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Abstract
Early detection of breast cancer is crucial for a better prognosis. Various studies have
been conducted where tumor lesions are detected and localized on images. This is a
narrative review where the studies reviewed are related to five different image modali-
ties: histopathological, mammogram,magnetic resonance imaging (MRI), ultrasound,
and computed tomography (CT) images, making it different from other review studies
where fewer image modalities are reviewed. The goal is to have the necessary infor-
mation, such as pre-processing techniques and CNN-based diagnosis techniques for
the five modalities, readily available in one place for future studies. Each modality has
pros and cons, such as mammograms might give a high false positive rate for radio-
graphically dense breasts, while ultrasounds with low soft tissue contrast result in
early-stage false detection, and MRI provides a three-dimensional volumetric image,
but it is expensive and cannot be used as a routine test. Various studies were manually
reviewed using particular inclusion and exclusion criteria; as a result, 91 recent stud-
ies that classify and detect tumor lesions on breast cancer images from 2017 to 2022
related to the five image modalities were included. For histopathological images, the
maximum accuracy achieved was around 99%, and the maximum sensitivity achieved
was 97.29 % by using DenseNet, ResNet34, and ResNet50 architecture. For mam-
mogram images, the maximum accuracy achieved was 96.52 % using a customized
CNN architecture. For MRI, the maximum accuracy achieved was 98.33 % using
customized CNN architecture. For ultrasound, the maximum accuracy achieved was
around 99 % by using DarkNet-53, ResNet-50, G-CNN, and VGG. For CT, the maxi-
mum sensitivity achieved was 96% by using Xception architecture. Histopathological
and ultrasound images achieved higher accuracy of around 99 % by using ResNet34,
ResNet50, DarkNet-53, G-CNN, and VGG compared to other modalities for either of
the following reasons: use of pre-trained architectures with pre-processing techniques,
use of modified architectures with pre-processing techniques, use of two-stage CNN,
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and higher number of studies available for Artificial Intelligence (AI)/machine learn-
ing (ML) researchers to reference. One of the gaps we found is that only a single image
modality is used for CNN-based diagnosis; in the future, a multiple image modality
approach can be used to design a CNN architecture with higher accuracy.

Keywords Breast cancer diagnosis · Convolutional Neural Network (CNN) ·
Medical image analysis · Deep learning · Machine learning

1 Introduction

Breast cancer is themost commoncancer amongwomen; it had the highest incident rate
of 126.9 (per 100,000) for the year 2014–2018 in theUSA, compared to other cancers in
women [1].According to theAmericanCancerSociety, therewill be 290,560newcases
of breast cancer in both sexes which is the second-highest of all cancer cases [1]. There
are various ways of diagnosing and localizing breast cancer, such as histopathological
images, mammograms, magnetic resonance imaging (MRI), ultrasound images, and
computed tomography (CT) scans. Histopathological images or biopsies are some of
the initial screening methods that help to diagnose cancer. These are used for those
at risk of having breast cancer. Biopsies are usually used to confirm a suspected site
for cancer. MRI, CT scans, and ultrasounds are used at different stages of breast
cancer. Experienced specialists such as pathologists or radiologists study these image
modalities to detect cancer. However, due to the vast amount of details in the images,
there can be cases where the specialist might miss diagnosing a tumor lesion on the
image. According to a study done with histopathological images, 10.2 % of cases that
were diagnosed showed disagreement among the different pathologists [2]. Therefore,
using a Convolutional Neural Network (CNN) to automatically detect and segment
tumor lesions is very helpful in avoiding such misdiagnosis.

As an interdisciplinary research group for breast cancer detection, we have devel-
oped tools and used the electro-mechanical properties, viscoelastic parameters of
formalin-fixed paraffin-embedded human skin tissue, and electrothermomechanical
properties to detect the presence of cancer [3–7]. In addition, we have also inves-
tigated breast cancer diagnosis with multiple machine learning techniques such as
support vector machine (SVM) and faster region-based CNN (RCNN) on the biop-
sied human breast tissue samples [8, 9]. This study is a narrative overview [10] that
reviews studies on CNN-based detection and segmentation of breast cancer in five
modalities: histopathological, CT, mammogram, ultrasound, and MRI images. The
studies included in this paper are state-of-the-art research trends related to different
image modalities. To the best of our knowledge, this review paper is the first to include
five of the most common image modalities used for breast cancer diagnosis. The moti-
vation behind this study is to have a comparative analysis of the recent research trends
related to five commonly used image modalities for breast cancer diagnoses in one
place. The study focuses on determining some of the best pre-processing methods
and architectures combinations for each of the five modalities and whether some stan-
dard techniques and architectures can be used effectively for all mentioned image
modalities. The comparison includes challenges related to these image types, the
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pre-processing techniques, and computational diagnosis using CNN. This makes all
the necessary information, from accessing the data to developing a model for the five
image modalities, readily available for future studies. The study reflects that though
a similar structure has been adopted for the development and intelligent detection of
tumors in the image modalities, each modality has supremacy based on the cancer
formation stage (Table 7). Summarizing the state-of-the-art CNNs for breast cancer
diagnosis in medical images commonly used in clinics will promote interdisciplinary
approaches and collaborations among researchers in medicine, computer science, and
engineering for more accurate computer-aided decision-making processes in breast
cancer diagnosis. The contributions of this study are (1) a summary of challenges of
the five imagemodalities; (2) a review of state-of-the-art CNN-based studies for breast
cancer diagnosis with a summary of data sources, pre-processing techniques, andCNN
architectures; and (3) envisioning future direction for breast cancer diagnosis in the
image modalities.

2 Challenges to Overcome

There are many challenges related to breast cancer diagnosis in the image modalities.
Though expert radiologists can detect tumors with some accuracy using their experi-
ence, their expertise is perishable with time. There is also variability in radiologists’
observations that can impede accurate breast cancer diagnosis [11–14]. Therefore,
computer-assisted intelligent techniques are necessary for better diagnosis, though
applying AI technology in medical applications such as cancer detection has limi-
tations to overcome. However, once a successful AI framework is developed, it can
diagnose multiple types of diseases in less time with decent efficiency, providing
additional assistance to radiologists. Therefore, in the case of cancer diagnosis, oppor-
tunities in CNN-based approaches are considered highly promising.

Functional CNNmodels dealwith a large number of learnable parameters, requiring
extensive data sets to train for an optimum outcome. But there are different challenges
to data acquisition and processing of the various available image modalities. Depend-
ing on patient physiology, many false positive data points may occur in diagnosis.
In radiographically dense breasts, mammography gives a high false positive rate of
breast cancer [15]. On the other hand, ultrasound using a non-invasive acoustic pres-
sure, with low soft tissue contrast, results in early-stage false detection [16]. MRI can
provide a three-dimensional volumetric image but is time-consuming, expensive, and
unsuitable for routine tests. PET/CT has high sensitivity but has some limitations for
low proliferative tumors.

There is a series of steps that have been adopted in previous studies to diagnose
breast cancer in different types of image modalities. First, the images are acquired
from an open-source or retrospective study. Next, data pre-processing techniques are
used on the images for enhancement purposes and to reduce reluctant falsifications,
preparing the data for efficient tumor detection, localization, or segmentation [17].
These techniques include operations such as geometric transformations [18, 19], pixel
brightness transformations [20], image filtering [21], and Fourier transform and image
restoration [22]. Most of the time, data augmentation techniques are applied to expand
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the training data, this contributes to the efficiency of the trainedmodel. Data augmenta-
tion involves creating a copy of the image and using rotation, flipping, scaling, padding,
translation, affine transformation, or cropping on the same [23]. Once the images are
pre-processed and augmented, the images are fed to the designed CNN or a pre-trained
CNN in the case of transfer learning. Transfer learning is used when the data set is not
large enough to train the model well; therefore, knowledge is extracted from one or
more pre-trained models for detection or segmentation purposes. In the next section,
we have reviewed the pre-processing techniques, data augmentation techniques, CNN
models used, and application of transfer learning for histopathological, mammogram,
MRI, ultrasound, and computed tomography images.

