Skip to main content
. 2023 Sep 10;7(4):387–432. doi: 10.1007/s41666-023-00144-3

Table 1.

Histopathological studies summarized

Pre-processing Size of images Model used Novel technique Performance Dataset used Ref., year
Reinhard et al. method RGB channel processing [50] 128 × 128, 512 × 512 CNN from scratch Patch sampling strategy using CNN and K-means Accuracy (acc) 88.89 % overall Bioimaging 2015 breast histology classification challenge [31], 2019
2040 × 1536 SVM with Xception, ResNet, NasNet, VGG19 architectures Feature extraction using phylogenetic diverse indexes, and classification of normal, abnormal, benign, malignant, in-situ Acc (NasNet for classifying normal vs abnormal) 75 %, precision 56 %, acc (VGG19 for classifying benign vs malignant) 72 %, precision 51 % BACH 2018 [47], 2020
Image resizing, zooming, rotation, random flip, vertical flip 230 × 230, 460 × 460 ResNet34, ResNet50 Modified ResNet for classification Acc 99.75 %, precision 99.18 %, recall 99.37 % BreakHis [49], 2021
Cropping, rotation, flip 512 × 512, 80 × 80 TL-Mit-Seg Hybrid-CNN with transferred weights for classification of mitosis Precision 0.772, recall 0.663, F-measure 0.713 TUPAC16, MITOS12, MITOS14 [41], 2019
Translation, scaling, rotation, flipping, bilinear interpolation (image resized), stain normalization 224 × 224 AlexNet Customized CNN to extract deep features for benign and malignant classification Acc 95 %, SN 97 %, SP 90 %, AUC 99.36 % BreakHis [27]. 2021
Image normalization, rotation, reflection 64 × 64 CNN + LSTM Combination of CNN and LSTM for classification and nuclear atypic grading Acc 86.67 %, SP 0.9278, F-Score 0.8663 MITOS-ATYPIA-14 [26], 2021
Image normalization [33] 512 × 512 AlexNet Custom CNN classifier for label refiner, tissue-level mitotic region selection, blob analysis and cell level refinement F-Score 0.75, recall 0.76, precision 0.71 TUPAC16, MITOS12, MITOS14 [28], 2021
Python/keras. preprocessing library 144 × 96 ResNet50 Pre-trained ResNet50 to classify benign and malignant tissue Acc 99.10 % BreakHis [51], 2020
Patches, image normalization, rotation, flip 224 × 224 Pre-trained DenseNet finetuned DenseNet-121 to classify lymph node metastasis Acc 97.96 %, AUC 99.68 %, SN 97.29 %, SP 97.65 % BreakHis [46], 2021
Flip, rotation, contrast enhancement 224 × 224, 227 × 227 BreastNet BreasNet using hypercolumn technique, convolutional, pooling, residual and dense blocks for classification Acc 98.80 %, F-Score 98.59 % BreakHis [37], 2020