly over-

lapped with all of the eight cancer genes (Fig. S9C).

These results proved that our method could identify

the driver cancer genes whose genomic alterations

could drive the dysfunction of cancer hallmarks.

Beyond the known driver genes, 82 driver genes iden-

tified by our method were not recorded in any of eight

cancer gene sets. For example, in GBM individual

TCGA-06-0648, the identified driver gene set contained

both MCM4 and CXCL6, none of which were recorded

as cancer genes. In TCGA-06-0648, we identified 22

Fig. 5. Different driver gene sets driving similar transcriptomic phenotypes. (A) The correlation of transcriptomes between TCGA-19-1390

and TCGA-32-2364. P was calculated by R function cor.test(). (B) The dysfunctional cancer hallmarks in both TCGA-19-1390 and TCGA-32-

2364. (C) The dysfunctional cancer hallmarks significantly enriched by dysregulated transcriptome in GBM individual TCGA-32-2364. (D) The

correlation between dysfunctional scores and enrichment scores driven by driver genes in GBM individual TCGA-32-2364. P was calculated

by R function cor.test(). (E) The driver gene sets in TCGA-19-1390 and TCGA-32-2364. (F) The dysfunction of cancer hallmarks driven by the

driver genes, including TP53, RB1, KIT, and LAMA3. (G) The signature E2F_TARGETS cooperatively driven by TP53 and RB1 in TCGA-32-

2364. (H) The common core genes enriched in E2F_TARGETS driven in TCGA-19-1390 and TCGA-32-2364.
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significantly dysfunctional cancer hallmarks, including

E2F_TARGETS (P = 1e-10), G2M_CHECKPOINT

(P = 1e-10), MYC_TARGETS_V1 (P = 1e-10),

and EPITHELIAL_MESENCHYMAL_TRANSITIO-

N (P = 1e-10) (Fig. 6A). The Dscores of these hall-

marks driven by MCM4 and CXCL6 showed significant

consistence with Escores enriched by fold changes

(PCC = 0.81, P = 5.5e-06, Fig. 6B). The genomic alter-

ations of MCM4 and CXCL6 showed synergistic and

complementary effects on driving the transcriptome

deregulation in TCGA-06-0648 (Fig. 6C). In the person-

alized driver gene-hallmark network, we found that the

major contributions of MCM4 and CXCL6 were to dif-

ferent cancer hallmarks. The proliferation signatures

(such as E2F_TARGETS and G2M_CHECKPOINT)

were driven by MCM4, while CXCL6 drove the devel-

opment signatures of EPITHELIAL_MESENCHY-

MAL_TRANSITION and ANGIOGENESIS, immune

signatures of INTERFERON_GAMMA_RESPONSE

and COMPLEMENT, and signaling signatures of

TNFA_SIGNALING_VIA_NFKB (Fig. 6D).

We performed literature searching to further explore

the potential carcinogenic effect of MCM4. MCM4

conserved motif was required for the formation of

Mcm2-7 complex which were essential for the initia-

tion of DNA replication [32]. The interaction between

Mcm4, Sld3, and Dbf4 could control the progression

of origin firing and replication fork to ensure genome

Fig. 6. The novel genes of MCM4 and CXCL6 driving the dysfunctional cancer hallmarks in TCGA-06-0648. (A) The dysfunctional cancer hall-

marks in TCGA-06-0648. (B) The correlation between dysfunctional scores and enrichment scores driven by driver genes in GBM individual

TCGA-06-0648. P was calculated by R function cor.test(). (C) The cumulative contributions of MCM4 and CXCL6 on the dysfunction of can-

cer hallmarks. (D) The dysfunction of cancer hallmarks driven by MCM4 and CXCL6. (E) High expression of MCM4 were significantly associ-

ated with poor GBM prognosis. P was calculated by Log-rank test.
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stability [33]. The mutant MCM4 could perturb the

progression of S phase [34]. MCM4 mutation affected

its interaction with MCM7 to induce the destabiliza-

tion of MCM4/6/7 complex [35] and contributed to

cancer cell development [36]. MCM4 alteration may be

an earlier event in esophageal carcinogenesis [37] and a

potential sensitive proliferation marker in valuating

esophageal lesions [38]. MCM4 may play essential

roles in proliferation and could be a potential thera-

peutic target in non-small cell lung cancer [39]. A via-

ble allele of Mcm4 caused chromosome instability and

mammary adenocarcinomas in mice [40]. CXCL6 is a

chemotactic for neutrophil granulocytes. The upregula-

tion of CXCL6 inhibited the cancer cell growth, sur-

vival, and metastasis by dysregulating miRNA-101-5p

[41] and miR-515-5p [42]. CXCL6 and CXCL12 pro-

moted the metastasis of colon carcinoma by coopera-

tively activating the PI3K/Akt/mTOR pathway [43].

