
Article https://doi.org/10.1038/s41467-023-42381-5

Metasurface-empowered snapshot hyper-
spectral imaging with convex/deep (CODE)
small-data learning theory

Chia-Hsiang Lin 1,2,5 , Shih-Hsiu Huang3,5, Ting-Hsuan Lin 1 &
Pin Chieh Wu 3,4

Hyperspectral imaging is vital for material identification but traditional sys-
tems are bulky, hindering the development of compact systems. While pre-
vious metasurfaces address volume issues, the requirements of complicated
fabricationprocesses and significant footprint still limit their applications. This
work reports a compact snapshot hyperspectral imager by incorporating the
meta-optics with a small-data convex/deep (CODE) deep learning theory. Our
snapshot hyperspectral imager comprises only one single multi-wavelength
metasurface chip working in the visible window (500-650 nm), significantly
reducing the device area. To demonstrate the high performance of our
hyperspectral imager, a 4-band multispectral imaging dataset is used as the
input. Through the CODE-driven imaging system, it efficiently generates an 18-
band hyperspectral data cube with high fidelity using only 18 training data
points. We expect the elegant integration of multi-resonant metasurfaces with
small-data learning theory will enable low-profile advanced instruments for
fundamental science studies and real-world applications.

Optical imaging technology utilizes light to reproduce the form of
objects via 2D images. In addition to spatial information, spectral
imagers can provide more insights by introducing an additional
dimension into 2D color images. Thus, they have become vital systems
for science and real-world applications like metasurface-assisted min-
iaturized satellite remote sensing1,2. In general, the obtained multi-
spectral and hyperspectral (categorized by the number of spectral
channels) images are 3D data cubes, which map the irradiance of
objects onto two spatial axes and one spectral axis3. Nowadays,
hyperspectral imaging has been widely used in numerous areas,
including agriculture4, space communication and imaging5,
surveillance6, and biotechnology7.

One approach to constructing the 3D hyperspectral data cube is
to sequentially acquire either spectral (with tunable filter elements)8 or
spatial (with dispersive elements)9,10 scanning measurements that

different scanning methods can accomplish. However, the scanning
process is usually time-consuming, which is highly undesirable, parti-
cularly in scenes with relatively high-speed motions. In contrast,
hyperspectral imagers with single shot mode (also called snapshot)11

collect the comprehensive data within a single integration period,
significantly reducing the time for data cube construction. Never-
theless, the requirement of bulky elements like mechanically tuning
parts in scanning imagers and several dispersive components in con-
ventional snapshot imagersmakesboth systems cumbersome, limiting
the range of applications.

In the past decade, resonantmetasurfaces have been proposed to
address issues in conventional optical components12,13. Metasurfaces
are regarded as arrays of subwavelength meta-atoms, which enable
abrupt changes to the electromagnetic amplitude, phase, polarization,
etc., of scattered light at the nano-scale. Therefore, metasurface opens
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upopportunities in increasing controllable degrees of freedomof light
in a compact form. Metasurface-based imaging technologies, includ-
ing hyperspectral imagers, have also been realized as a promising
nanophotonic platform for low-profile optical systems. One of the
pioneering works for light-field imaging utilized an achromatic all-
dielectric metalens array for acquiring 3D information in the visible14.
In that work, the spectral signal is absent after imaging post-proces-
sing, i.e., only the depth information is obtained. A metasurface-based
hyperspectral imaging for biodetection has also been reported15.
Although promising for spectral data collection, the signal computa-
tion requires the resonant wavelength shift so that the analyte has to
attach to the nanostructures physically. By analogy with a push-broom
imager, Faraon et al. demonstrated a compact hyperspectral imager
with four dielectric metasurfaces16. The imager acquires the dataset by
line scanning the object, requiring an extended measurement period.
The need for a sophisticated alignment fabrication process in such
folded metasurface design also increases the difficulty in device
preparation17. To efficiently obtain the data cube, Arbabi et al. reported
a snapshot spectral imager by incorporating the concept of multi-
aperture filtered camera with meta-optics18. However, it is very chal-
lenging to approach a broad working bandwidth with a high spectral
resolution by utilizing high-Q resonant filters. Recently, an ultra-
spectral imaging device has been demonstrated for real-time
biodetection19. Despite the high spectral resolution, an extensive
metasurface structure library has to be preliminarily established for
the dynamic imaging chip. In addition, using a compressive sensing
algorithm can trade the spectral reconstruction error and spatial
resolution off against the computational time determined by the
number of microspectrometers.

