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Combining single-cell RNA sequencing and population-based
studies reveals hand osteoarthritis-associated chondrocyte
subpopulations and pathways
Hui Li1,2,3, Xiaofeng Jiang1,2,3, Yongbing Xiao1,2,3, Yuqing Zhang4,5, Weiya Zhang6,7, Michael Doherty 6,7, Jacquelyn Nestor4,
Changjun Li 2,3,8,9, Jing Ye1,2,3, Tingting Sha2,3, Houchen Lyu1, Jie Wei 1,3,10,11✉, Chao Zeng1,2,3,9✉ and Guanghua Lei 1,2,3,9✉

Hand osteoarthritis is a common heterogeneous joint disorder with unclear molecular mechanisms and no disease-modifying
drugs. In this study, we performed single-cell RNA sequencing analysis to compare the cellular composition and subpopulation-
specific gene expression between cartilage with macroscopically confirmed osteoarthritis (n= 5) and cartilage without
osteoarthritis (n= 5) from the interphalangeal joints of five donors. Of 105 142 cells, we identified 13 subpopulations, including a
novel subpopulation with inflammation-modulating potential annotated as inflammatory chondrocytes. Fibrocartilage
chondrocytes exhibited extensive alteration of gene expression patterns in osteoarthritic cartilage compared with nonosteoarthritic
cartilage. Both inflammatory chondrocytes and fibrocartilage chondrocytes showed a trend toward increased numbers in
osteoarthritic cartilage. In these two subpopulations from osteoarthritic cartilage, the ferroptosis pathway was enriched, and
expression of iron overload-related genes, e.g., FTH1, was elevated. To verify these findings, we conducted a Mendelian
randomization study using UK Biobank and a population-based cross-sectional study using data collected from Xiangya
Osteoarthritis Study. Genetic predisposition toward higher expression of FTH1 mRNA significantly increased the risk of hand
osteoarthritis (odds ratio= 1.07, 95% confidence interval: 1.02–1.11) among participants (n= 332 668) in UK Biobank. High levels of
serum ferritin (encoded by FTH1), a biomarker of body iron overload, were significantly associated with a high prevalence of hand
osteoarthritis among participants (n= 1 241) of Xiangya Osteoarthritis Study (P-for-trend= 0.037). In conclusion, our findings
indicate that inflammatory and fibrocartilage chondrocytes are key subpopulations and that ferroptosis may be a key pathway in
hand osteoarthritis, providing new insights into the pathophysiology and potential therapeutic targets of hand osteoarthritis.
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INTRODUCTION
Hand osteoarthritis (OA) is a common heterogeneous joint
disorder and involves a distinctive OA phenotype with differences
in etiology and pathophysiology from knee OA and hip OA.1–5

Patients with hand OA frequently report symptoms of pain,
functional limitations and disability in daily activities.6,7 Previous
studies have shown that the clinical burden of hand OA is
comparable to that of rheumatoid arthritis.8,9 During the past few
years, several clinical trials10–13 have been conducted to assess the
efficacy of symptomatic slow-acting and anti-inflammatory drugs
on hand OA, but the results are disappointing.14,15 To date, there
is no known cure for hand OA, indicating a need for a better
understanding of its underlying mechanisms such that appro-
priate prevention and treatment strategies can be developed to
target this common form of arthritis.2,14,15

Single-cell RNA sequencing (scRNA-seq) provides an opportu-
nity for comprehensive and unbiased characterization of cellular
and molecular profiles in both healthy and diseased tissues.16

Identifying underlying disease-dependent differences at single-
cell resolution can greatly help in understanding the molecular
mechanisms and discovering target cells and pathways.
Population-based studies provide evidence that is generalizable,
increasing the robustness of scRNA-seq analysis findings. More-
over, a Mendelian randomization (MR) study is a technique that
uses genetic variables as proxies for the exposure of interest,
which are randomly allocated at conception and conditional on
parental genotypes, and thus is able to estimate the causative
effect of an exposure variable on an outcome while minimizing
the risk of confounding and reverse causation.17 The combination
of target discovery by scRNA-seq with validation by large
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population-based studies may help in translating research from
the molecular to population level and ultimately in guiding
development of effective prevention and treatment strategies for
hand OA.
In this study, we performed scRNA-seq analysis on cartilage

collected from macroscopically osteoarthritic and nonosteoar-
thritic interphalangeal joints from the hands of five human donors
to compare alterations in cellular composition and subpopulation-
specific gene expression. We further conducted (1) a MR study
using data from UK Biobank to investigate the causal association
between key differentially expressed gene and hand OA and (2) a
cross-sectional study using data collected from a community-
based observational study (Xiangya Osteoarthritis Study18,19) to
examine the association between a serum biomarker (encoded by
a key gene) and hand OA.