CXCL6 contributed to cell permeability, proliferation,

and apoptosis by regulating Sirt3 through activating

AKT/FOXO3a [44]. The growth and metastases of

esophageal squamous cell carcinoma cells were pro-

moted by CXCL6 in vivo and in vitro through the acti-

vation of the STAT3 pathway [45]. The upregulation

of CXCL6 mediated the effect of HIF-1α on promot-

ing invasion and metastasis in HCC cells [46]. Block-

ing CXCL6 could inhibit the growth and metastases of

melanoma [47]. CXCL6 was associated with angiogen-

esis in gastrointestinal tumors [48]. We also investi-

gated the carcinogenic roles of the rest novel driver

genes using literature searching (Table S2). These

results indicated the ability of our method to identify

novel driver genes.

3.6. Functional experiments validated the effect

of MCM4 and CXCL6

Survival analysis of MCM4 expression showed that

high expression of MCM4 was significantly associated

with poor GBM prognosis (Log-rank test, P = 0.036

for TCGA, P = 6.4e-5 for GSE4271, P = 0.048 for

GSE4412, and P = 0.0019 for GSE13041, Fig. 6E).

We used functional experiments including cell prolifer-

ation, invasion, migration assays, and clone formation

assay to validate the oncogenic effect of novel cancer

genes MCM4. The endogenous MCM4 expression was

relatively higher in GBM cell lines U118MG and

U251 (Fig. 7A). To validate the oncogenic function of

MCM4 in GBM, we silence MCM4 in U118MG and

U251 using siRNAs (siRNA1, siRNA2, and siRNA3)

and selected siRNA3 showing better silence effect for

further functional experiments (Fig. 7B). CCK-8 assay

showed that knockdown of MCM4 by siRNA

significantly reduce cell survival rate of U118MG and

U251 (Fig. 7C). We also found that the cell migration

and invasion abilities of both U118MG and U251

were significantly reduced by silencing MCM4 using

Transwell (Fig. 7D) and scratch assay (Fig. 7E). Clone

formation assay showed that knockdown of MCM4

also significantly reduce the CFA of U118MG and

U251 (Fig. 7F). Further, after overexpressing MCM4

into GBM cell line U87MG with lower endogenous

MCM4 expression (Fig. 8A), cell proliferation assays

showed that the result of MCM4 overexpression signif-

icantly improved the cell survival rate of U87MG

(Fig. 8B). The cell migration and invasion abilities of

U87MG were significantly promoted by MCM4 over-

expression using Transwell (Fig. 8C) and scratch assay

(Fig. 8D). And MCM4 overexpression significantly

promoted the clone formation ability of U87MG

(Fig. 8E).

The expression of CXCL6 was also significantly

associated with GBM prognosis in eight GBM gene

expression profiles (Fig. S10). Meanwhile, to explore

the effect of CXCL6 on cell proliferation, invasion,

migration, and CFA, we silence CXCL6 in GBM cell

line U87MG which showed relative higher endogenous

CXCL6 expression using siRNAs (siRNA1, siRNA2,

and siRNA3) and selected siRNA1 showing better

silence effect for further functional experiments

(Fig. S11A,B). The results showed that knockdown of

CXCL6 significantly improved the cell survival rate

of U87MG (Fig. S11C), promoted the cell migration

(Fig. S11D) and invasion abilities of U87MG

(Fig. S11E), and also significantly promoted the CFA

of U87MG (Fig. S11F). These results proved that

genomic alterations of MCM4 and CXCL6 had the

potential carcinogenic effect.