3 Methods

The databases used for the search of studies were Google Scholar and ScienceDi-
rect Elsevier. The databases were searched using the terms ‘breast cancer diagnosis
using CNN’, ‘breast cancer diagnosis’, ‘cancer diagnosis using CNN’, ‘breast cancer
diagnosis in histopathological images’, ‘breast cancer diagnosis in histopathological
images using CNN’, ‘breast cancer diagnosis in mammogram images’, ‘breast can-
cer diagnosis in mammogram images using CNN’, ‘breast cancer diagnosis in MRI’,
‘breast cancer diagnosis in MRI using CNN’, ‘breast cancer diagnosis in Ultrasound
images’, ‘breast cancer diagnosis in Ultrasound images using CNN’, ‘breast cancer
diagnosis in CT images’, and ‘breast cancer diagnosis in CT images using CNN’ from
2021 through April 2022. We used some search phrases without the term ‘CNN’ to
avoid excluding papers that do not have the exact term but might refer to the CNN
architecture with different names. The criteria for inclusion were that they should be
published in English between the period starting from 2017 to 2022 (April), should
be related to CNN-based breast cancer diagnosis in histopathological, mammogram,
MRI, ultrasound, or CT images, and include quantitative evaluation of the CNN archi-
tecture aswewanted to have quantitative comparison based on themodel performance.
Studies that belonged to any of the following categories were excluded: published in a
different language, related to a different type of cancer other than breast cancer, did not
include CNN as a cancer detection technique, lacked quantitative evaluation, related
to image modalities other than histopathological, mammogram, MRI, ultrasound, and
CT, and published before 2017 aswewanted to include only recent studies. The studies
were manually reviewed using the inclusion and exclusion criteria mentioned above.
After the screening, 91 studies were included for review (Fig. 1). The studies are
grouped into different image modalities, each image modality section is categorized
into pre-processing techniques used, studies related to CNN architectures built from
scratch, studies associated with CNN architectures using transfer learning, and studies
that compare the performance of different CNN architectures. Each image modality
consists of a summary table where we have included most of the studies with higher
accuracies and mentioned important information related to them, such as the dataset
used, pre-processing techniques, image size, comparison models, the novel technique
used, CNN architecture, and performance.
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Fig. 1 PRISMA flow diagram of review strategy

4 Histopathological Images

Histopathological slides are obtained from biopsy procedures and are one of the most
comprehensive image modalities to diagnose cancer [24]. However, due to the num-
ber of details in histopathological images, there can be cases when tumor lesions are
not correctly diagnosed. According to one study, approximately 10.2 % of cases that
were diagnosed showed disagreement [2]. There can be several reasons for patholo-
gists’ observation variability, such as experience and human error. Therefore, plenty
of automation studies related to cancer diagnosis in histopathological images have
been conducted to assist pathologists and reduce misdiagnosis.

4.1 Pre-Processing and Data Augmentation Techniques

The most common stain used to stain histopathological images is the hematoxylin and
eosin (H&E) stain; the stain binds differently with different biological structures of
the tissue. Hematoxylin is bluish-purple and binds strongly with the nuclei, and eosin,
a red-pink dye, binds with the proteins in cytoplasm [25]. Because of the difference
in stains, a lot of studies perform stain normalization on the images [9, 26–32]. There
are various methods used for stain normalization, such as [25, 33–36]. Another pre-
processing technique is based on the lightness component called Contrast Limited
AdaptiveHistogramEqualization (CLAHE); this is not a common technique to be used
for histopathological images, but Wang et al. used it as a pre-processing technique for
their study [32]. Togacar et al. used random brightness contrast in their study [37]. All
these techniques help CNN to learn the features better. Another technique that helps
CNN identify the features is reducing the size of the images and creating patches.
This technique increases the number of images and helps the CNN train faster and
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reduce overfitting. There are several studies such as [9, 26, 27, 30–32, 38–42] which
have used this technique. In our previous work, full-size images were stain normalized
and divided into patches, and the effect of these techniques on the performance of the
model was compared [9]. Senan et al. used bilinear interpolation to resize images to
224×224 from the original 460×700 size [27]. Gupta and Chawla rescaled the images
by using Python/TensorFlow-Keras ImageDataGenerator class [43] and converted the
scale of pixels from [0, 255] to [0, 1] [39]. Li et al. extracted patches using the sliding
window mechanism. Some patches were non-overlapping of size 128×128 to contain
cell-related characteristics, and others were of size 512×512 with 50 % overlap to
contain continuous morphological information [31]. Wahab et al. divided the images
into patches of size 512×512 with an overlap of 80 pixels to avoid the exclusion of
mitotic nuclei [41]. Vesal et al. created patches of size 512×512 with 50 % overlap
similar to [32, 34] to avoid exclusion of class information related to the image [42].
Data augmentation techniques help to generate more data from the existing datasets.
Different studies such as [26, 27, 29, 37, 41, 42] used a combination of rotation by
90◦, 180◦, 270◦, horizontal flipping, and vertical flipping.

4.2 Customized CNN and Comparison Studies

Some studies created CNN models from scratch, some fine-tuned existing ones, and
others used machine learning models in conjunction with CNN. Some studies are
direct applications without any significant change in the data input; others compare
different models and use various data augmentation techniques to get a better result. Li
et al. extracted features at the cell- and tissue-level from smaller and larger size patches
to classify them using a CNN architecture. The dataset used was from the bioimaging
2015 breast histology classification challenge with images having a magnification of
200×. The images were stain-normalized, and a patch sampling strategywas proposed
to get patches with discriminative features that contain cell- and tissue-level features;
this method was based on CNN and K-means algorithm. The classification framework
extracts features from patches and computes features for the whole image so that it
can be classified from the classifier. The accuracy of the overall method was 88.89 %
[31]. In one of the studies, co-FCN and UNet were used to segment the tumor lesions
separately, and their results were compared [44]. In another study, the cGan model is
used to segment tumor lesions in different organs, and the input fed into the model is
a synthetic histopathological image dataset [45]. A dictionary of different size nuclei
was created and used to generate the synthetic annotated dataset. The synthetic data
with the original dataset is used as training data to train the cGan model for nuclei
segmentation. In another study, Wang et al. enhanced the basic Efficientnet model
to obtain a boosted Efficientnet model [46]. The boosted efficient net model is then
compared with other models such as ResNet-50, DenseNet-121, and basic Efficient-
Net. Boosted EfficientNet performed the best among all other CNNs. The authors
also introduced a novel data augmentation technique Random Center Cropping. This
technique was used in combination with the Reduced Downsampling Scale (RDS),
Feature Fusion, and Attention feature; all these techniques improved the result of the
boosted Efficientnet model.
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In one study, the authors used random forest, SVN, eXtreme Gradient Boost, and
multi-layer perceptron to classify the histopathological images based on some textured
features [47]. The authors used the phylogenetic diversity index to extract character-
istics from the images. The index gives information related to the gray levels of the
image, the number of pixels in these different gray levels, and the number of edges
between these different gray levels. The indices are used to describe each image, and
the classifier uses these parameters to classify the image into one of the four cate-
gories. Different experiments were run to distinguish between normal and abnormal,
benign and malignant, invasive and in si tu carcinoma. SVM performed the best in all
experiments with 92.5 to 100 % accuracy. In another study, different models of CNNs
with different classification layers such as the Logistic Regression layer, K-NN layer,
and SVM layer were used [48]. The CNN model with SVM as the classification layer
performed the best with 99.84 % accuracy. In the study conducted by Gupta et al., the
residual neural network wasmodified to detect breast cancer and classify it into benign
and malignant. The images were pre-processed using resizing, zooming, rotation, ran-
dom flip, and vertical flip. And the network was trained using cyclic learning rates,
test time augmentation, stochastic gradient descent, and discriminative layer learning.
Even though the model was trained with 40×magnification images, it performed well
for 100×, 200×, and 400×. The model was compared with other existing studies and
resulted in the best performance with average classification accuracy obtained was
99.75 %, the precision of 99.18 %, and recall of 99.37 % [49].