RESULTS
Cell clusters in human hand articular cartilage
We obtained 10 articular cartilage specimens (i.e., five osteoar-
thritic and five nonosteoarthritic specimens) from the interpha-
langeal joints of five donors (Fig. 1a and Table S1) whose
pathological conditions were confirmed by macroscopic observa-
tion and Safranin-O/Fast Green staining (Fig. 1b). Among them,
105 142 individual cells passed the strict quality filtering process
for subsequent analysis (Fig. S1), with 52 197 cells originating
from osteoarthritic cartilage and 52 945 from nonosteoarthritic
cartilage (Fig. 1c). We identified 20 putative clusters, including 18
chondrocyte clusters and two rare clusters, using the unsuper-
vised method (Fig. 1d). The cluster-specific differentially
expressed genes (DEGs) are shown in Table S2. Most chondrocyte
clusters align with the following 10 chondrocyte subpopulations
according to established markers (Fig. 1e)20–24: effector chon-
drocytes (EC, Cluster 1 and 2); prehypertrophic chondrocytes
(preHTC, Cluster 3 and 4); regulatory chondrocytes (RegC, Cluster
5, 6, and 7); prefibrocartilage chondrocytes (preFC, Cluster 8);
fibrocartilage chondrocytes (FC, Cluster 9, 10, and 11); proliferat-
ing chondrocytes (ProC, Cluster 12); hypertrophic chondrocytes
(HTC, Cluster 13); mitochondrial chondrocytes (MTC, Cluster 16);
homeostatic chondrocytes (HomC, Cluster 17 and 18); and
cartilage progenitor cells (CPC, Cluster 19). Remaining Clusters
13 and 14 were grouped as a novel subpopulation (inflammatory
chondrocytes, InflamC) according to their distinct expression of
genes related to the inflammatory response, immune system
process and immune response, i.e., CCL20, CCL2, NOS2, and MMP3
(Fig. 2a). Immunohistochemistry (IHC) analysis revealed a predis-
posed distribution of InflamC in the superficial zone of articular
cartilage (Fig. 2b). In addition, two small subpopulations were
detected, including a subpopulation of macrophages (Mac,
Cluster 20) that specifically expressed IL1B, CD74, CD68, and
HLA-DRA and a subpopulation of H-type endothelial cells (EndC,
Cluster 21) that highly expressed PECAM1 and EMCN (Fig. 1e and
Fig. 2c, d). To better understand the specific characteristics of
hand chondrocytes, we compared transcriptomic differences
between these chondrocyte subpopulations and knee chondro-
cytes.20 The results showed a close relationship of EC, RegC, ProC,
preHTC, HTC and HomC in knee cartilage and hand cartilage
(Fig. S2), which is consistent with the correlation results for cell
subpopulations in hand cartilage only (Fig. S1h). In addition, FC in
Ji et al.’s dataset showed notable differences from other
subpopulations but exhibited the highest similarity to the FC
observed in this study (Fig. S2).

InflamC and FC are potentially key chondrocyte subpopulations in
hand OA
Although no statistically significant differences were found
between hand OA and non-OA cartilage, preFC, InflamC, and FC
showed a trend toward increased numbers in the cartilage of

hand OA joints compared with non-OA joint cartilage. In contrast,
the proportion of EC, MTC and HomC tended to be lower in
the cartilage of hand OA joints (Fig. 3a). As shown in Fig. 3b and
Table S3, InflamC was found to play an exclusive role in the
response to cytokine stimuli and the innate immune response.
Marker genes of preFC and FC were preferentially enriched for
the extracellular matrix (ECM) or structural organization. HomC
was enriched in nucleic acid and RNA metabolic processes,
consistent with a previous report of human knee osteoarthritic
cartilage.20 Notably, compared to the other subpopulations,
InflamC and FC were enriched in many inflammatory signaling
pathways, e.g., reactive oxygen species pathway, TNFα signaling
via NFκB, interleukin and interferon-mediated pathways (Fig. S3).
Gene set variation analysis (GSVA) of matrisome genes revealed
heterogeneous performance in ECM composition and regulation
by distinct chondrocyte subpopulations (Fig. 3c, d). ECs, HTCs and
ProCs preferentially expressed genes encoding secreted factors,
whereas preFCs and RegCs tended to express ECM regulators and
proteoglycans. Furthermore, CPC and FC seemed to undergo
evident changes in ECM gene expression between nonosteoar-
thritic and osteoarthritic status, suggesting a potential role in
hand OA (Fig. 3e, f).
After identifying the functional role of each subpopulation

alone, we next sought to decode the pattern of intercellular
communication using CellChat analysis. As expected, ECM-
receptor communication was shown to occur among chondro-
cytes (Fig. S4a–d). We observed a dominant role of FC in Notch
and platelet-derived growth factor pathways based on ligand‒
receptor interactions with EndC, suggesting its potential role in
angiogenesis associated with hand OA (Fig. S4e–h). Considering
that InflamC specifically expressed genes related to the recruit-
ment and proliferation of macrophages, we next focused on
interaction between InflamC and Mac. ICAM1 and VCAM1, marker
genes of InflamC, were inferred to act on cellular contact and
adhesion between InflamC and Mac (Fig. 4a, b). Furthermore,
secretion of proinflammatory molecules such as IL1B, SPP1, CD99,
and C3 by Mac might act on their corresponding receptors on
InflamC, probably eliciting downstream inflammatory processes
(Fig. 4c). Collectively, our results support unique and cooperative
roles for the identified cell subpopulations in maintaining hand
articular cartilage homeostasis and suggest a potential role for
InflamC and FC in hand OA.