In this work, we propose and experimentally demonstrate a low-
profile snapshot hyperspectral imager by taking advantage of flat
meta-optics and computational imaging with a small-data learning
theory (see Fig. 1). The advanced metasurface-driven hyperspectral
imager is realized using a specifically designed multi-wavelength off-
axis focusing meta-mirror (MOFM) constructed by multi-resonant
plasmonic meta-atoms. Working in the visible window, the MOFM

enables acquiring a multispectral dataset of 4 images in a one-shot
measurement. We emphasize that the multi-imaging channels are
obtained using a single metasurface chip, which was previously chal-
lenging and effectively addresses the issue of a large device footprint.
The number of spectral channels will be extended to 18 via computa-
tional imaging using an innovative CODE small-data learning theory
(only 4-band images are needed as the input) inspired by the convex
optimization (CO) method in conjunction with deep learning (DE).
Indeed, combining metasurface devices and computational imaging
techniques has been proposed for full-color imaging applications20–23,
in which the images’ quality is improved after post-processing. Unlike
forward design approaches, DE provides an efficient platform to
design nanophotonic structures24 and retrieve spectral/spatial
information25, even for those missing in the image capture process.
However, DE requires extensive data libraries (usually > 10, 000 data
points are needed) for abstraction data learning26. Nevertheless, col-
lection of big data like ground truth of hyperspectral images is no
picnic, although the DE does not rely on advanced mathematics. On
the contrary, CO works well even with small/single data at the cost of
the math-heavy algorithm design procedure. Considering that exten-
sive data collection and math-heavy derivation are daunting tasks for
most software engineers, we proposed a machine learning/imaging
theory by blending CO and DE. Our CODE theory was initially devel-
oped for hyperspectral satellite imaging image restoration, archiving
advanced satellite missions using concise mathematical algorithms
and small data. Even with inputs of aberration-caused blur images, the
CODE theory perfectly transfers the 4-bandmultispectral imaging into
an 18-band hyperspectral data cube with high fidelity, as illustrated
in Fig. 1.

Results
Design of multi-resonant meta-atom for multi-wavelength off-
axis focusing meta-mirror
The main idea for constructing a multispectral image of a color object
without involving filters is utilizing a multi-resonant meta-atom as the
metasurface building block. We incorporate an Al nano-rod with a

Fig. 1 | Conceptual sketch of metasurface-empowered hyperspectral imaging.
The developed off-axis focusing meta-mirror, composed of multi-resonant meta-
atoms, can simultaneously image a color object and spatially separate the image
into four wavelength channels in free space. The acquired 4-band multispectral

imagewill be used to construct an 18-band hyperspectral data cube using the CODE
small-data learning and imaging theory inspired by the convexoptimization (CO) in
conjunction with the deep learning (DE) technique.
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particularly designed distributed Bragg reflector (DBR) to realize a
multi-resonant meta-atom. Details of the DBR substrate can be found
in the Supplementary Table 1. The anisotropic shapeof theAl nano-rod
can satisfy the geometric phase condition27,28, while the combinationof
plasmonic nanostructures and a DBR substrate might generate high-Q
Tamm resonances29. To generate multi-resonant peaks across the
spectral range of 500–650 nm, the thickness of constitutive layers in
the DBR substrate is gradually varied, which is entirely different from
previous studies in which the DBR is constructed by two alternating
layers respectivelywith a fixed thickness30. Figure 2a shows the circular
cross-polarized spectrum of the optimized Al meta-atom, presenting
multiple reflection peaks >75% across the spectral range of interest. As
can be seen in Fig. 2b, c, by rotating the topmost nanostructure, the
phase shift of each peak wavelength can be continuously modulated
from 0 to 2π with a bit of reflection intensity variation. While the
circular cross-polarized reflection in a geometric phase metasurface
ideally remains constant irrespective of the structural rotation angle, it
is crucial to consider the alteration of the distance between neigh-
boring nanostructures as the rotation angle changes within a fixed
period. This change in distance has the potential to influence the near-
field coupling condition between the nanostructures (refer to the
insets in Fig. 2b), resulting in the observedfluctuations in the reflection
intensity. These results validate the geometric phase method for all
resonances, even though the multi-resonance property comes from
the near-field interaction between the nano-rod structure and the DBR