4.3 Transfer Learning

Many studies use transfer learning to use existing weights and solve the problem of
fewer data. Transfer learning is a technique inwhich a previously trained CNNon a big
dataset is used for a newproblem.Wahab et al. used a pre-trainedCNNon the ImageNet
dataset to perform segmentation and output segmented patches. These patches were
then fed as input to the hybrid CNN to classify mitotic and non-mitotic nuclei. By
using the pre-trained model, the class imbalance problem was reduced from 1:61 to
1:12. The proposed measure resulted in an F-Measure of 0.71 compared to the other
existingmodels with 0.68 as F-Measure [41]. Senan et al. proposed amethod to extract
deep features and diagnose breast cancer as benign or malignant based on AlexNet
architecture. Experiments were performed based on different image magnification
values (Fig. 2) [27]. The pre-trained AlexNet initially trained on ImageNet was fine-
tuned so that the last layer of the model can classify only two classes, malignant and
benign. The accuracy of the fine-tuned model was 95 %.

Sohail et al. proposed a framework for multi-phase mitosis detection named MP-
MitDet to identify the mitotic nuclei [28]. There were different phases related to the
framework; the first was to refine the weak annotated labels. This pre-trained Mask
Region-basedCNN (RCNN) trained onMITOS12was fine-tuned to label the images at
the pixel level. Next, Mask RCNN’s multi-objective loss function was used for region
selection at the tissue level. The predictions made by Mask RCNNwere filtered based
on a threshold cut-off of 0.5. The selected mitotic nuclei were considered as blobs,
and the blobs with an area of more than 600 pixels were retained. Mitos-Res-CNN
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Fig. 2 Magnification factors (a) 40×, (b) 100×, (c) 200×, and (d) 400×. Reprinted with permissions from
[27]

was proposed to reduce false positives and enhance mitosis detection at the cell level.
The full method is displayed in Fig. 3. The proposed system performed the best with
an F-Score of 0.75, a precision of 0.734, and a recall of 0.768. These studies are
summarized in Table 1.

5 Mammogram Images

Mammograms are used as an early source of breast cancer diagnosis. There are dif-
ferent types of mammogram images. Digital mammogram images are created by
taking a single image, whereas digitized images are generated to get a 3D view of
the breast through 3D mammography. Mammogram images are grayscale images
(single-channel images), unlike histopathological images with three channels (i.e.,
RGB).

5.1 Pre-Processing and Data Augmentation Techniques

Mammogram images have mostly high-intensity or low-intensity visual information.
Some of the reasons that makemass detection difficult for CNNs are that mammogram
images lack high quality, they have irregular shapes of masses, the mass size varies a
lot, and sometimes it is difficult to distinguish between the dense region and the mass
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Fig. 3 An example for multi-phase mitosis detection: (a) Mitotic region selection at tissue-level using
multi-objective deep instance-based detection and segmentation model. (b) Blob analysis. (c) Enhancement
using cell-level classification. Reprinted with permission from [28]

region [52]. Variation of mammogram density is one of the reasons for misdiagnosis
[53]; therefore, image enhancement before feeding the images to CNN models is
essential. Studies have used various pre-processing and data augmentation techniques
with CNNs to classify and segment the tumor lesions on mammogram images.

Due to variations in intensity, the small region of tumor masses, and the presence
of pectoral muscle, it is usually difficult to use the whole image as an input to CNNs
for tumor detection. Before feeding the mammogram images to CNN, it is important
that the images are pre-processed, and data augmentation techniques are applied to
them. Also, generating more data using data augmentation techniques helps solve the
problem of scarce data. In one study, Feature Wise Data Augmentation technique
is used on images of size 1024 × 1024. The region of interest (ROI) is extracted
and labeled. Image patches are created and then rotated clockwise to angles 90◦,
180◦, 270◦, and 360◦. After each patch is rotated, it is flipped vertically. The data
augmentation results in 8 patches, resulting in more data and smaller image size.
The final size of the image obtained is 128 × 128 [54]. There is another study on
Contrast-Limited Adaptive Histogram Equalization (CLAHE) technique for image
enhancement. This technique enhances the image without enhancing the noise in the
image. It does not result in noise enhancement because it uses a clip level for each pixel
which restricts the contrast enhancement (see Fig. 4) [55]. In one study, Gaussian filter
was applied to remove image noise, and the image was downscaled to 16, resulting
in an image size of 64 × 64. Each of downscaled images was flipped horizontally
(reflection operation), and both downscaled and reflected images were rotated by
different angles such as 90◦, 180◦, and 270◦, giving a total of 2576 images [56]. In
another study, sliding window approach is used to scan the whole breast and extract
possible patches while controlling the minimum overlap between the two consecutive
patches.All patches are classified based on the annotations providedwith the dataset. If
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the central pixel of the patch lies inside the mass, it is considered positive. All positive
patches are extracted for CBIS-DDSM data, as no negative images are present. Then,
an equal number of negative patches are randomly selected to balance the data. For
INbreast data, positive patches are extracted only from positive images, and an equal
number of negative patches from the normal images [57]. Houby et al. usedMIAS and
INbreast for their study. The two datasets have different formats of images; therefore,
all images were converted to png format. A median filter was used to remove noise
and preserve image edges. Images were then converted to binary images using the
Otsu thresholding method to remove labels. Images were then sharpened to remove
edges. CLAHE was used as an image enhancement method. ROI was cropped in the
form of bounding boxes by using different methods for the two databases. For data
augmentation, images were rotated and flipped, and finally, all images were resized
to 208 × 208 [58]. Tavakoli et al. used Otsu’s thresholding method [59] and modified
the method to get the final thresholding to convert the images into binary format. A
mask was generated, and the breast region was obtained by multiplying the mask with
the original image. Finally, the breast region was extracted. As pectoral muscle has
similar intensity as an abnormal mass, it is preferred to remove those. The authors
used Jen and Yu’s method [60] to remove the pectoral muscle. The orientation of
the breast was determined, image contrast was enhanced using gamma correction
equalization, a binary image was obtained, and the candidate component at the corner
of the image was eliminated. In the third step, a mask was created to distinguish
between background pixels, healthy tissue pixels, and abnormal pixels with black,
white, and gray colors, respectively. Finally, the imagewas enhanced by usingCLAHE
[52]. Samala et al. used Chan et al.’s background correction method to normalize
the grayscale background of the images [61]. Xi et al. used image patches from the
database CBIS-DDSM and tested them on full mammogram images to locate tumor
masses. Rotation and random X and Y reflection were applied to the training data as
data augmentation techniques [62]. Jadoon et al. used rotation at angles 90◦, 180◦,
and 270◦ and flipping transformations as data augmentation techniques. CLAHE was
used for image enhancement. Two dimensional, DiscreteWavelet Transform, Discrete
curvelet, and Dense Scale Invariant Feature Transform were used for clear edges and
image decomposition into different components [63]. Platania et al. removed the black
area of the images by flipping right view images and trimming the black area from
left to right for all images. Images were then rotated five times at random angles, and
reflection across Y was performed. The image was then normalized, and rectangular
boxes were created around the ROIs [64].