Ferroptosis is a key enriched pathway in hand osteoarthritic
cartilage
Subpopulation-specific differences in gene expression between
osteoarthritic and nonosteoarthritic cartilage are presented in
Table S4. Given the potentially important role of InflamC and
FC in hand OA, we focused on the difference between these
two subpopulations. FC exhibited extensive alterations, with
upregulation of a series of chondrocyte catabolic genes (e.g.,
MMP2, MMP3, and MMP13) and inflammatory response-related
genes (e.g., CCL20, CD99, and TNFAIP6) in osteoarthritic
cartilage (Fig. 5a). Seven genes, including inflammatory
response-related genes (e.g., CCL20 and TNFAIP6), were
upregulated in InflamC from osteoarthritic cartilage (Fig. 5b).
Gene Ontology (GO) analysis revealed that upregulated genes
of FC in osteoarthritic cartilage were enriched in platelet-
derived growth factor binding and collagen catabolic and
metabolic processes and that upregulated genes of InflamC
were enriched in regulation of cell migration and immune
response (Fig. 5c). Furthermore, Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis of osteoarthritic FC and InflamC
indicated significant enrichment of many ECM-degrading
pathways, such as protein digestion and absorption and
mineral absorption (Fig. 5d). Notably, genes upregulated in
InflamC and FC of hand osteoarthritic cartilage were both
significantly enriched in the ferroptosis pathway (Fig. 5d).
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Fig. 1 ScRNA-seq atlas of cell clusters in human hand articular cartilage. a Schematic workflow of single-cell RNA sequencing.
b Representative macroscopic and microscopy images of hand osteoarthritic and nonosteoarthritic cartilage of hand interphalangeal
joints. Arrows indicate locations of cartilage degeneration. c t-SNE embedding plot of cells colored according to disease status. All
clusters contained cells from both hand osteoarthritic and nonosteoarthritic samples. d t-SNE embedding plot for 105 142 cells derived
from paired hand articular cartilage samples of five donors. e Heatmap showing the top 10 discriminative genes of each cell cluster in
hand articular cartilage. Genes indicated in the right column were adopted for annotation for each subpopulation. ScRNA-seq single-
cell RNA sequencing, EC effector chondrocytes, preHTC prehypertrophic chondrocytes, RegC regulatory chondrocytes, preFC
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We next conducted gene set enrichment analysis (GSEA) and
identified significant enrichment of the ferroptosis gene set in
both InflamC and FC in hand osteoarthritic cartilage, which highly
suggests that ferroptosis plays a role in hand OA (Fig. 5e). In
addition, genes related to the inflammatory response and the
PI3K-AKT-mTOR pathway were highly enriched in InflamC and FC
in osteoarthritic cartilage, respectively (Fig. 5f). DEG analysis of
core ferroptotic genes revealed significant elevation in FTH1 and
HMOX1 in FC, InflamC and Mac (Fig. 5g and Fig. S5). Notably, FTH1
was consistently upregulated in both InflamC and FC, indicating
iron overload in these cells during OA states (Fig. 5g).
Furthermore, IHC analysis revealed that the protein level of FTH1
in human hand osteoarthritic cartilage was significantly elevated
compared with that in nonosteoarthritic cartilage in the superficial
and middle layers (Fig. S6). Together, these results demonstrate
essential alterations in gene expression patterns in hand OA.

Elevation of FTH1 expression as well as enrichment of the
ferroptosis pathway might represent a novel and vital molecular
mechanism in hand OA.

Comparative analysis of hand OA cartilage and knee OA cartilage
reveal that FTH1 and ferroptosis play key and unique roles in
hand OA
Due to the observed differences in structure and stress environ-
ment, the cellular and molecular alterations occurring during hand
OA and knee OA are expected to be different. Thus, we performed
comparative analysis of our data and previous scRNA-seq data on
knee OA.20 We first analyzed alteration of the cellular proportion in
knee OA cartilage. The proportions of EC and HomC showed a
significant decrease, whereas those of preHTC were significantly
increased (Fig. S7). These results are consistent with observations
for hand OA cartilage, in which EC and HomC showed a similar
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trend (Fig. 3a). However, FC, which exhibited an increasing trend
in hand OA cartilage, was not significantly changed in knee OA.
These results, together with the fact that InflamC was identified
specifically in hand OA cartilage, represent a difference in cellular
components between hand OA and knee OA (Fig. S7).
Subsequently, we compared DEGs in all cells during knee OA

and hand OA. There were eight upregulated genes in hand OA
cartilage, including TNFAIP6, COL3A1, CCL20, FTH1, SERPINE2 and
VCAM1 (Fig. S8a), and 59 upregulated genes in knee OA cartilage,
including S100A4, COL3A1, HTRA1, TGFBI, OGN and ASPN (Fig. S8b).
GO enrichment analysis showed that genes involved in calcium-
mediated signaling, regulation of cell migration, motility and
locomotion were upregulated in hand OA cartilage (Fig. S8c).
Genes involved in collagen and extracellular matrix organization
were upregulated in knee OA cartilage (Fig. S8e). Notably, KEGG
analysis revealed that the upregulated genes in both hand OA

and knee OA were enriched in protein and mineral absorption
and the AGE-RAGE signaling pathway (Fig. S8d); the ferroptosis
pathway, which was identified as the key pathway in hand OA,
was specifically enriched in hand OA cartilage (Fig. S8f).
Intersection of the DEGs of knee OA and hand OA revealed
seven shared DEGs, nine hand OA-specific DEGs, and 86 knee OA-
specific DEGs (Fig. S8g). Functional analysis indicated the shared
DEGs to be enriched in cell migration, motility and protein
digestion and absorption (Fig. S8h, i). Notably, GO analysis
showed that hand OA-specific DEGs were enriched in age-
dependent responses to reactive oxygen species and oxidative
stress (Fig. S8j). Moreover, KEGG analysis revealed that hand OA-
specific DEGs were enriched in ferroptosis, in which FTH1 was
upregulated specifically in hand OA cartilage (Fig. S8k). Knee OA-
specific DEGs were enriched in the extracellular matrix and
protein digestion, consistent with previous studies (Fig. S8l, m).
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As FCs were identified as key subpopulations in hand OA
cartilage, we also performed DEG analysis for FCs between early-
stage (stage 0 and 1) and late-stage (stage 3 and 4) knee OA
cartilage. Upregulated genes of FC in late knee OA cartilage
include COL3A1, COL6A3, IFI27, IGFBP7, THY1 and S100A10
(Fig. S9a). Functional enrichment analysis revealed that similar to
hand OA cartilage, the upregulated genes of FC in late knee OA
cartilage were enriched in extracellular matrix, extracellular