substrate. Indeed, the selection of the geometric shape for the meta-
atom in our study was random and primarily intended for illustrative
purposes. The key concept is that other anisotropic nanostructures
canbe employed to attain similar results andoutcomes, as longas their
physical dimensions are carefully optimized tomaximize the efficiency
of circular polarization conversion. To spatially separate a color image
into multiple wavelength channels, we design a MOFM by incorpor-
ating the multi-resonant meta-atom with transverse chromatic
aberration23,31,32 (see SupplementaryNote 1 formore details). It is worth
to mention that the multi-resonant meta-atoms produce several near-
zero intensity dips that can naturally filter the images. Thus, the cross-
talk between wavelength channels is minimized when the MOFM is
accordingly optimized and is illuminated under a broadband light
source. Figure 2d shows the ray-tracing calculations of the off-axis
focusing meta-mirror at four wavelengths using the commercial soft-
ware OpticStudio (Zemax). In order to capture a complete set of
images in a one-shot measurement, it is necessary to ensure that dif-
ferent color channels corresponding to peakwavelengths in Fig. 2a are
imaged on a fixed focal plane. Achieving this requires careful con-
sideration of the depth of focus (DOF, which is proportional to the
square of focal length) and numerical aperture (NA, which is inversely
proportional to the focal length) during the design of themeta-mirror,
rather than focusing solely on the focal length. To enable snapshot
imaging with acceptable resolution, a focusing meta-mirror with a
largerDOFand lowerNA is employed.However, this approach involves
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Fig. 2 | Design of the multi-resonant meta-atom and off-axis focusing meta-
mirror. a The numerical reflection spectrum of the designedmulti-resonant meta-
atom. AnAl nano-rod (length = 170 nm, width = 90 nm, thickness = 50 nm, period =
200 nm) array standing on a DBR substrate is optimized to possess four high-Q
resonant peaks across the visible window. The circular cross-polarized reflection
(b) and phase (c) as a function of structural rotation angle, presenting that the
designed multi-resonant meta-atom satisfies the geometric phase conditions at

four peak wavelengths. The inset in (b) represents the electric field intensity at 593
nm for various structural orientation angles. The inset in (c) shoes the schematic of
the meta-atom. The thickness of dielectric spacer SiO2 is 135 nm. d Ray-tracing
calculations for the off-axis focusingmeta-mirror (designed at a central wavelength
of 593 nm with a focal length of 7.5 mm) based on the multi-resonant meta-atoms.
Left images are the spot diagrams. Scale bars: 10μm.Thebottomright images show
the phase distributions across the meta-mirror at 593 nm.
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a trade-off, as it may result in reduced image resolution. In our specific
case, we have designed a meta-mirror with a NA of 0.02 at a central
wavelength of 593 nm to demonstrate snapshot imaging with satis-
factory resolution. As shown in Fig. 2d, four focal spots lie on the
screenparallel to the dispersion direction. As canbe seen, the spot size
becomes larger when the incident wavelength is away from the opti-
mized wavelength of 593 nm. Besides the phase deviation, more sig-
nificant optical aberrations associated with larger focusing angles can
also degrade the focusing performance, bringing about the distortion
of focal spots at other wavelengths.

