Skip to main content
. 2023 Sep 10;7(4):387–432. doi: 10.1007/s41666-023-00144-3

Table 2.

Mammogram studies summarized

Pre-processing technique Size of images Compared with Model used Novel technique Performance Dataset used Ref., year
Conversion to same image format, Otsu thresholding [59], noise removal, image sharpening, CLAHE for image enhancement, ROI cropping, image resizing, rotation, flip 208×208 Previous studies Customized CNN Customized CNN to classify both ROI patches and whole images Acc 96.52 %, SN 96.55 %, SP 96.49 %, AUC 0.98 MIAS, DDSM, INbreast [58], 2021
Image enhancement using CLAHE, rotation 227×227 AlexNet + SVM Pre-trained AlexNet customized to classify 2 classes Acc 87.2 %, AUC 0.94 DDSM, CBIS DDSM [55], 2019
Feature-wise data augmentation, patches, rotation, flip 128×128 Previous studies Customized CNN CNNI-BCC: feature wise pre-processing + CNN classification + interactive lesion detector SN 89.47, SP 90.71, acc 90.5, AUC 0.90 MIAS [54], 2019
Noise reduction, contrast enhancement 48×48 CNN + ELM Fused feature set using CNN + fused feature set used by ELM for classification SN 85.1, SP 88.02, acc (benign) 88.5, acc (malignant) 84.5, AUC 0.923 [56], 2019
Breast region extraction, pectoral muscle suppression, breast mask creation, contrast enhancement, block creation, Previous studies Customized CNN Block-based CNN and decision mechanism AUC 0.95, acc 94.68 %, SN 93.33 %, SP 95.31 % MIAS [52], 2019
ROI patches, rotation, random X and Y flip AlexNet, GoogleNet, ResNet, VGGNet ResNet + VGGNet ResNet for Class Activation Maps, VGGNet for classification Overall acc 92.53 % CBIS-DDSM [62], 2018
Rotation, reflection, CLAHE, 2-D DWT, Discrete Curvelet Transform, Dense Scale Invariant Feature Transform for clear edges 128×128 Previous studies CNN-DW (discrete wavelet), CNN-DT (curvelet transform) CNN-DW/CNN-DT + SVM classifier CNN-DW: acc 81.83 %, SN 87.6 %, SP 81.9 %; CNN-CT: acc 83.74 %, SN 88.8 %, SP 80.1 % IRMA [63], 2017
Patch extraction (sliding window), 224×224 VGG16, ResNet50, InceptionV3 InceptionV3 Customized Inception V3 for classification and detection Acc 88.86 % CBIS-DDSM, INbreast [57], 2019
Image format conversion, ROI extraction 224×224 AlexNet, VGG-16, VGG-19, ResNet 50, ResNet 101,ResNet152, GoogLeNet, Inception-BN (v2) ResNet101 Modified pre-trained model Acc 85.9 % DDSM-400, CBIS-DDSM [67], 2019