vesicles, protein digestion and absorption (Fig. S9b, c). Intersection
of the DEGs of FC in late knee OA and hand OA revealed nine
shared DEGs, 47 hand OA-specific DEGs, and 502 knee OA-specific
DEGs (Fig. S9d). Functional analysis showed the shared DEGs to be
enriched in collagen catabolic processes, extracellular matrix
organization and protein digestion and absorption (Fig. S9e, f). GO
analysis showed that hand OA-specific DEGs and knee OA-specific
DEGs were both enriched in the extracellular matrix and structure
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organization (Fig. S9g, i). Notably, KEGG analysis revealed that
hand OA-specific DEGs were enriched in ferroptosis but that knee
OA-specific DEGs were not. FTH1, which was identified as a key
molecule of ferroptosis in hand OA, was uniquely and significantly
upregulated in hand OA cartilage (Fig. S9h, j).
Taking all these results together, comparative analysis between

hand OA cartilage and knee OA cartilage revealed that both
cellular and molecular alterations during hand OA were quite
different from those during knee OA. FC and InflamC, as well as
the ferroptosis pathway, especially FTH1, play key and unique roles
in cartilage degeneration in hand OA and might be specific targets
for future intervention.

MR analysis of the causal association between upregulated FTH1
mRNA expression and the risk of hand OA in UK Biobank
Given that FTH1 was consistently and significantly upregulated in
InflamC and FC from osteoarthritic cartilage, we subsequently sought
to investigate the causal association between FTH1 mRNA expression
and the risk of hand OA. We included 332 668 individuals of European
descent from UK Biobank for MR analysis. The selection process of
participants is presented in Fig. S10a, and the characteristics of the
included individuals are presented in Table S5. Of the individuals,
2 418 (0.73%) individuals had a diagnosis of hand OA.
The selected genetic instrumental variables (Table S6) explained

65.6% of the variance in FTH1 mRNA expression. Univariate two-
sample MR analysis showed that a genetic predisposition toward
higher expression of FTH1 mRNA significantly increased the risk of
hand OA (odds ratio [OR]= 1.07 per standard deviation [SD]
increase in FTH1 expression, 95% confidence interval [CI]:
1.02–1.11, P= 0.005) (Table 1). Moreover, the direction of the
effect estimate was consistent across the four MR methods
assessed (i.e., inverse-variance weighted [IVW], MR‒Egger,
weighted median, and MR-PRESSO) (Fig. 6a and Table 1). We did
not observe heterogeneity in the present analysis (PCochran’s
Q= 0.999), and MR‒Egger intercepts indicated limited evidence
of directional pleiotropy (P= 0.491).

Serum ferritin level and prevalence of hand OA in Xiangya
Osteoarthritis Study
Ferroptosis is a form of regulated cell death initiated by
perturbations of the intracellular microenvironment, which relies
on iron availability.25 Our current findings, e.g., enrichment of the
ferroptosis pathway and upregulated expression of FTH1 mRNA in
osteoarthritic cartilage by scRNA-seq analysis and a causal
association between upregulated FTH1 mRNA expression and
the risk of hand OA by MR analysis, prompted us to investigate
whether iron load is elevated in patients with hand OA. For this
purpose, we measured serum ferritin, a biomarker for body iron
stores,26 in Xiangya Osteoarthritis Study participants.18,19 A total of
1 241 participants were included (50.9% were female, mean age
62.8 years). The selection process is outlined in Fig. S10b. Of these

participants, 392 (31.6%) had hand OA. The baseline character-
istics according to hand OA status are shown in Table S7.
As indicated in Table 2, compared with the lowest quintile of

serum ferritin, the crude ORs for hand OA were 1.07 (95% CI:
0.74–1.56), 1.07 (95% CI: 0.74–1.56), 1.27 (95% CI: 0.88–1.84), and
1.55 (95% CI: 1.08–2.22) in the second, third, fourth and highest
quintiles of serum ferritin, respectively (P-for-trend= 0.037).
Adjustment for age, sex and BMI did not change the results
materially (P-for-trend= 0.005).

DISCUSSION
Mounting evidence points to a distinctive pathophysiology of hand
OA compared with knee or hip OA.4,5 Unlike the large weight-bearing
knee or hip joints, the pathophysiology of hand OA remains largely
unknown, partially because of limited access to clinical sample tissues
and a lack of animal models.2 In this study, for the first time, we
applied scRNA-seq technology to identify chondrocyte subpopula-
tions and investigate the molecular mechanism of hand OA. We
provide a transcriptomic atlas of 105 142 cells from paired hand
articular cartilage samples of osteoarthritic and nonosteoarthritic
interphalangeal joints. InflamC and FC were identified as key
subpopulations in hand OA. In both subpopulations, the ferroptosis
pathway was enriched, and expression of iron overload-related genes,
e.g., FTH1, was elevated. Moreover, we validated the gene (i.e., FTH1)
and pathway (i.e., ferroptosis) identified by scRNA-seq through MR
analysis involving 332 668 individuals from UK Biobank and a cross-
sectional analysis of 1 241 participants in Xiangya Osteoarthritis
Study,18,19 respectively. Figure 6b shows a schematic illustration of this
study.
We identified 21 putative clusters that were annotated into 13 cell

subpopulations according to the markers from previous scRNA-seq
studies of knee articular cartilage and meniscus.20–24 In addition, we
identified a novel and unique chondrocyte subpopulation (InflamC)
that expressed proinflammatory genes such as CCL2, CCL20, ICAM1,
NOS2, and TNFAIP2. It is widely appreciated that chronic, low-grade
inflammation contributes to OA symptomatology and progression.27