4. Discussion

Extensive heterogeneity in cancer from multiple levels

made it difficult for precision medicine. Dissecting the

personalized driver mechanism was important for

cancer diagnosis and therapy. In this study, we

coupled the random walk and genetic algorithm to

estimate the function of genes with genomic alter-

ations and to select the personalized driver gene sets

whose genomic alterations could explain the tran-

scriptome change of cancer individuals. The applica-

tion of our method in GBM showed that the driver

effects of the personalized driver gene sets were sig-

nificantly correlated with the dysfunctional extent of

cancer hallmarks in GBM individuals, which showed

extensive heterogeneity in both phenotype and

genome.
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Some of the identified driver genes were novel and

showed rare genomic alterations in GBM. We showed

the important roles of MCM4 and CXCL6 in cancers.

The mutation frequencies of MCM4 and CXCL6 were

0.69% and 0.34% in GBM, which was too low to be

identified by the methods based on cancer population.

The mutation of PARP1 also showed low frequency

(0.69%), which contributed to the dysfunctions of

DNA_REPAIR, E2F_TARGETS, and

G2M_CHECKPOINT in TCGA-19-1390, DNA-

dependent PARP1 was a key contributor to the DNA

damage response network [49]. The expression of

PARP1 was a potential prognostic and therapeutic

marker in GBM [50]. The maintenance of reduced

PARP-1 activity could delay the recurrence of GBM

during radiation [51]. The inhibition of PARP1

together with temozolomide may overcome the

acquired resistance of GBM cells on temozolomide

[52] which also counteracted gliomagenesis by inducing

mitotic catastrophe and homologous recombination

repair deficiency in PTEN-mutant glioma [53].

PARP1-siRNA could inhibit the growth and invasion

capacity of prostate cancer cell [54]. PARP-1 cytoplas-

mic mutant promoted the tumorigenesis and resistance

of pancreatic cancer [55]. DAB1 was also a driver gene

identified by our method, whose mutation frequency

was 1%. DAB1 regulated neuron migration and lami-

nation. The upregulation of DAB1 mediated the inhi-

bition of migration and invasion of prostate cancer

cells by regulating microRNA-300 [56]. Dab1 pro-

moted cell apoptosis by regulating NF-κB/Bcl-2/cas-
pase-9 pathway, considered as a potential tumor

suppressor gene of breast cancer [57]. In vivo, DAB-1

could inhibit tumor growth, metastasis formation, and

mortality rate of ectopic and orthotopic tumors [58].

The proliferation of glioblastoma cells were reduced

by RELN signaling depending on mutant DAB1 stimu-

lation [59]. Dab1 expression reduced the proliferation

of leukemia cells [60]. These rare driver genes could

be omitted directly by population-based method,

Fig. 7. The knockdown of MCM4 in GBM cancer cells. (A) Endogenous MCM4 expression in GBM cell A172, U87MG, U118MG, and U251.

(B) SiRNAs could efficiently silence MCM4 expression. (C) The CCK-8 assay detected the effect of knockdown of MCM4 on cell proliferation

of U118MG and U251. (D) Transwell assay detected the effect of knock-down of MCM4 on cell invasion of U118MG and U251. Scale bars,

40 μm. Magnification ×200. (E) Cell scratch assay detected the effect of knockdown of MCM4 on cell migration of U118MG and U251.

Scale bars, 200 μm. Magnification ×200. (F) Clone formation assay detected the effect of knockdown of MCM4 on cell formation abilities of

U118MG and U251. NC, normal control; error bars represent standard deviation (SD). Results were summarized as mean � SD of three

independent experiments (*P < 0.05; **P < 0.01; ***P < 0.001, independent Student’s t test).
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indicating the necessary to develop the method for dis-

secting the personalized driver mechanism for GBM

individuals.

Comparison analysis in dysfunctions of cancer hall-

mark and genome alterations revealed extensive het-

erogeneity in both phenotype and genotype across

GBM individuals. It was expected that the distinct

phenotypes may be driven by different gene sets of

genetic alterations. Interestingly, some completely dif-

ferent driver gene sets were identified for some GBM

individuals with similar transcriptome phenotype,

which could significantly explain the dysfunction of

cancer hallmarks to the maximum extent. For exam-

ple, the transcriptome of TCGA-06-0241, TCGA-41-

2571, and TCGA-32-2364 were significantly similar to

that of TCGA-19-1390. Four distinct driver gene sets

were identified for these four GBM individuals (ASS1,

LRP1B and KIF4A for TCGA-06-0241; DCP1A,

VWF, TBP, and CHEK2 for TCGA-41-2571; TP53,

RB1, KIT, and LAMA3 for TCGA-32-2364; and

PDGFRA, PARP1, DAB1, and CREBL2 for

TCGA_19-1390, Figs 4 and 5; Fig. S6). The functional

similarity cooperatively driven by different driver gene

sets induced similar phenotype which concealed the

personalized pathogenic mechanism in GBM

individuals. It was necessary to dissect the pathogene-

sis landscape of cancer from the view of individual

genome alterations.