5.2 Comparison Studies

Studies have been conducted on whole mammogram images or ROI patches to locate
and classify mass. In a study done by Houby and Yassin, a simple CNNwas developed
with small-size filters to classify breast lesions as malignant and non-malignant. The
dataset used was fromMIAS, DDSM, and Inbreast datasets. To solve the issue of class
imbalance, more data was generated by data augmentation. Some of the techniques
used were format unification, noise removal from the image, ROI extraction, augmen-
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Fig. 4 Image enhancement using CLAHE. A Original malignant mass, B enhanced mass using CLAHE,
and C image histogram. Reprinted with permission from [55] (DOI: 10.7717/peerj.6201/fig-3)

tation, and image resizing. The performance of the developed CNN was compared
with some reviewed studies. The novel CNN developed was the best among all, with
a sensitivity of 96.55 %, specificity of 96.49 %, accuracy of 96.52 %, and AUC of
98 % [58]. In another study, Ragab et al. finetuned DCNN with AlexNet architecture
to classify benign and mass tumors in the mammogram images. The last layer of the
DCNNwas replaced by SVM to get better results. Two segmentation techniques were
used: the first was the global thresholding method, and the second was region-based
segmentation. The dataset used was DDSM and CBIS DDSM with an image size of
227 × 227. The accuracy, AUC, sensitivity, specificity, precision, and F1 score for the
DDSM dataset were 80.5 %, 77.4 %, 84.2 %, 86 %, and 81.5 %, respectively, while
the same measures for CBIS-DDSM dataset were 87.2 %, 94 %, 86.2 %, 87.7 %, 88
%, and 87.1 %, respectively [55]. Ting et al. developed CNNI-BCC for the classifica-
tion of breast cancer using CNN for classification and an interactive detection-based
lesion locator (IDBLL). The images are from the MIAS dataset, whose ground truth
has been examined by a medical doctor. The large image is decomposed into small
patches of size 128 × 128 using feature-wise data augmentation while disregarding
the non-significant patches. Each patch is then rotated clockwise to 90◦, 180◦, 270◦,
and 360◦ and then flipped vertically. The method’s performance is compared with pre-
viously reviewed studies. It performed the best with sensitivity of 89.47 %, accuracy
of 90.5 %, and specificity of 90.71 % [54]. Wang et al. proposed a mass detection
method based on sub-domain CNN deep features and US-ELM clustering. US-ELM
is a semi-supervised learning algorithm, as this can give better results with a small
amount of data. First, the images were processed with noise reduction and contrast
enhancement. Next, the ROI was extracted by mass segmentation so that features can
be extracted properly for later steps.Deep,morphological, texture, and density features
were extracted using CNN. The ROI was divided into non-overlapping sub-regions
using a sliding window of size 48 × 48, and deep features were extracted from the
ROI patches. The deep features were classified using US-ELM clustering into two
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categories: suspicious and non-suspicious mass areas using the fused features. The
proposed method performed best with an accuracy of 86.5 % [56]. Tavakoli et al. used
CNN to classify breast tissue into normal and abnormal. First, some pre-processing
methodswere applied, such as breast region extraction, suppression of pectoralmuscle,
breast mask creation, and contrast enhancement. ROIs were not rescaled to maintain
quality; instead, a block around each pixel was created and fed to CNN (see Fig. 5).
The CNNwas trained with 50 % of normal blocks and 50 % abnormal blocks to avoid
class imbalance. Next binary map of ROI was generated, which was then used for the
decision mechanism. Two methods were compared for the decision mechanism: the
first thresholding technique and the second another CNN. The method with the thresh-
olding technique performed the best with a thresholding value of 0.6, a block size of
32 × 32, and 94.68 % accuracy [52]. Xi et al. used two different CNN models, one
for localization of mass and the other for classification. When a full-size image was
fed into the patch classifier, a Class Activation Map (CAM) [65] was generated that
resulted in a heatmap that highlights one class. The resNet architecture was used for
generating CAM. The classification CNN was trained on cropped ROI image patches
and tested on the whole image [62]. Sun et al. developed semi-supervised deep CNN,
which could use a large amount of unlabeled data. The dimension reduction method
that performed best wasMDSwith an accuracy of 82.43% [66]. Jadoon et al. proposed
a three-class classification model which could classify normal, benign, and malignant
masses. The authors used two methods: CNN-DW (discrete wavelet transform) and
CNN-CT (curvelet transform). As a part of pre-processing, images were divided into
patches and treated with CLAHE contrast enhancement method. During the CNN-DW
method, enhanced images were decomposed into four sub-bands by means of a two-
dimensional discrete wavelet transform (2D-DWT). In the case of CNN-CT, discrete
curvelet transform was used for decomposing into sub-bands. The input data matrix
containing sub-band features was created as a result of the two methods, which was
fed as input to the CNN. The performance of the SoftMax layer and SVM layer as
classification layer were compared. SVM layer as classification performed the best
with a CNN-DW accuracy of 81.83 % and a CNN-CT accuracy of 83.74 % [63].

Fig. 5 Tavakoli et al.’s proposed method: (a) Pre-processing, (b) CNN pixel classification, and (c) label
assignment. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature Journal of Ambient Intelligence and Humanized Computing [52]
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5.3 Transfer Learning

Some studies have used transfer learning as part of the proposed framework or as
the base model. Agarwal et al. analyzed the performance of VGG16, ResNet-50, and
Inception V3 for mass and non-mass classification and used the best architecture to
showdomain adaption between theCBIS-DDSMdigitized dataset and INbreast digital
dataset using different CNN architectures. Inception V3 performed the best, with a
True Positive Rate of 0.98 in classifying mass and non-mass breast regions. This
was compared with domain adaption natural images database ImageNet. A sliding
window approach was used to scan the whole breast image, and ROI patches were
extracted. Patches were then classified based on the annotation of the central pixel.
For domain adaption from ImageNet to INbreast, CNNs were trained with 224 ×
224 × 3, where three is for RGB channels; therefore, each grayscale mammogram
patch (224 × 224 × 1) was replicated onto RGB channel [57]. Tsochatzidis et al.
compared to the state-of-the-arts pre-trained CNN to classify benign or malignant
ROIs. Two scenarios were considered: first where pre-trained weights were used for
classification and second where random weights were initialized. Transfer learning
scenario and ResNet-101 performed the best for the DDSM-400 database with an
accuracy of 0.785, and ResNet-152 for CBIS-DDSM with an accuracy of 0.755 [67].
Platania et al. proposed a framework for automatic detection and diagnosis named
BC-DROID. BCDROID was first pre-trained based on physician-defined regions of
interest inmammogram images. Both detection and classificationwere done in a single
step, and the whole mammogram image was used as an input for training. The authors
adapted You Only Look Once (YOLO) [68] to identify and label ROI. The adapted
YOLO gave several outputs such as the width and height of ROI, coordinates of the
center of ROI, and class label vector with the probability of benign and cancerous
class. These predicted values were then fitted to rue values using a second CNN. Pre-
trained weights are extracted from the first CNN and used as initialization values for
the second CNN in the main training process. The resulting CNN network was able
to detect and classify ROI as benign or cancerous with a detection accuracy of 90 %
and classification accuracy of 93.5 % [64]. These studies are summarized in Table 2.