Inflammatory mediators can alter chondrocyte differentiation and
function and activate cartilage-degrading enzymes.28 Moreover, we
observed intimate communication between subpopulations InflamC
and Mac. A pattern of InflamC-mediated macrophage recruitment by
chemokines and adhesion molecules and Mac-mediated local
inflammation by inflammatory cytokines was thus hypothesized as
contributing to hand OA, though experimental validation is needed.
Furthermore, the proportion of InflamC in hand osteoarthritic
cartilage tended to be higher than that in nonosteoarthritic counter-
parts. Altogether, our data suggest a crucial role of InflamC in
development of hand OA. Future studies on this unique chondrocyte
subpopulation and its marker genes may be valuable for drug
discovery and development.
This large dataset also enabled discovery of rare cells and their

transcriptomic profiles. CPC, Mac and EndC were identified in hand
articular cartilage, together comprising only <0.5% of 105 142 cells.
Previous research has shown that articular cartilage has a low
intrinsic capacity for self-repair.29 In our dataset, marker genes of
CPC were enriched specifically for the cell cycle and mitosis,
suggesting potential roles in chondrocyte regeneration and
cartilage repair. Although it is often considered that articular
cartilage consists of only chondrocytes embedded in the ECM,28 our
data suggest that a very small subpopulation of macrophages and
endothelial cells exist in hand articular cartilage. Recent evidence
has shown vascular invasion into both calcified and even
noncalcified cartilage from the subchondral bone during OA.
Nevertheless, the frequency and area of vascular invasions into
cartilage are relatively small.30–32 Furthermore, bioinformatic
analysis of scRNA-seq data of human knee cartilage revealed a
very minimal number of macrophages and endothelial cells.33 Ji
et al.’s analysis also identified a small proportion of cells expressing

Table 1. The effect of genetically predicted FTH1 mRNA expression on
hand OA

Exposure N SNPs MR Method OR (95% CI) P value

FTH1 mRNA
expression

133 IVW 1.07 (1.02–1.11) 0.005

Weighted
median

1.09 (1.00–1.18) 0.046

MR Egger 1.08 (1.00–1.18) 0.046

MR-PRESSO 1.07 (1.02–1.11) 0.006

OA osteoarthritis, N SNPs number of single-nucleotide polymorphisms, IVW
inverse-variance weighted, MR Mendelian randomization, OR odds ratio, CI
confidence interval
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CD74 and CD86, indicating their antigen-presenting and processing
function in immune cells.20 Overall, our discovery of rare cells,
including macrophages and endothelial cells, aligns with these
previous findings. Macrophages might secrete cytokines into the

joint microenvironment, resulting in a flare of local inflammation
that amplifies and perpetuates cartilage degradation. H-type vessels
are characterized by high expression of CD31 and endomucin
(EMCN), which were both detected in EndC in our data. Evidence
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indicates that H-type endothelial cells couple angiogenesis
and osteogenesis, leading to subchondral bone remodeling and
cartilage matrix degradation in OA.34 Although macrophages and
H-type endothelial cells comprise a small proportion of total cells,
their potential function, particularly their interaction with InflamC
and FC, might contribute to the vascular invasion and inflammatory
response in hand OA cartilage. Therefore, our data, together with
previous studies, indicate that although nonchondrocytes, i.e.,
macrophages and endothelial cells, account for a small proportion
of hand OA cartilage, they might play a direct and important role in
progression of hand OA. Together, the small cell subpopulations
discovered in our data might have a vital role in the pathogenesis
of hand OA and serve as targets for future translational research.
Another key finding of this study was extensive alteration of

gene expression patterns in FC in hand OA. Loss of chondrocyte
phenotypic stability constitutes a hallmark event during OA
progression.28 FC was characterized by expression of fibroblast
markers (e.g., COL1A1 and COL1A2), but chondrocyte markers of
hyaline cartilage (e.g., COL2A1 and ACAN) were rarely expressed.
FC was previously shown to play an active role in vasculature
development and endochondral ossification and to dominate in
late-stage osteoarthritic cartilage.20 In our dataset, FC contributed
less to ECM secretion and regulation and showed active
interaction with endothelial cells. More intriguingly, when
comparing DEGs between osteoarthritic and nonosteoarthritic
cartilage, cartilage-degrading enzymes (MMP2, MMP3, and MMP13)
were highly upregulated, whereas a metallopeptidase inhibitor
(TIMP3) was significantly downregulated. In summary, FC, in close
correlation with increased breakdown and impaired repair of
cartilage, was largely expanded and appears to be another target
cell subpopulation in hand OA.
Enrichment of ferroptotic genes was observed in hand

osteoarthritic cartilage. Ferroptosis, a distinct cell death pathway
characterized by iron-dependent phospholipid peroxidation, has
recently been demonstrated to have a pathological role in various
conditions.35 Our discovery revealed that subpopulations FC and
InflamC in hand osteoarthritic cartilage consistently exhibit
enrichment for genes involved in ferroptosis, among which
FTH1, a protein-coding gene for ferritin, is significantly upregu-
lated. Ferritin is a major cellular iron storage protein and has a
crucial role in maintaining cellular iron homeostasis.26 Our findings
suggest an increase in the molecular response to intracellular iron
in excess resulting from an attempt to reduce the iron labile pool
in osteoarthritic FC and InflamC.36 Moreover, previous genetic
studies have revealed that genetic variants of HFE, which encodes
a homeostatic iron regulator, are associated with hand OA.37

