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Abstract

To fulfill their function, pancreatic beta cells require precise
nutrient-sensing mechanisms that control insulin production.
Transcription factor EB (TFEB) and its homolog TFE3 have emerged
as crucial regulators of the adaptive response of cell metabolism
to environmental cues. Here, we show that TFEB and TFE3 regulate
beta-cell function and insulin gene expression in response to varia-
tions in nutrient availability. We found that nutrient deprivation in
beta cells promoted TFEB/TFE3 activation, which resulted in sup-
pression of insulin gene expression. TFEB overexpression was suffi-
cient to inhibit insulin transcription, whereas beta cells depleted
of both TFEB and TFE3 failed to suppress insulin gene expression in
response to amino acid deprivation. Interestingly, ChIP-seq analysis
showed binding of TFEB to super-enhancer regions that regulate insu-
lin transcription. Conditional, beta-cell-specific, Tfeb-overexpressing,
and Tfeb/Tfe3 double-KO mice showed severe alteration of insulin
transcription, secretion, and glucose tolerance, indicating that
TFEB and TFE3 are important physiological mediators of pancre-
atic function. Our findings reveal a nutrient-controlled transcrip-
tional mechanism that regulates insulin production, thus playing
a key role in glucose homeostasis at both cellular and organismal
levels.
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Introduction

Pancreatic b-cells play a crucial role in organismal adaptation to

nutrient availability by secreting the central hormone insulin. Con-

sistently, b-cell failure results in dysregulation of glucose homeosta-

sis and is the hallmark of diabetes (Cnop et al, 2005; Vasiljevic

et al, 2020; Gloyn et al, 2022). Thus, understanding how b-cells
orchestrate the metabolic response to nutrient availability is of piv-

otal importance. The nutrient-sensitive transcription factor EB

(TFEB), as well as TFE3, another member of the MiT/TFE family,

are major controllers of cell metabolism (Napolitano & Ballabio,

2016; Puertollano et al, 2018). TFEB and TFE3 regulate cell metabo-

lism at multiple levels, such as lysosomal biogenesis (Sardiello

et al, 2009), autophagy (Settembre et al, 2011), lipid catabolism

(Settembre et al, 2013; Pastore et al, 2017), circadian rhythm

(Pastore et al, 2019), mitochondrial biogenesis (Mansueto et al,

2017), as well as whole energy metabolism (Pastore et al, 2017).

TFEB and TFE3 subcellular localization and activities are regulated

by the mechanistic target of rapamycin complex 1 (mTORC1;

Martina et al, 2012, 2014; Roczniak-Ferguson et al, 2012; Settembre

et al, 2012), which is recruited and activated at the lysosomal sur-

face in response to increased levels of amino acids (Sancak et al,

2008, 2010), glucose (Orozco et al, 2020; Yoon et al, 2020), and

other nutrients (Castellano et al, 2017; Liu & Sabatini, 2020). Gain-

and loss-of-function experiments in mice have shown that mTORC1

activity is crucial for maintaining pancreatic b-cell homeostasis

by modulating insulin mRNA translation and b-cell mass (Rachdi

et al, 2008; Mori et al, 2009; Blandino-Rosano et al, 2017). mTORC1

inhibition during amino acid and glucose starvation leads to TFEB/

TFE3 dephosphorylation, cytoplasm-to-nucleus translocation, and

activation of their transcriptional program. Previous studies showed
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that TFEB/TFE3 transcriptional programs vary in different cell

types, suggesting specialized functions of these transcription factors

in different tissues (Napolitano & Ballabio, 2016). However, whether

TFEB and TFE3 play specific roles in the maintenance of pancreatic

endocrine function, which is crucial for organismal metabolism and

adaptation to nutrient availability, has not been recognized thus far.

Here, we show that TFEB and TFE3 modulate insulin gene expres-

sion in response to changes in nutrient availability. We found that

TFEB overexpression was sufficient to suppress insulin transcription,

whereas b-cells lacking both TFEB and TFE3 failed to suppress insu-

lin gene expression in response to nutrient starvation, both in vitro

and in vivo, resulting in impaired glucose homeostasis. Thus, in

addition to their well-established role in promoting cell catabolic

pathways, our data reveal that TFEB and TFE3 also function as sup-

pressors of cell anabolism via inhibition of insulin production.