6 Magnetic Resonance Imaging (MRI)

MRI is usually performed when the patient is at high risk of getting breast cancer to
reduce the chance of a misdiagnosis. Another reason is to detect the proper location
of the detected mass.

6.1 Pre-Processing and Data Augmentation Techniques

To get an efficient result in detecting tumors through MRI images, the image noise
must be reduced, and the images must be pre-processed using different techniques.
These techniques increase the quality of the images and increase the size of data,
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which is important as, most of the time, there is not enough data for the CNN to learn
features. Adoui et al. used a bias field correction filter and annotated the tumors on
the breast images. For data augmentation, techniques such as translations, rotations,
scale, and flip were used [69]. Ha et al. used random affine transformation to alter mass
so that the same looks different to the network, random rotation by 30◦, 90◦ across
X-, Y-, and Z-axes. The techniques were only applied to 50 % of the data to reduce
the network’s bias towards augmented data. The noise was also introduced by using
a random Gaussian noise matrix, random contrast jittering, and random brightness so
that the network could learn marginalized noise [70]. Yurttakal et al. pre-processed
the images by cropping tumor regions and then resizing the image to 50 × 50. Then,
the images were normalized, and the noise was reduced using the denoise deep neural
networkDnCNN. For data augmentation, images were randomly translated by 3 pixels
and then rotated to an angle of 20◦ [71]. Lesions were automatically segmented, and
segmented lesions were used to obtain the ROI regions, which were used as an input
to the classification process to enable ROI construction [72]. Haarburger et al. used
reflection and rotation around Z-axis by 15◦ [73]. The tumor was segmented using
fuzzy c-means clustering algorithm by subtracting the pre-contrast image from DCE
postcontrast image. Square ROI was placed on the highest intensity region, and the
tumor within the region was enhanced using the unsharp filter. Fuzzy c-mean was
applied on all voxels belonging to the tumor in the mask. The segmented mask results
were verified by experienced radiologists [74]. Ren et al. used ITK-SNAP to segment
the axillary lymph nodes. A uniform 32 × 32 pixel bounding box was created around
the center of mass. For data augmentation, flipping, rotating, and shearing were used
[75]. Zhou et al. used Frangi et al.’s [76] method on 2D slices of MRI to obtain
boundaries for the breast area, pectoral muscle, and breast glands. 2D binary masks
were obtained by a threshold of the filtered slice, connected component analysis,
and hole filling. 2D masks were stacked to obtain a 3D mask, and then the resultant
mask was smoothed using a Gaussian filter. After the bounding box was obtained, the
image was normalized [77]. Dalmics et al. obtained subtraction volume by using the
motion-corrected postcontrast image; additionally, the relative enhancement volume
was obtained by normalizing the image intensities [78]. Rasti et al. first reduced the
image background using first post-contrast subtraction, enhanced the image contrast,
and performed breast region cropping that helped reduce the other structures. Otsu
thresholding [59] and morphological top-hat filtering [79] were also used to remove
the non-lesion structure. The next step was to apply radius-based filtering to select
regions within a certain range. Localized active contour (LAC) segmentation was
applied using the Chan-Vese active contour model [80] to recover tumor pixels that
were removed by previous operations. Compact-based filter was applied to reduce the
false positives and to select the ROI based on the compactness score [81].
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6.2 Direct Application of CNN and Comparison Studies

Studies have used various architectures and frameworks to segment tumor regions on
images such as UNet, Seg-Net, and Mask RCNN. Some studies considered ground
truth from PET scores and histopathological images.

In one study by Adoui et al., two CNN approaches were proposed based on Seg-Net
and UNet architectures for tumor segmentation. The study used a dataset of 86 MRI
images of 43 patients from the collaborator institute Jules Bordet Institute-Brussels,
Belgium. For pre-processing operations of translation, rotation, flip and scale were
applied randomly to images to obtain a greater number of images at each epoch. UNet
and Seg-Net were used as the encoder-decoder architectures and tuned to create tumor
masks and compared for segmentation performance. UNet had an accuracy of 76.14%
and Seg-Net of 68.88 %. Therefore, UNet architecture was considered the best among
the two [69]. Ren et al. use CNN to detect axillary lymph node metastasis on MRI
images. The dataset used is from Stony Brook Hospital patient data and consists of 66
abnormal nodes. The data is from peak contrast dynamic images taken by 1.5 Tesla
MRI scanners at the pre-neoadjuvant chemotherapy stage. The ground truth was taken
from the PET score and was determined by experienced readers. The model achieved
an accuracy of 84.8 %, ROC of 0.91, specificity of 79.3 %, and sensitivity of 92.1 %
[75].

Yurttakal et al. designed amulti-layer CNNusing one-pixel informationwith online
data augmentation to classify lesions as malignant or benign. The dataset was from
Haseki Training and Research Hospital in Istanbul, Turkey. MRI dataset consisted of
200 tumorous regions. The ground truth was created by two radiologists using the
BI-RADS lesion characteristics. The MRI images were cropped to get only the tumor
region and were resized to 50 × 50. Pixels were normalized, and then DnCNN was
used to reduce the noise in the images. The resulting images were then processed
randomly with operations such as translating vertically and horizontally and rotating
with an angle of 20◦. The images were used as input for the proposed CNNmodel. The
proposed model had an accuracy of 98.33 %, a sensitivity of 1, a specificity of 0.9688,
and a precision of 0.9655 [71]. Another study by Haarburger et al. emphasized that
criteria other than the lesions, such as background enhancement and locationwithin the
breast, are important for diagnosis. These are difficult to capture from object detection
models. To solve this problem, a 3D CNN with the architecture of ResNet-18 and a
multi-scale curriculum learning strategy to classify malignancy globally on an MRI
is proposed. The data consisted of 408 DCE MR images; out of those, 305 were
malignant and 103 benign. Images were obtained from a local institution with 512 ×
512× 32 resolution. The proposed method is compared with Mask RCNN and Retina
U-Net and has obtained an AUROC of 0.89 and an accuracy of 0.81 [73]. Ha et al.
performed a study in which a CNN model with 14 layers was developed to predict
the molecular subtype of breast cancer: luminal A, luminal B, and HER2+. The data
of 216 patients were obtained from a conducted study that consisted of MRIs and
immunohistochemical staining pathology data. The ground truth was recorded by a
breast imaging radiologist. Data augmentation included random rotation by 30◦ and
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90◦, and augmentation was performed only on 50 % of the data to avoid bias towards
augmented data. Also, random noise was introduced, and the size of inputs was 32 ×
32 pixel bounding boxes consisting of the size normalized lesions. The customized
CNN was tested with other models such as ResNet-52, Inception v4, and DenseNet.
The accuracy of the customized model was 70 %, class normalized ROC was 0.853,
non-normalizedAUCwas 0.871, average sensitivitywas 0.603, and average specificity
was 0.958 [70].

6.3 Transfer Learning

Zhang et al. used CNN and CLSTM and re-tuned them after transfer learning to clas-
sify the three breast cancer molecular subtypes on MRI images. The three molecular
subtypes classified were (HR+/HER2-), HER2+, and triple-negative (TN). The data
used was from a hospital study of 244 patients. The dataset was divided into training,
testing 1, and testing 2. The models were used on both testing data. For transfer learn-
ing, the pre-trained model used on training data was used as the base, and then the
resulted model was trained on testing data 1 and tested on testing data 2. The accuracy
of CNN after transfer learning improved from 47 to 78%, and for CLSTM, it improved
from 39 to 74 % [82]. Hu et al. developed a CNN model to diagnose breast cancer
with the help of transfer learning and multi-parametric MRI. The dataset consisted
of DCE-MRI and T2-weighted MRI for each study. A pre-trained CNN was used to
extract features for these images, and SVM was used to classify the region as benign
or malignant.