Focusing and imaging performance ofmulti-wavelength off-axis
focusing meta-mirror
Next, we fabricate and experimentally characterize the optical func-
tionality, including the imaging performance of the developedMOFM.
We emphasize that the multi-imaging channels are realized using one
single metasurface chip, which can significantly improve the working
efficiency and reduce the device footprint and fabrication/design
complexity. Figure 3a plots the measured focusing efficiency of the
fabricated meta-mirror (see Supplementary Fig. 1 for the details of the
fabrication process), which shows multiple peaks across the visible
window that is highly consistent with the numerical prediction in
Fig. 2a. Before demonstrating the snapshot imaging capability, we
characterize the imaging performance of the fabricated meta-mirror
using single-wavelength lasers as the light source and metallic aper-
tures as the object. The optical configuration is shown in Supple-
mentary Fig. 2a. Figure 3b, c, respectively, show the computed and

experimentally measured images formed by the MOFM at four dif-
ferentwavelengths. As expected, the introductionof transverseoptical
dispersion assists in the lateral shift between color images. The
focusing meta-mirror is particularly designed so that the images of
four target wavelengths are certainly separated in space. In addition, it
can be found that the number “2” shows the clearest features at the
third (optimized) wavelength channel (the yellow image in Fig. 3b).
The blurred images atwavelengths away from the central one are again
from the optical aberrations caused by the off-axis focusing effect.
Indeed, the blurring effect observed in the color images is influenced
by both the intrinsic characteristics of the meta-mirror and optical
aberrations, which are also correlatedwith the incident/reflected angle
(refer to Supplementary Note 2 formore discussions). Figure 3c shows
the measured images, which experimentally verify the transverse
optical dispersion effect and themultispectral imaging functionality of
the optimizedMOFM. Comparison for other metallic apertures can be
found in Supplementary Fig. 3, where all experimental results highly
match the ray-tracing calculations. Subsequently, we use the optical
setup shown in Supplementary Fig. 2b to examine the snapshot ima-
ging capability of the MOFM. A tube lens is used to relay captured
images to a visible camera for simplicity. As shown in Fig. 3d, only four
images are observed when a color object is imaged. The images other
than the central wavelength channel are naturally filtered because of
the meta-mirror’s multi-wavelength focusing property. Thus, multi-
spectral imaging composed of four wavelength channels is acquired in
one measurement. One can see the discrepancy in color at channel 3
between the measured images shown in Fig. 3c, d, which can be
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attributed to the use of different light sources for white balance.
However,weemphasize that this variation in color does not impact the
accuracy of the multispectral/hyperspectral imaging results. This is
because the spatial distribution of wavelength channels ensures that
each color image corresponds to its respective wavelength channel at
the correct spatial position (refer to Supplementary Note 3 for more
discussions). Additionally, we can see that the images at the four
channels shown in Fig. 3d are blurrier than those presented in Fig. 3c,
which resulted from the relatively low Q-factor of the measured peaks
(see Fig. 3a, Supplementary Fig. 2c, d for comparison). The experi-
mentally observed lower Q-factor can be attributed to the imperfec-
tion of the fabricated sample. The experimental Q-factor can also be
lower when the light source possesses lower coherence33, which is the
case here. The images captured with filters are also shown and com-
pared (refer to Fig. 3e). The position of color filters is optimized to
obtain the best-focusing images at target wavelengths. Still, an optical
aberration-caused blur exists in the pictures at off-center wavelengths.
The color filters enhance the image quality, as shown in the images in
Fig. 3e, verifying the above discussions.

CODE-based small-data learning theory
To obtain a high-quality hyperspectral data cube from the multi-
spectral images, an innovative machine learning theory is developed.
Our imaging technique applies the CODE learning theory34, originally
developed for small-data-learning (SMDL) based hyperspectral satel-
lite data restoration (for which data is rare and expensive), where the
SMDL is achieved by judiciously blending the advantages of CO andDE
to perform the spectral super-resolution to obtain the deblurred
hyperspectral image computationally.