Cancer was driven by the accumulation of driver

somatic genetic alterations. The key driver genetic

alterations could maintain the survival competitiveness

of cancer cells during cancer evolution. We used the

transcriptome change to represent the competitive phe-

notype of GBM individuals and identified the driver

sets of genetic alterations which could explain this phe-

notype to the maximum extent. During the progression

of identifying personalized driver gene set, we con-

nected the transcriptome change and genome alter-

ation based on information propagation in the

biological network. We could estimate the driver func-

tions of single genetic alteration and also could iden-

tify the cooperative functions of multiple genetic

alterations based on the driver effect of genetic alter-

ations on genes in protein interaction network. The

evolution process of genetic algorithm helped us to

select the subset of genetic alterations in individuals

driving the transcriptome change. There were some

factors which could influence the performance of our

method. Transcriptome change from the pair of

cancer-normal samples could better describe the

Fig. 8. The overexpression of MCM4 in GBM cancer cell. (A) Western plot for MCM4 overexpression in GBM cell U87MG. (B) The CCK-8

assay detected the effect of overexpression of MCM4 on cell proliferation of U87MG. (C) Transwell assay detected the effect of MCM4

overexpression on cell invasion of U87MG. Scale bars, 40 μm. Magnification ×200. (D) Cell scratch assay detected the effect of MCM4

overexpression on cell migration of U87MG. Scale bars, 200 μm. Magnification ×200. (E) Clone formation assay detected the effect of

MCM4 overexpression on cell formation abilities of U87MG. NC, normal control; error bars represent standard deviation (SD). Results were

summarized as mean � SD of three independent experiments (**P < 0.01; ***P < 0.001, independent Student’s t test).
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competitive phenotype of cancer individuals. The

integrity and dynamics of protein interaction networks

could influence the direction of information flow,

which further better characterize the functions of

genetic alterations and identify the functions of more

genes with genetic alterations.

Cancer transcriptome is dynamic and can be influ-

enced by multiple factors including stress or treatment.

In our strategy, we were aiming to identify the set of

driver genes with genetic alterations whose driver

effects were significantly and consistently relate with

the change of transcriptome. If the transcriptome

changes are caused by factors such as stress and treat-

ment but not by intrinsic genetic alterations, the corre-

lation between the driver effects of genetic alterations

and transcriptome changes will be random low and

not significant, and the genes with genetic alterations

were not identified as driver gene sets.

Since our analysis was based on the bulk tumor

sequencing, it was one of the limitations of our work

that we could not distinguish if the gene alterations

occurred in tumor cells or the tumor microenviron-

ment cells. Single-cell sequencing data could help us

distinguish the expression level of driver genes across

different cell types of cancer. By analyzing the expres-

sion level of CXCL6 in eight single-cell RNA-seq data-

sets of GBM and glioma from TISCH2 (http://tisch.

comp-genomics.org/home/) and GEO, we found that

CXCL6 was expressed in macrophage cells in 4 of 7

datasets in TISCH2 and expressed in microglia cell in

one dataset (Fig. S12A). Meanwhile, we also found

that CXCL6 was expressed in tumor cells or specific

tumor subtype cells in 5 of 7 datasets in TISCH2. In

addition, we analyzed the single-cell RNA-seq data of

GSE141946 (which were not recorded in TISCH2) and

found that CXCL6 was mainly expressed in astrocyte

cells (Fig. S12B,C). So, the occurrence of driver genes

in tumor cells should be further considered by using

single-cell sequencing technologies.

5. Conclusion

In conclusion, an integrative method was proposed to

identify the personalized driver gene sets whose genetic

alterations could maximally explain the transcriptome

change of cancer individuals. Our method could be

extended to identify key drivers from other levels and

could be applied to more cancer types.
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