The CNNmodel was trained on the images separately as a single sequence method.
For multi-parametric sequence, the two types of images, DCE-MRI and T2-weighted
MRI, were integrated with image fusion, feature fusion, and classifier fusion. The fea-
ture fusion method outperformed all other single sequence and other multi-parametric
sequence methods [72]. In another study, Lu et al. developed a framework to classify
and segment breast cancer with data obtained by merging four imaging modes using
a refined UNet architecture. The four imaging modes were T1-weighted (T1W), T2-
weighted (T2W), diffusion-weighted and eTHRIVE sequences (DW1), andDCE-MRI
images. The four modes of images help solve the variation in the images that lead to
an inconsistent diagnosis. The data comprised 67 breast examinations which consisted
of 8132 images. Out of these, 6000 images were used for classification and 1800 for
segmentation. The augmentation techniques used were creating patches, random-size
cropping, and flipping the images horizontally. In this study, a pre-trained CNN was
used in addition to the trained CNN. A higher dimensional feature map was used,
which was obtained using feature maps from the four images. For classification, CNN
was compared with VGG16, ResNet-50, Inception V3, and DenseNet. For segmenta-
tion, UNet was refined and initialized using the network used for classification. The
accuracy achieved was 0.942 [83]. These studies are summarized in Table 3.
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7 Ultrasound (US) Images

US image modality is most commonly used in breast cancer diagnosis. The recent
development of deep learning techniques for image classification, segmentation, image
synthesis, and density-varied object detection shows promising results. Eventually,
it was realized that, for breast US images, the use of deep learning prediction has
significant diagnostic value. Many recent studies have shown that different improved
and transfer CNN applied in US images results in high accuracy of breast cancer
diagnosis, comparable to experienced radiologist’s diagnosis outcomes [84–86].

For investigating Artificial Intelligence (AI) on breast cancer diagnosis accuracy,
recent trends in research have followed specific steps to improve the processes. In
particular, for the application of deep-learning in US image modalities, some basic
approaches are to collect authentic US image data and define the dataset, apply pre-
processing techniques for preparing the images as the readable inputs for the CNN
model, define transfer learning CNN models, propose novel or modified CNN archi-
tecture, comparing the result with the existing AI algorithm, or to the radiologist
evaluations; these are some practicing research trends so far.

7.1 Dataset

Different studies have used different sets of data to train, test, and evaluate the devel-
oped CNN architecture in deep learning research of US imagemodality. Some of these
datasets are publicly available for use. Mendeley, Breast Ultrasound Images (BUSI),
and BreakHis are some popular open-source US image datasets that have been used in
many studies. Other studies have prepared unique datasets from certain investigative
collection methods and clinical trials. Wilding et al. [88] used two datasets, namely,

Fig. 6 US images of normal, benign, and malignant breast. Reprinted with permission from [87]
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Dataset BUSI and Dataset B. This dataset B was collected in 2012 from the UDIAT
Diagnostic Centre, Spain [89]. Karthik et al. [90] used the ‘Dataset of breast ultrasound
images,’ collected from Baheya Hospital, Cairo, Egypt [87]. A US image of normal,
benign, and malignant breast is shown in Fig. 6 from dataset of breast ultrasound
images [87]. Yu et al. [91] collected data from a random remote location. Jiang et
al. [92] collected data from ‘Breast Imaging Database’ at Wuhan Tongji Hospital. In
another study, Lee et al. [93] collected US image data of 153 women (age range from
24 to 91 years, mean: 52.37± 12.26 years) from the National Taiwan University Hos-
pital (NTUH), and Zhang et al. [94] obtained original US breast image dataset from
a database of Harbin Medical University Cancer Hospital (a total of 17,226 images
from 2542 patients). Wang et al. [95], Zhou et al. [96], and Huang et al. [97] have also
used certain private clinical datasets for the US image-based deep learning diagnosis
approach. A summary of the open-source data set is included in Table 4.

7.2 Pre-Processing Techniques

When working with US images, image pre-processing techniques (such as cropping,
rotation, flipping, segmentation, resampling, noise removal, and image separation)
are needed to obtain an effective deep-learning analysis. Karthik et al. [90] applied
basic geometric augmentation, and Zhou et al. [96] used Keras ImageDataGenera-
tor in Python for data augmentation, which was employed for population increase and
balancing of the initial dataset. Ayana et al. [98] used open-source OpenCV and scikit-
image in Python for image pre-processing as binary and noise-free images. Among
other studies,Wang et al. [95] usedmultiviewCNNwithout anymanual pre-processing
step and extracted features directly. Misra et al. [109] conducted a performance com-
parison by testing with and without an image cropping dataset as the input. Yu et al.
[91] proposed a 5GB remote e-health where the cloud center performs ROI extraction,
image resolution adjustment, data normalization, and data augmentation onUS image.
Boumaraf et al. [110] pre-processed the dataset for subsequent stages by normalizing
the stain-color of images, which method was initially proposed by Vahadane et al.
[111].

Table 4 Available open source data set

Dataset name Location Used in

Mendeley https://data.mendeley.com/datasets [98–100]

Breast Ultrasound Images (BUSI) https://scholar.cu.edu.eg/?q=afahmy/
pages/dataset

[88, 101–104]

kaggle BUSI https://www.kaggle.com/aryashah2k/
breast-ultrasound-images-dataset

[105]

MT-Small-Dataset (BUSI) https://www.kaggle.com/
mohammedtgadallah/mt-small-dataset.

[98, 106]

BreaKHis https://web.inf.ufpr.br/vri/databases/
breast-cancer-histopathological-
database-breakhis/

[107, 108]
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For data pre-processing, some studies have used a deep CNN model and fuzzy
threshold level segmentation and noise removal [106, 112]. In a deep learning study,
Huang et al. [97] applied the ROI-CNN model and the G-CNN model for data aug-
mentation.

7.3 Transfer Learning and Convolutional Neural Network

In a deep learning study, a CNN architecture can be trained from scratch when a large
dataset is available, which is known as De-Novo [113]. Pre-trained CNNs trained on
large datasets can also be used in some cases. In the case of US breast images, the
availability of a large dataset is quite challenging. In this context, most recent studies
used the transfer learning approach and a fewDe-Novo to develop an intelligent breast
cancer diagnosis system using US images.

Transfer learning (TL) technique in US image-based breast cancer diagnosis shows
promising results in many recent studies. Many popular pre-trained CNN architec-
tures, such as DarkNet-53 [101], ResNet-50 [88, 98, 106, 108], ResNet-101 [88, 113],
Inception-V3 [91, 95, 98], EfficientNetB2 [98], VGG-16 [108, 114, 115], VGG1-19
[107, 108, 114], Xception[94], AlexNet, and DenseNet [116], have been used with
modification and robust optimization to develop a novel transfer learning (TL) method
intending to increase the automatic diagnostic value. In a recent study, Jabeen et al.
[101] used a transfer learning for breast cancer classification by applying reformed
deferential evolution (RED) reformed gray wolf (RGW) optimization, which deliv-
ered a promising outcome. This TL method can be applied in multistage [98] or in
a certain stage and can be optimized and fine-tuned with the augmented datasets. It
is observed that diverse studies developed transfer learning (TL)-based CNNs from
a single pre-trained architecture [102] or combined more than one pre-trained CNN
architecture [106] to infer the best outcome.