As a result, CODE avoids the big data required inDE and the heavy
math often encountered inCO. Inour application, collecting bigdata is
not economical because of the need for a bunch of color filters. CODE
was initially invented for advanced hyperspectral satellite tasks34 by
introducing the Q-quadratic norm ∥⋅∥Q to bridge CO and DE. In this
work, the CODE learning theory will be employed for hyperspectral
metasurface imaging. We highlight that few data points (only 18 ima-
ges, each containing just 484× 192 pixels) are sufficient for high-
quality hyperspectral imaging reconstruction. Let Y 2 R4× L be the
meta-mirror-acquired L-pixel 4-band multispectral image, from which
we aim to reconstruct the corresponding deblurred hyperspectral
image X 2 RM × L (i.e., the target image), where M is the number of
hyperspectral bands.Mathematically, Y can be regarded as the blurred
low-spectral-resolution counterpart of X, and this relation can be
concisely modeled as

Y = fBðDX Þ, ð1Þ

where the spectral response matrix performs spectral D
downsampling35, and fB(⋅) describes the blurring effect caused by the
MOFM. Using the small-data CODE theory, we aim to computationally
infer the target image X from the metasurface-acquired information Y.

Due to the complicated mechanism of the metasurface system, it
is difficult to describe the blurring effect fB using an explicit mathe-
matical function. Even with the function fB, the naive data-fitting term
∥Y − fB(DX)∥F is non-convex anddemanding tobe efficiently addressed,
where∥⋅∥F is the Frobeniusnorm. Thus,wepropose to learn the inverse
blurring procedure f�1

B ð�Þ using the deep Transformer model, as
detailed in the CODE Implementation in Supplementary Note 4. Con-
sidering that the blurring effect caused by theMOFM is intractable and
expected to be highly non-linear, we learn the inverse procedure f�1

B

using the customized Transformer. The proposed Transformer is
deployed using the U-Net structure, as detailed in Fig. 4, where each
Transformer block (T-Block) is also depicted. The T-block revises the
Restormer36 for better interaction among the feature maps. This
upgrades the QKV attention effectiveness gained by interchanging the

ordering of the depthwise convolution (Dconv) and the typical con-
volution block. After the last T-Block that focuses more on spectral
attention, we further enhance the spatial features using spatial-
spectral domain learning (SDL) module37, whose output is the
desired deblurredmultispectral image eY = f�1

B ðY Þ. It is quite interesting
to notice that numerous recent articles have proposed and success-
fully demonstrated the training of the Transformer with just small
data38–41. The CODE addresses the challenge of small data learning
using a completely different philosophy. Simply speaking, typical
techniques38–41 have to force the deep network to return a good deep
solution (as the final solution), while CODE just accepts the weak DE
solution. CODE assumes that though the small scale of data results in
such a weak solution, the solution itself still contains useful informa-
tion. Under this assumption, CODE then appliesQ-norm to extract the
embedded useful information to guide the algorithm as a regularizer,
thereby yielding the final high-quality solution. We refer interested
readers to ref. 34 for an in-depth discussion about the theoretical
aspect of why CODE could work very well even in the absence of big
data. Please also see Supplementary Note 4 for more discussions.

Next, we explain how to map the multispectral image eY to the
hyperspectral image XDE. As previously discussed, the CODE learning
theory does not require big data and can accept a roughly estimated
solution XDE from small data. For this reason, a simple two-branch
convolution neural network (CNN) deployed like Fig. 4 is sufficient to
obtain XDE for effectively supporting the subsequent deep regulariza-
tion tobe implemented (refer to Algorithm 1 in SupplementaryNote 4).