These results indicate that dysregulation of iron homeostasis and
ferroptotic cell death are involved in hand OA.
We conducted two independent large-sample population-

based studies at the mRNA and protein levels separately to

validate our hypothesis. MR analysis is a well-established and
commonly used genetics technique to estimate the causative
effect of an exposure variable on an outcome while minimizing
the risk of confounding and reverse causation.17 Based on data
from a large expression quantitative trait locus (eQTL) analysis
and UK Biobank, we found a causal association between
upregulated FTH1 mRNA expression and increased risk of hand
OA. Elevated serum ferritin levels have been implicated as a
marker of iron overload and are associated with multiple
diseases.38,39 By using data from another community-based
study in China (i.e., the Xiangya Osteoarthritis Study18,19), we
found that a high serum ferritin level was positively associated
with a higher prevalence of hand OA. Taken together, these
findings support the contribution of iron homeostasis and
ferroptosis to hand OA, shedding light on a new molecular
mechanism and potentially promising therapeutic target for
hand OA. Ferroptosis inhibitors or iron chelators, such as
ferrostatin-140 and deferoxamine,41 are thus potential treat-
ments for hand OA, and experimental validation is warranted.
Several strengths of our study are noteworthy. We provide the

first description of hand articular cartilage subpopulations at
single-cell resolution. In addition, based on the results from
scRNA-seq analysis that revealed enrichment of ferroptosis and
elevation of iron overload-related genes in osteoarthritic cartilage,
we validated this association of ferritin, as measured at the mRNA
and protein levels, with hand OA in two independent population-
based studies. Because FTH1 mRNA expression was instrumented
using randomly allocated single-nucleotide polymorphisms
(SNPs), MR analysis findings are not associated with reverse
causation and minimize potential confounding biases. By using
data collected from Xiangya Osteoarthritis Study, we showed a
positive relationship between serum ferritin levels and the
prevalence of hand OA. This result corroborates the findings from
scRNA-seq analysis and MR analysis, suggesting the robustness of
our study results.
The limitations of this study include a relatively small sample of

hand osteoarthritic and nonosteoarthritic cartilage samples.
Another limitation was that we were unable to validate our
findings in vivo due to the lack of an animal model for hand OA.2

Third, as hand OA is a whole-joint condition, future studies may
benefit from the addition of other joint components (such as the
synovium, subchondral bone and synovial fluid) for combined and
in-depth decoding of hand OA development.
In summary, we generated molecular atlases of hand

articular cartilage at single-cell resolution. Our findings suggest
that specific subpopulations of chondrocytes, namely, InflamC
and FC, play a role in hand OA. The molecular profiles (e.g.,
FTH1 and serum ferritin) and their related pathways (e.g.,
ferroptosis) presented will inform future therapeutic strategies
for hand OA.

Table 2. Association between serum ferritin levels and the prevalence of hand OA

Items Quintiles of serum ferritin /(μg·L−1) P-for-trend

Q1 Q2 Q3 Q4 Q5

Hand (n)a 495 496 491 494 487

Median of serum ferritin levels/
(μg·L−1)

75.0 138.5 213.0 308.0 564.0

Number of hand OA/% 99 (20.0) 105 (21.2) 104 (21.2) 119 (24.1) 136 (27.9)

Crude OR (95% CI) 1.00 (Ref) 1.07 (0.74–1.56) 1.07 (0.74–1.56) 1.27 (0.88–1.84) 1.55 (1.08–2.22) 0.037

Age-sex-BMI adjusted OR (95% CI) 1.00 (Ref) 1.31 (0.89–1.93) 1.23 (0.83–1.83) 1.46 (0.97–2.22) 1.69 (1.13–2.52) 0.005

OA osteoarthritis, Q quantile, n number, OR odds ratio, CI confidence interval, BMI body mass index, Ref reference
aThe association between serum ferritin levels and hand osteoarthritis was evaluated by a logistic regression model using generalized estimating equations
(hand-specific analysis)
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MATERIALS AND METHODS
ScRNA-seq sequencing
Participant recruitment. Intact hand interphalangeal joint tissue
samples were obtained from five donors who underwent
amputations due to severe destructive injuries of the forearm.
Clinical information was collected from medical records (Table S1).
Subjects were excluded if they had or previously had any other
osteoarticular disease (such as rheumatoid arthritis or gout) or
disorder of osteochondrodysplasia. All donors provided informed
consent, which was approved by the Ethics Committee of Xiangya
Hospital, Central South University, China (IRB number: 202108350).

Sample collection. The hands of the donors were washed three
times with 75% ethanol and stored in a sterile bag. After transport to
the cell culture facility, the hands were washed three times with 75%
ethanol, and the joint capsules were opened under sterile conditions.
Each of the interphalangeal joints from each donor’s hand was

diagnosed as an osteoarthritic joint (stage II–IV) according to
Modified Outerbridge Classification42,43 or a nonosteoarthritic
joint (stage 0) based on the macroscopic appearance (Fig. 1b). We
obtained two specimens of whole articular cartilage from the
same donor, i.e., one from the osteoarthritic interphalangeal joint
and another from the nonosteoarthritic interphalangeal joint, and
subjected them to scRNA-seq. Because nonosteoarthritic and
osteoarthritic cartilage from each person formed a matched set,
the effects of all person-level confounders (such as age, sex, body
mass index) were implicitly eliminated.