Some studies also developed newCNNarchitecture,mostlywhen theywere affluent
with a satisfactory large dataset or when the intention was to construct an alterna-
tive and evaluate a De-Novo CNN. Like, Karthik et al. [90] proposed a Gaussian
dropout-based novel configuration of a Stacking Ensemble CNN, which was capable
of classifying US images of breast tumors efficiently. Furthermore, Jiang et al. [92]
train a ResNet-50 DCNN model from scratch and evaluate the performance. Also,
Huang et al. [97] proposed a two-stage grading system, Breast Imaging Reporting and
Data System (BI-RADS), to evaluate breast tumors from US images automatically. In
Fig. 7, Huang et al.’s proposed model’s steps are shown.

7.4 Evaluation Criteria and Comparison Study

Individual studies have utilized various evaluationmetrics to evaluate the performance
of machine learning models, such as accuracy, sensitivity, specificity, precision, recall,
F1-score, and AUC. Furthermore, by considering these evaluating metrics, different
studies utilized various approaches of comparison study to measure the impact of the
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proposed ML model.

Accuracy = T P + T N

T P + T N + FP + FN
Sensitivity = T P

T P + FN

Specificity = T N

T N + FP
Precision = T P

T P + FP

Recall = T P

T P + FN
F1–score = 2 ∗ Precision ∗ Recall

Precision + Recall

Here, TP = true positive, TN = true negative, FP = false positive, and FN = false
negative.

These US image-based deep learning studies usually compared the outcome to the
other study’s evaluation metrics or to radiologist diagnosis outcomes to assess the
significance of the studies. Other studies compare its performances based on other
parallel techniques. Many recent studies developed based on deep learning utilized
US breast cancer images to show equal or better diagnostic performance compared
to radiologists’ diagnoses [117]. By using the Mendeley dataset, Ayana et al. [98]
developed a transfer learning for US breast cancer image classification and compared
it with the other models based on the Mendeley dataset, which shows its supremacy
with the test accuracy of 99 ± 0.612 %. In another study, Hijab et al. [115] show that
the US image-based fine-tuned detector outperforms the mammogram-based fine-
tuned detector. Some studies tested identical datasets with different classifiers and
compared the outcomes to determine the best-fit result [106, 110]. The US studies are
summarized in Table 5.

Fig. 7 Huang et al.’s proposed method of two-stage CNNs for computerized BI-RADS categorization in
breast ultrasound images. Reprinted with permission from [97]
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8 Computed Tomography (CT) Images

CT image analysis is not very popular in practice in diagnosing breast cancer. However,
many recent studies have shownpromising results in detecting breast cancer at different
stages of malignancy by using CT-guided deep-learning techniques.

Despite the variety in image modalities, the basic steps for developing a deep learn-
ing study are identical, such as preparing datasets, pre-processing images, constructing
novel CNN or using pre-trained CNN, and defining the evaluation criteria. However,
for the breast CT imaging modality studies, studies are still in the initial stages, and
fewer studies exist. Transfer learning has also been applied to this modality with some
optimistic results.

8.1 Dataset

The trends of using CT imaging modality in automatic breast cancer detection are
quite new; hence, there are no widely used publicly available datasets to train and test
the developed neural network. Most of the CT image breast cancer study datasets are
prepared individually and kept private. In many current studies, investigators collected
CT image data from associatedmedical centers or reproduced existing clinical datasets
due to limited access to reliable open sources [120, 121]. Like, Koh et al. [122] collect
chest CT images obtained after the diagnosis of breast cancer fromone tertiarymedical
center (Severance Hospital) and includes 1070 chest CT scans for the experiment.
Takahashi et al. [123] and Li et al. [124] also collect data of female patients who
underwent 18F-FDG-PET/CT at a hospital. Moreau et al. [125] collect baseline and
follow-up PET/CT clinical data at two sites and prepare two datasets for training and
test assessment. In another study, Wang et al. [126] collected mammography breast
data from the CBIS-DDSM image library [127] to train a CNN architecture, formainly
constructing the breast cancer CT image detection model.

8.2 Pre-Processing Techniques

In breastCT-baseddeep learning studies have adopted different techniques for data pre-
processing. Among some studies, data is processedwith the help of expert radiologists,
manually segmenting the ROIs [128, 129], and some studies use data augmentation
(shifting, flipping, rotation, mirroring, shearing, etc.) with the assistance of software
[120, 121, 130]. Other studies used computational techniques such as fuzzy clustering
[126], CNN architecture, or different coding platform packages (like Python imag-
ing library of Pillow 3.3.1) [123] for data augmentation and preparation. In a breast
CT imaging deep learning study, Caballo et al. [129] applied manual segmentation,
software-aided data augmentation, and Generative Adversarial Network (GAN) for
data augmentation simultaneously. Although some deep learning studies trained the
model with raw CT data without pre-processing [122, 124, 131]. In most cases, dif-
ferent processing techniques are applied to enhance the dataset size and quality and
ensure better performance of the proposed deep learning models.
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8.3 Transfer Learning and Novel CNNs

When ambiguity remains with the other image modalities diagnosis, PET/CT imaging
assessments are recommended. This framework can realize the significance of CT
image-based deep learning approaches for breast cancer diagnosis. Recent studies
have observed both De-Novo and the transfer learning approaches in breast CT image
analysis.

An earlier study found that both the whole body and organ-wise manual quantifica-
tion of the metabolic tumor volume (MTV) were significant prognosticators of overall
survival in advanced breast cancer [119]. It refers that the neural network with regard
to lesion detection, anatomical position determination, and total tumor volume quan-
tification shows a certain level of accuracy to examine breast cancer, even though the
neural network involved in PARS (PET-Assisted Reporting System) was not trained
on breast cancer 18F-FDG PET/CT image data [119]. A breast axial FDG PET/CT
image is shown in Fig. 8. Other pre-trained transfer learning studies also show a
decent level of accuracy, like Liu et al. [121] proposed a deformable attention VCC19
(DA-VGG19) CNN model, which used a pre-trained VGG16 architecture trained on
ImageNet. The DA-VGG19 model was trained with the axillary lymph nodes (ALN)
datasets, keeping the first four convolutional layers stable and fine-tuning the other
layers; the final model performed with higher accuracy (0.9088). Yang et al. [132] also
proposed a convolutional neural network fast (CNN-F) model which was pre-trained
on the ILSVRC-2012 dataset. This model evaluated the human epidermal growth
factor receptor 2 (HER2) status in patients with breast cancer using multidetector

Fig. 8 Breast axial FDG PET/CT image. Reprinted with permission from [119]
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Fig. 9 Flowcharts of CT with deep learning and handcrafted radiomics features. The handcrafted radiomics
features were extracted from the manually segmented ROIs. A rectangular cross-section of the maximum
tumor area was cropped and resized to a fixed size. Deep features were extracted from a generated RGB
image after inputting into a pre-trained CNN model. Reprinted with permission from [132]

computed tomography (MDCT); the full method is displayed in Fig. 9. For PET/CT
image classification, Takahashi et al. [123] proposed a 2DL model based on Xecp-
tion architecture, which had 36 convolutional layers. This CNN was pre-trained on
ImageNet datasets and fine-tuned to extract the best performance.