In our application, themost challenging part lies in increasing the
number of spectral bands; specifically, the output of the MOFM has
just 4 bands, and we aim to superresolve it to the 18-band hyper-
spectral image. Thus, we suggest using the color transform (CT),
which better captures the nature of hyperspectral images than the
rotation transform (RT). Mathematically, given the available
small dataset D= fY 1,Y 2, . . . ,Y 20g, we can augment it to
Daug = fY 1,Y

0
1,Y 2,Y

0
2, . . . ,Y 20,Y

0
20g in which Y 0

i is a row-shifted version of
Yi. Note that in this work, the rows of the image Y correspond to
spectral bands (colors), and columns correspond to pixels; thus, row
shift exactly implements the desired CT data augmentation. In prac-
tice, our dataset contains 20 pairs of images, each composed of a
blurred 4-bandmultispectral image and a clean 18-band hyperspectral
image, both having a spatial size of 484 × 192. By utilizing the CT, we
augment the dataset to 40 pairs inDaug, of which 36 are for training, 2
for validation, and 2 for testing. As a result, an 18-band high-quality
hyperspectral image data cube can be obtained from a 4-band multi-
spectral image. Note that such an imaging task is highly challenging
because the algorithm has to return the high-quality hyperspectral
image from the optically blurred 4-channel MOFM-acquired data. As
per our empirical study, this task cannot be achieved by the typical
algorithm (e.g., ADMM) or typical L2-norm regularization. Thus, the
CODE theory employs the less-seen Q-norm regularization in the
ADMM-Adam algorithm. For computational efficiency, the Q-norm
regularization [see Eq. (S4) in Supplementary Note 4] can be trickily
designed based on hyperspectral subspace geometry [see Supple-
mentary Note 4]. Such a tricky geometry design allows us to refor-
mulate the Q-norm into the commonly seen L2 norm [see Eq. (S5) in
Supplementary Note 4], thereby allowing us to achieve high-speed
metasurface-driven hyperspectral imaging. Last, wewould like topoint
out that with all the algorithmic steps solved by closed-form solutions,
the imaging algorithm (i.e., Algorithm 1 in Supplementary Note 4) for
implementing the CODE-based formulation is high-speed (see more
discussions in Supplementary Note 4).

Snapshot hyperspectral imaging demonstration
Figure 5 a shows the reconstructed 18-band channels of the snapshot
hyperspectral imaging dataset for a potted flower from 480 nm to 650
nm. Note that the input images are acquired without color filters, thus,
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a snapshot hyperspectral imager is achieved. Although the input
multispectral image is blurred (see Fig. 3d), the generated hyper-
spectral images are optically clean and close to the ground truth (see
Supplementary Fig. 4). A visible color image can be subsequently
constructed by assigning the red, green, and blue channels from
Fig. 5a. The reconstructed hyperspectral images perfectly retrieve the
optical features of the original object, even for the channels that
exhibit a relatively weak signal in the color image. For example, the
petal showsa high reflection in red color,while the samecomponent in
the hyperspectral dataset represents the highest brightness at a 632.8
nm wavelength channel. A weak signal in the flower pot at the cyan
color channel (490 nm) is also observed, indicating the robustness of
the CODE theory. In Fig. 5c–f, we provide quantitative spectra along
the wavelength axis at four pixels of interest. The reconstructed
spectra highly match the ground truth at all pixels, even for the
wavelength channels missing in the initial multispectral images.
Therefore, the fingerprint of the potted flower can be completely
recovered and characterized: the spectrum at pixel 1 shows relatively
weak intensity at the green channel, leading to the yellow-like color on
the stamen; the stem exhibits a green-like color, resulting from the
relatively low intensity at long wavelengths in the spectrum (see

Fig. 5e). As a snapshot hyperspectral imager, it is important to acquire
all information in one-shot measurement. Although using color filters
can improve the image quality of the multispectral dataset (see
Fig. 3e), the information of all channels would not be able to be
obtained simultaneously in the filter-involved configuration. Indeed,
our results verify that the hyperspectral dataset computed from the
inputs with the color filters performs nearly identical with those from
the images acquired without filters (see Fig. 5, Supplementary Figs. 6
and 7). Another hyperspectral imaging for a hatchet is also provided to
demonstrate the high performance of our device, as shown in Sup-
plementary Figs. 5, 8, and 9. These results greatly support our device
for snapshot hyperspectral imaging applications.