Single-cell suspension preparation. Osteoarthritic and nonosteoar-
thritic cartilage specimens were harvested from each donor and
subjected to chondrocyte isolation according to a previously
described two-step digestion protocol.24 Briefly, minced cartilage
slices were immersed in 2mg·mL−1 pronase (Millipore, USA) in
Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 (DMEM/
F12) (Thermo Fisher Scientific, USA) and incubated for 60min at 37 °C.
The pronase solution was then removed and replaced with DMEM/
F12 containing 0.36mg·mL−1 collagenase P (Roche Diagnostics
GmbH, Germany) and 10% fetal bovine serum (Sigma‒Aldrich, USA)
for 12 h at 37 °C in an atmosphere of 5% CO2. Undigested debris was
removed by filtration through a 70 μm cell strainer. The cell
suspensions were pelleted by centrifugation, washed with sterile
phosphate-buffered saline (PBS) and used immediately for scRNA-seq
library construction (10× Genomics, USA).

Cell type annotation. The identities of each cluster were annotated
based on known marker genes in previously published articles,20–24

and clusters were considered the same subpopulation based on
shared marker genes. Briefly, 12 previously reported subpopulations
were identified: (1) EC, which highly expressed CYTL1, CHAD and
FRZB; (2) preHTC, as marked by simultaneously high expression of
COL2A1, COL10A1, COL11A1 and COL11A2; (3) RegC, which featured
expression of CHI3L1, CRTAC1, CLU and CHI3L2; (4) preFC, which
showed high levels of HTRA1 and OGN; (5) FC, which demonstrated
high expression of COL1A1, TNFAIP6 and COL1A2; (6) ProC, which
highly expressed P3H2, UPP1 and LRRFIP1; (7) HTC, as marked by
high levels of COL10A1, SPP1 and IBSP; (8) MTC, expressing high
levels ofMT-CYB andMT-CO3; (9) HomC, as identified by the markers
JUN, HES1, MT1X and MT1E; (10) CPC, showing specific STMN1 and
PTTG1 expression; (11) Mac, as marked by distinct expression of IL1B,
CD74, and CD68, HLA-DRA; and (12) EndC, with high expression of
PECAM1, EMCN. One novel chondrocyte subpopulation was
annotated according to its distinct expression of CCL20, CCL2,
NOS2 and MMP3, as confirmed by significant enrichment in gene
sets of inflammatory response, immune system process and
immune response (Fig. 1d, e). We also conducted comparative
analysis to confirm the similarities between chondrocyte subpopula-
tions from human hand cartilage in this study and human knee
cartilage from Ji et al. (GEO: GSE104782).20 We calculated the

Pearson correlation of the average expression of genes in cell
subpopulations between hand and knee cartilage.

Cellular composition analysis. We calculated the proportion of cell
subpopulations in each cartilage specimen using the number of
cells from a specific cell subpopulation divided by the total
number of cells and compared the proportion of each specific cell
subpopulation between osteoarthritic cartilage specimens and
their matched nonosteoarthritic cartilage specimens using the
Wilcoxon matched-pairs signed rank test. P values < 0.05 were
considered significantly different.

Functional analysis of DEGs. For functional annotation, enrich-
ment with GO biological processes was performed on DEGs using
the R package topGO (v2.44.0).44 Only terms with P < 0.05 were
retained. GSVA was performed with hallmarks45 or matrisome
gene sets46 to identify distinct functional roles or ECM expression
patterns among subpopulations. The ggradar package (v0.2) was
used to visualize the relative abundance of a given gene set in
each chondrocyte subpopulation.
DEG analysis for osteoarthritic versus nonosteoarthritic cells for

each cluster was performed using the Wilcoxon rank-sum test in the
“FindMarkers” function in Seurat, with a cutoff of P< 0.05 and fold
change (FC) > 1.5. For functional annotation, GO and KEGG enrich-
ment analyses were performed on the DEGs. The top 10 significant
terms were visualized by a bubble plot. GSEA was performed using
the GSEApy Python package (0.10.4).47 The hallmark and ferroptosis
pathway gene sets were downloaded from the Molecular Signatures
Database (7.5.1). The statistical significance (nominal P value) of the
enrichment score was calculated by using an empirical phenotype-
based permutation test. A normalized enrichment score (NES) was
obtained, and the false discovery rate corresponding to each NES
was calculated.

CellChat analysis. To identify potential intercellular interactions, we
performed CellChat analysis48 according to the standard pipeline. To
obtain biologically significant cell‒cell communications, probability
values for each interaction were calculated, and permutation tests
were performed. The inferred intercellular communication network of
specific signaling pathways was visualized by circle plots. We also
computed the importance of each cell cluster and used measures in
weighted-directed networks to identify dominant senders, receivers,
mediators and influencers for intercellular communications. We
visualize all significant interactions (L-R pairs) from InflamC/Mac to
Mac/InflamC using bubble and chord plots.