Results

TFEB and TFE3 activity is controlled by nutrient availability and
mTORC1 activity in pancreatic b-cells

To investigate the role of TFEB and TFE3 in pancreatic b-cells, we

analyzed the regulation and downstream transcriptional programs

of these transcription factors in the human EndoC-bH1 and rat INS-

1E b-cell lines (Ravassard et al, 2011; Tsonkova et al, 2018). Similar

to other cell types (Settembre et al, 2011, 2012; Martina et al, 2012;

Li et al, 2018; Napolitano et al, 2018), TFEB localized to the cytosol

of fully fed or refed EndoC-bH1 cells, whereas it translocated to the

nucleus upon either amino acid or glucose starvation (Fig 1A). Con-

sistently, phosphorylation of endogenous TFEB in EndoC-bH1 cells,

which was measured by analyzing its molecular weight shift

(Settembre et al, 2012; Napolitano et al, 2020), was dependent on

both nutrient availability and mTORC1 activity (Fig 1B). Similar

results were also obtained in subcellular fractionation experiments

using the INS-1E b-cell line, which showed dephosphorylation and

nuclear translocation of both TFEB and TFE3 upon nutrient depriva-

tion (Fig 1C). Notably, TFEB nuclear localization in glucose-starved

EndoC-bH1 cells was completely rescued upon expression of consti-

tutively active forms of the Rag GTPases (Fig 1D), which are known

modulators of mTORC1-mediated TFEB phosphorylation in other

cell types (Martina & Puertollano, 2013; Napolitano et al, 2020,

2022; Li et al, 2022; Cui et al, 2023). These data indicate that TFEB

and TFE3 are modulated in pancreatic b-cells via nutrient- and Rag

GTPase-dependent activation of mTORC1.

TFEB and TFE3 control insulin gene expression in b-cells

Next, we analyzed the global transcriptional network modulated by

TFEB in b-cells using both gain- and loss-of-function approaches.

We performed RNA sequencing (RNA-seq) experiments upon over-

expression of TFEB (TFEBOE), using a lentiviral vector containing a

doxycycline-dependent TFEB-V5-expressing cassette, in fed or

starved EndoC-bH1 cells (Fig 2A and B). Principal component analy-

sis (PCA) revealed that our samples were segregated into four main

groups, suggesting that both amino acid starvation and TFEB over-

expression profoundly remodeled the entire transcriptome (Fig 2C).

Consistent with the role of TFEB as a master regulator of lysosomal

function (Sardiello et al, 2009), gene set enrichment analysis (GSEA)

revealed that the “Lysosome” was the most significantly upregu-

lated gene category (Fig 2D and Dataset EV1). Notably, we also

found that the “Maturity Onset Diabetes of the Young (MODY)”

gene category, which contains genes important for pancreatic b-
cells, including insulin, was among the downregulated enriched

gene categories in TFEB-overexpressing cells (Fig 2D). In line with

these results, TFEB overexpression was sufficient to promote a strik-

ing reduction in insulin mRNA levels in fully fed cells, which was

comparable to the one observed in fasted control cells (Fig 2E).

In parallel to the gain-of-function experiments, we performed

transcriptome analysis of EndoC-bH1 cells concomitantly silenced

for both TFEB and TFE3 (siTFEB/3), to avoid reciprocal compensa-

tion (Brady et al, 2018; El-Houjeiri et al, 2019; Pastore et al, 2019),

and cultured in the presence or absence of amino acids (Fig 2F and

G). Also in this case, PCA showed strong segregation of the experi-

mental groups, confirming that TFEB and TFE3 play a key role in

modulating the response of gene expression to nutrients in b-cells
(Fig 2H and I and Dataset EV2). Notably, whereas prolonged amino

acid starvation reduced insulin mRNA levels in EndoC-bH1 cells

(Fig 2J), as previously reported (Iwashima et al, 1994; Boland

et al, 2018), such decrease was prevented by depletion of TFEB and

TFE3, indicating that these transcription factors are important medi-

ators of insulin suppression upon nutrient deprivation (Fig 2J).

▸Figure 1. TFEB responds to nutrient variation in pancreatic b-cells.