To quantitatively analyze the imaging performance of theMOFM-
based hyperspectral imager, we calculate the pixel-wise mean squared
error (MSE) loss which is widely used to compare theMSE at individual
pixels from the real image (ground truth) and the generated image. It
can be described as:
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Fig. 4 | Processing flow of the CODE small-data learning and imaging theory.
The overall design of the CODE learning architecture, where “k × k × c”denotes a 2D
convolution with c kernels sized of k × k, “GAP” means global average pooling,

“LayerNorm”performs the commonly seen layer normalization, “Dconv k × k” is the
depthwise convolutionwith a k × k kernel, “PReLU”denotes theparametric rectified
linear unit. The details for Algorithm 1 can be founded in Supplementary Note 4.
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where W and H are the total pixels along x-direction and y-direction,
respectively. Iimage and IGT are the intensity on the reconstructed
hyperspectral images and ground truth, respectively. As shown in
Fig. 6a, the pixel-wise MSE loss shows shallow values (at an order of
10−4) across the visible spectrum, indicating the high performance of
the developed CODE metasurface-imaging theory for acquiring the
hyperspectral data cube in a broad wavelength band. Two objects are
imaged for 18-band hyperspectral imaging to demonstrate the
versatility of the CODE theory: a potted flower and a hatchet.
Additionally, the root-mean-square error (RMSE) and the spectral
angle mapper (SAM) of the computed hyperspectral images show low
values for two objects, as shown in Fig. 6b, c. The definition of the
RMSE and SAM can be found in Supplementary Note 6. Note that SAM
is more frequently used in hyperspectral literature as it better

evaluates how useful the hyperspectral data cube is for material
identification,well echoing ourCT-based SMDL trick. The low angles in
SAM spectra directly determine the high spectral similarity between
the reconstructed and real hyperspectral images, further proving the
high fidelity of our approach. Again, although the input 4-band images
are optically blurred, we highlight that all figures of merit calculated
from the snapshot hyperspectral imaging dataset (non-filtered multi-
spectral images as input for the CODE technique) are close to those
obtained with filters. These results indicate that the proposed
approachhasa highpotential for real-world real-time imaging systems.

Discussion
This work proposed and experimentally demonstrated a metasurface-
empowered snapshot hyperspectral system based on a MOFM in
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conjunction with an innovative CODE-based small-data learning the-
ory. Taking a small datasetwith a 4-band image as the input, the system
can generate an aberration-corrected hyperspectral data cube com-
posed of 18-bands high-fidelity color images. The initial 4-band mul-
tispectral image is acquired using a single metasurface chip,
significantly reducing the footprint of the hyperspectral imager. The
developed hyperspectral imager’s low-profile and small device area
makes its high potential for advanced systems and space instruments,
such as unmanned aircraft systems and small satellites. While our
snapshot hyperspectral system currently demonstrates 18-band data
cubes in the visible region, it is worth noting that the number of
wavelength bands and the spectral range can be further extended. This
is attributed to the multi-resonance feature of the developed meta-
atom, which covers a wide range from the visible to the near-infrared
region (as shown in Supplementary Fig. 11). Theoretically, the working
spectral range is naturally constrained by the bandwidth of the DBR’s
reflection window. In fact, both the number of eigenmodes in the
nanostructures and the cavity-like coupling between the topmost
nanostructures and the DBR substrate play key roles in determining
the number of wavelength channels. By utilizing freeform nanos-
tructures with anisotropic shapes42,43, the number of eigenmodes can
be increased, allowing for a greater number of wavelength bands.
Moreover, we investigated the impact of tuning the cavity-like cou-
pling condition on the number of wavelength channels by varying the
thickness of the SiO2 spacer, as discussed in Supplementary Note 7. In
comparison to the original design with a 135-nm-thick SiO2 spacer,
which generated 4 peak wavelengths ranging from 480 nm to 650 nm,
the number of wavelength bands increased when SiO2 spacers
increases.