IHC. Freshly dissected human hand joint tissues were fixed for
5 days in 4% paraformaldehyde, decalcified in 15% ethylenedia-
mine tetraacetic acid (EDTA) and embedded in paraffin for
sectioning. Serial sections (5 μm thick) were obtained, deparaffi-
nized in xylene and then rehydrated in decreasing concentrations
of ethanol. The streptavidin-biotin system (ZSGB-BIO, CN) was
used following the manufacturer’s recommended protocol. After
blocking with 10% normal goat serum for 15min at room
temperature, the sections were incubated with anti-ferritin heavy
chain (FTH1) (Abcam, 1:200, ab75972), anti-inducible nitric oxide
synthase (iNOS) (Abcam, 1:1 000, ab178945), anti-macrophage
inflammatory protein 3 alpha (MIP-3α) (Abcam, 1:500, ab224188),
anti-interleukin-1 beta (IL-1β) (Abcam, 1:500, ab283818), anti-
pituitary tumor-transforming gene 1 protein (PTTG1) (Abcam,
1:250, ab79546), and/or anti-platelet endothelial cell adhesion
molecule (CD31) (Abcam, 1:250, ab76533) antibodies overnight at
4 °C. Subsequently, the sections were washed with PBS and
incubated with a secondary biotinylated goat anti-rabbit antibody
for 15 min followed by streptavidin for 15 min. Diaminobenzidine
tetrahydrochloride chromogen substrate solution was then added
to stain the sections, and hematoxylin counterstaining was
performed. All IHC staining was assessed by light microscopy.
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The articular cartilage was divided into three zones according to
light microscopy observations: superficial, middle and deep.49

Comparative analysis of hand OA cartilage and knee OA cartilage
We downloaded metadata and processed cell-gene matrix data from
the GEO database (GSE104782) with author-based annotations.20 For
comparison of cellular alterations between hand OA and knee OA,
we first calculated the proportion of cell subpopulations in each knee
cartilage specimen. We compared the proportion of each specific cell
subpopulation between knee osteoarthritic cartilage specimens
(stages 1–4) and their matched nonosteoarthritic cartilage specimens
(stage 0) using the Wilcoxon matched-pairs signed rank test. In
addition, as Ji et al. grouped the cells into two stages, i.e., early-stage
(stage 0 and 1) and late-stage (stage 3 and 4) in their study, we
compared the proportion of each specific cell subpopulation
between early-stage and late-stage knee osteoarthritic cartilage.
P values < 0.05 were considered significantly different.
For comparison of molecular alterations between hand OA and

knee OA, we performed volcano plot visualization of gene expression
between the cells in hand OA and non-OA cartilage in our dataset.
Similarly, using Ji et al.’s dataset, we performed volcano plot
visualization of gene expression between the cells in knee OA (stage
1–4) and non-OA (stage 0) cartilage. We performed GO and KEGG
enrichment analyses of upregulated genes in hand OA and knee OA,
respectively. Subsequently, we intersected DEGs of knee OA and
hand OA and grouped the genes as shared DEGs of knee and hand
OA, hand OA-specific DEGs, and knee OA-specific DEGs. GO and
KEGG enrichment analyses were performed to explore the function
of these groups of genes. We also performed DEG analysis for FC
between early-stage (stage 0 and 1) and late-stage (stage 3 and 4)
knee OA cartilage, but DEG analysis between OA (stage 1–4) and
non-OA (stage 0) was not applicable because a very small number of
FCs was detected at stage 0. GO, KEGG and intersection analyses
were conducted as described above.

Statistical analysis. ScRNA-seq analysis was performed using R 4.0.2,
Python 3.8.6, and SPSS 18.0. The proportion of each specific cell
subpopulation between osteoarthritic cartilage specimens and their
matched nonosteoarthritic cartilage specimens was determined using
the Wilcoxon matched-pairs signed rank test. DEG analysis was
performed using the Wilcoxon rank-sum test. For IHC analysis, one-
way repeated measures analysis of variance (ANOVA) was used to
compare the percentages of positive cells in each cartilage zone.

Two-sample MR study for the association between FTH1 and hand OA
We performed two-sample MR analysis using the summary-level
genetic data retrieved from an expression quantitative trait locus
(eQTL) study50 and individual-level data from UK Biobank.51 Hand OA
was defined by physician diagnosis using International Classification
of Diseases, Ninth Revision codes or Tenth Revision codes.
Corresponding β coefficients and standard errors of the associations
between FTH1-associated single-nucleotide polymorphisms (SNPs)
and hand OA were calculated using logistic regression while
adjusting for age, sex, genotype measurement batch and 20 genetic
principal components. We obtained the odds ratio (OR) of the risk of
hand OA prevalence for one standard deviation (SD) in the
expression level of FTH1 using inverse-variance weighted (IVW)
meta-analysis with a multiplicative random-effects model. We
conducted three sensitivity analyses (i.e., weighted median, MR‒
Egger and MR Pleiotropy RESidual Sum and Outlier [MR-PRESSO]
methods) to examine the presence of horizontal pleiotropy and
address the detected heterogeneity.52,53 We also examined the
heterogeneity of SNP effects using Cochran’s test.54

Cross-sectional study of association between serum ferritin and
hand OA
We evaluated the association between serum ferritin levels and
hand OA prevalence (determined by radiographic assessment)

among participants in Xiangya Osteoarthritis Study subcohort
I.18,19 We performed generalized estimating equations (GEEs)
(hand-specific analysis) with logit links to obtain ORs and 95%
confidence intervals (CIs) of prevalent hand OA for each quintile
category of serum ferritin levels.55 In the multivariable regression
model, we adjusted for age, sex and BMI.
For more details about the study design and statistical methods,

see Supplementary Methods.
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