Other studies proposed some CNN models trained from scratch using clinically
obtained CT images. U-NetBL and U-NetFU networks’ architectures are proposed
for automatic segmentation of metastatic breast cancer by Moreau et al. [125]. Four
imaging bio-markers, SULpeak , Total Lesion Glycolysis (TLG), PET Bone Index
(PBI), and PET Liver Index (PLI), were computed and evaluated. Ma et al. [120]
proposed a deep learning neural architecture search CNN which was trained and
tested with contrast-enhanced breast cone-beam CT images.

8.4 Evaluation Criteria and Comparison Study

Classical evaluation metrics (accuracy, sensitivity, specificity, precision, recall, F1-
score, AUC, etc.) are used for CT image-based deep learning studies. Some breast CT
imaging deep learning studies sets have used imaging biomarkers such as SULpeak

and SUVmax as evaluation metrics [125, 133].
The outcomes of CT image-based deep learning studies are often being compared

with the outcomes of other popular image modalities [126]. For testing the reliabil-
ity of a proposed deep learning breast CT image model, the outcomes are compared
with the radiologist’s diagnosis outcome [123]. A comparative analysis is performed
by comparing the proposed model with pre-existing robust models to get a compre-
hensive idea about the performance indicator of the proposed model. Ma et al. [120]
compared their proposed neural architecture search (NAS)-generated CNN with the
pre-trained ResNet models and found that with an AUC of 0.727, the proposed NAS-
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CNN surpassed the performance of well-performed best-known ResNet-50. This way,
transfer-learned CNNmodels are frequently compared with the previously pre-trained
models’ performance. As so, Liu et al. [121] meticulously designed the deformable
attention VGG19 (DA-VGG19) CNN model from a pre-trained VGG16 model and
achieved higher accuracy in comparison. The CT studies are summarized in Table 6.

9 Discussion and Conclusion

Mammogram and biopsy (histopathological images) are two of the initial breast cancer
screening methods used. These are used in patients with breast cancer risk, whereas
MRI is usually used to locate the tumor. CT is used to detect cancer at different stages of
malignancy. Unlike other imagemodalities, CT research is still at the initial stages, and
fewer studies exist related to the automated detection of breast cancer. Image datasets
for histopathological, mammogram, MRI, US, and CT images are either obtained
through public datasets or retrospective studies and clinical trials. There has always
been a shortage, no matter where the data is obtained from. Therefore, image data aug-
mentation techniques such as reflection, rotation, cropping, and scaling are applied
to the data. For the CNN models to function efficiently, it is crucial to improve the
quality of the images, and therefore, pre-processing techniques such as noise reduc-
tion, contrast enhancement, and image normalization are used. One of the significant
differences between histopathological images and the other four image modalities is
that histopathological has three image channels (RGB format), whereas others are only
single channel as they are grayscale; therefore, some of the pre-processing techniques
are different based on the number of image channels. Contrast enhancement and noise
reduction techniques are most popular in grayscale images as a significant area might
be out of the ROI. Most of the time, the pre-processing methods are accomplished
manually by python libraries or other tools. Still, few studies have used CNN and other
computation techniques to pre-process the data [71, 74, 97, 106, 112, 126, 129]. After
pre-processing of data, neural networks or a combination of machine learning models
andneural networks are used for tumor detection. Someneural networks used for detec-
tion and segmentation are UNet, ResNet50, VGG16, VGG19, Mask RCNN, GAN,
Faster RCNN, AlexNet, ImageNet, and DenseNet. Few studies use a combination of
SVM, K-means, and CNN for classification and segmentation. For histopathological
image studies mentioned, some of the most common CNN architectures achieved an
accuracy reaching up to 99 % [48]. One of the most common architectures used for
mammogram images is AlexNet or a customized CNN. For the mammogram studies,
the highest accuracy reached is around 96 % [58]. For MRI images, ResNet or cus-
tomized CNN are the most common architectures, and the highest accuracy achieved
is around 98 % [71]. For ultrasound images, the highest accuracy reached was 99.8
% with ROI-CNN and G-CNN [97]. For CT images, the highest sensitivity achieved
was around 96 % with Xpection CNN [123]. MRI and CT image modalities are still
developing in the research area and therefore have fewer studies available compared to
other image modalities. The supremacies of the five image modalities are summarized
in Table 7
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Table 7 Image modalities summarized

Image modality Supremacy Popular CNN-based architectures

Histopathological 1. Customized existing architectures for
improved efficiency

Customized CNN, ALexNet,
GoogleNet, ResNet, DenseNet 121

2. Patch sampling strategy using CNN
and K-means [31]

3. Fine-tuned pre-trained architectures

Mammogram 1. Customized existing architectures for
improved efficiency

Customized CNN, AlexNet, VGG,
ResNet101, Inception v3

2. Use of block-based CNN [52], Class
activation Map [62] and fused feature
set [56]

3. Classification of both ROI patches and
whole images

MRI 1. Used to detect ALN metastasis [75],
predict breast cancer molecular
sub-type [70, 82] and tumor lesions

Customized CNN, SegNet, UNet,
VGG19, ResNet18

2. Machine learning classifier used in
conjunction with CNN [72]

3. Use of high dimensional feature map
for increased efficiency [83]

Ultrasound 1.US is radiation-free, non-invasive,
real-time, well-tolerated by women
[100].

ImageNet, AlexNet, VGGNet,
CaffeNet, MobileNet, ZFNet,
ResNet, DarkNet-53, Inception-v3,
InceptionResNet, Xception,
DenseNet.

2. Imaging can be performed with
Different angular orientations [136].

3. For dense breasts where
mammography shows decreased
diagnostic accuracy, US is considered
as a more accurate imaging modality
for detecting breast cancer [137].

CT 1. PET/CT can detect lymph nodes and
distant metastases, axial, and internal
mammary nodes [138].

VGGNet, U-NetBL , MobileNet,
ResNet, DarkNet-53, Inception-v3,
InceptionResNet

2. When traditional imaging methods are
equivocal, PET/CT has been
recommended in asymptomatic breast
cancer patients because it has high
sensitivity and specificity to detect
loco-regional recurrence [139].

3. Breast CT acquires images views over
360◦ for each breast in one scan, thus
reducing the radiation dose [140].
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In conclusion, state-of-the-art neural network systems can perform the task of detec-
tion and segmentation with an accuracy ranging from 96 to 99 %. Pre-trained models
can be used and customized to save training time and have more efficient results. Also,
it is crucial to use the proper pre-processing techniques based on the type of image to
provide better input to the models so that the tumor detection tasks can be performed
more efficiently.

9.1 Future Scope

Collecting extensive labeled data sets from a single image modality can be cumber-
some; one way to solve this is by using collaborative learning frommulti-modal image
data. Our subsequent work focuses on feature fusion from multiple image modalities
for more efficient tumor localization and segmentation. Imbalanced data is another
problem related to each imaging modality, as samples exhibiting tissue abnormalities
are less than the normal samples. A large number of normal samples dominates the
training data, so the classifier favors classes with a more significant number of labeled
samples. Data augmentation is one of the most common methods used to solve the
issueof imbalanced class data, but it increases the computational cost. Therefore, future
studies can utilize a surrogate evolutionary algorithm to optimize the computationally
expensivemodels [141]. Anotherway of improving the efficiency of the computational
model is by using the correct combination of pre-processing techniques. One of our
future works involves comparing the performance of different CNN architectures by
applying a combination of patching and stain normalization techniques. A different
approach can be designing models that can differentiate noise in the input images.
Many studies eliminate noise or other structures, such as pectoral muscle, from the
images. Models can be created to train with some amount of noise, similar to the study
by Ha et al. [70], so that noise in target images may not reduce the efficiency of tumor
detection. Such models can be developed using a pre-trained model with machine
learning methods such as SVM.
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