As shown in Supplementary Fig. 16, increasing the dielectric
spacer thickness to 5000 nm allows for the generation of 12 resonant
wavelengths within the same spectral range, which reveals the possi-
bility to further enhance the spectral resolution. To preserve the
fidelity of the image throughout the conversion process, we propose
adhering to a ratio of 4.5 for the number of bands in the output
hyperspectral image compared to the number of bands in the input
multispectral image, based on the principles of the CODE theory
showcased in this study. Thus, a 12-band multispectral imaging theo-
retically enables the generation of hyperspectral images with 54
wavelength bands, resulting in an improved wavelength resolution
from approximately 10 nm to 3.9 nm. However, it is important to note
that this requires providing the training model with ground truth data
that corresponds to the specific number of bands. Practical imple-
mentation of this approach poses challenges, particularly in obtaining

accurate ground truth data through multiple bandpass filters. There-
fore, it is crucial to consider the difficulties associated with acquiring
precise ground truth data while striving to enhance spectral resolu-
tion, andmaintain a balanced approach throughout the process. These
findings highlight the potential for further extending the number of
wavelength bands and spectral range by optimizing the design para-
meters and cavity-like coupling conditions in future iterations of the
system.

Furthermore, we highlight that the CODE theory exhibits the
capability to extract the spectral information of an arbitrary pixel A,
which possesses a bandwidth of approximately 10 nm, despite the fact
that each wavelength channel in themultispectral image contains data
with a broader bandwidth of around 20–30 nm (as shown in Fig. 3a).
This ability stems from the CODE theory’s acquisition of the mapping
between the known hyperspectral ground truth and its corresponding
input, which is the multispectral image generated by the MOFM. By
leveraging this learnedmapping, the CODE theory can effectively infer
the unknown hyperspectral images that correspond to the multi-
spectral image. Consequently, even if pixel A is exclusively present in a
subset or a single spectral bandwithin the ground truth data library, its
hyperspectral information can still be accurately deduced through the
utilization of the learned mapping from other data pairs.

Another advantage of the CODE learning theory is that only 18
data points are required for the learning process, which is small
compared with previous machine learning techniques, dramatically
reducing the time and difficulty for data collection. Thanks to the
closed-form solutions, the CODE-based learning theory leads to
speedy computational time, which highly supports the practical
application in high-speed detection. Finally, we point out that the
imaging resolution could be further enhanced by more sophisticated
deep network architecture or more complicated convex regulariza-
tion, if the imaging speed is not the main concern. Our metasurface-
driven snapshot hyperspectral imager with small-data learning tech-
nique can benefit the development of compact spectral imaging
devices and their applications in many fields like CubeSat, bio-optical
systems, and real-time dynamic detection.

Methods
Sample fabrication
First, a 135-nm-thick SiO2 was deposited on a DBR substrate by a
magnetron sputtering machine. Then, a 180-nm-thick photoresist
(PMMA A4) was spin-coated and baked on a hot plate at 180 °C for
3min. Afterward, the photoresist was exposed using an electron beam
writer (Elionix ELS-7500) at an acceleration voltage of 50 keV with a
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beam current of 50 nano-ampere, followed by a development process
for 2mins with the PMMAdeveloper (MIBK: IPA = 1:3). Finally, a 50-nm-
thick Al layer was deposited using a thermal evaporator with deposi-
tion rate of 1.0 angstrom/s. After the lift-off process using PG remover,
the Al nano-rods were defined. See Supplementary Fig. 1 for the
schematic of fabrication process.

Optical setup
The imaging characterization of MOFM was implemented using two
optical setups. In the case of using single-wavelength lasers as the light
source, metallic apertures with different shapes were employed as the
objects (as shown in Supplementary Fig. 2a). In this scenario, a
supercontinuum laser (NKT Photonics FIU-15) was combined with an
acousto-optic tunable filter (AOTF, SuperK SELECT) to select the
desired wavelength within the visible spectrum. A pair consisting of a
linear polarizer and a quarter-wave plate was used to control the
polarization state of the incident light. On the other hand, to assess the
multispectral imaging capability of the MOFM, the laser light source
and metallic apertures were substituted with a projector (refer to
Supplementary Fig. 2b).

Data availability
Data underlying the results are available from the corresponding
authors upon request.

Code availability
The code used to generate the hyperspectral imaging dataset is
available from the corresponding authors upon request.
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