A Representative images of high content analyses using TFEB antibodies on fixed cells previously treated with full medium (FED), without amino acids (�aa) for 1 h,
without glucose (�glu) for 1 h, without amino acids and glucose (�aa -glu) for 1 h or starved for 1 h and restimulated with amino acids for 300 (�aa/Refeeding). The
relative quantification (see Materials and Methods) is shown in the graph. Data are represented as mean � standard error. Each dot represents a well from the 96-
well plate (n = 30 fed, n = 12 �aa, n = 14 �glu, n = 15 �aa �glu, and n = 5 �aa/Refeeding). The experiment was repeated independently three different times. Scale
bar: 20 lm. Student’s two-tailed t-test: ***P-value < 0.001.

B Representative immunoblot using the indicated antibodies from lysates of EndoC-bH1 cells starved for 1 h of glucose or starved for 1 h and restimulated for 300 with
glucose in the presence or absence of Torin1.

C Representative immunoblot for TFEB and TFE3 using lysates from nuclear and cytosolic fractions of INS-1E cells treated with full medium (FED) or upon amino acid
starvation (�aa). PARP1 was used as nuclear fraction loading control, and GAPDH was used as cytosol fraction loading control. Cytosolic fraction (C), Nuclear
fraction (N).

D Representative immunofluorescence analysis using TFEB antibodies on fixed EndoC-bH1-cells treated with full medium (FED) or upon glucose starvation, prior tran-
sient transfection with constitutively active Rag GTPase mutants (i.e., HA-GST-RagA-Q66L; HA-GST-RagC-S75L). Transfected cells are indicated with a white arrow.
Data are represented as mean � standard error. Each dot represents a separate field of a representative experiment (n = 5). At least 52 cells were counted in each
condition.

Source data are available online for this figure.
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Similar results were also obtained by performing transcriptome

analysis upon TFEB overexpression in INS-1E cells (Fig EV1A–C and

Dataset EV3), another relevant pancreatic b-cell line. Importantly,

“MODY” was among the downregulated categories in TFEBOE cells

compared to control cells (Fig EV1C). Accordingly, TFEBOE caused a

strong downregulation of both INS1 and INS2 genes (Fig EV1D). We

also performed transcriptome analysis of rat INS-1E cells depleted

for both TFEB and TFE3 (TFEB/TFE3-DKO cells), generated via the

CRISPR/Cas9 system (Fig EV1E–G and Dataset EV4) and found sig-

nificant upregulation of both INS1 and INS2 genes (Fig EV1H), con-

sistent with the results generated in EndoC-bH1 cells.

Comparison analysis of DEGs that are common to TFEBOE and

TFEB/TFE3 depletion upon nutrient deprivation in EndoC-bH1
(Fig 2K and L and Dataset EV5 and EV6) and INS-1E (Fig EV1I and J

and Dataset EV7 and EV8) cells revealed the presence of 751 and

550 oppositely correlated genes, respectively. GSEA analysis of

these genes revealed that “Lysosome” was among the most upregu-

lated gene category in TFEBOE and the most significantly downregu-

lated in TFEB/TFE3-depleted cells, as expected (Fig 2M and

Dataset EV9). Notably, insulin was among the top downregulated in

TFEBOE and top upregulated genes in TFEB/TFE3-depleted cells

(Fig 2L).

Figure 1.
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Figure 2.
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Overall, these results suggest that TFEB and TFE3 play an impor-

tant role in the transcriptional regulation of insulin.

TFEB binds to super-enhancer regions responsible for modulation
of insulin transcription

TFEB has been known to act as a positive regulator of transcription

by binding to proximal promoters (Sardiello & Ballabio, 2009;

Palmieri et al, 2011). Thus, the evidence that TFEB in b-cells can

work as a negative transcriptional regulator of insulin was surpris-

ing and prompted us to determine whether TFEB exerts this function

directly or indirectly. To this end, we performed ChIP-seq analysis

for endogenous TFEB in EndoC-bH1 upon amino acid starvation.

We found that TFEB binds to the proximal promoter regions

(i.e., < 300 bp from the transcriptional start site) of 4,765 genes in

b-cells. Consistent with previous results obtained in other cell types

and tissues (Sardiello et al, 2009; Palmieri et al, 2011; Brooks &

Dang, 2019; Pastore et al, 2019; Gambardella et al, 2020), the com-

parison of genes upregulated upon TFEB gain of function (logFC>1)

and downregulated upon TFEB/TFE3 depletion with genes

containing at least one TFEB binding site in their proximal promoter

(Fig 3A and B) revealed an enrichment of known TFEB-regulated

gene categories, including “Lysosome,” “Metabolic pathways,” and

“circadian rhythm” (Figs 3C and EV2 and Dataset EV10). However,

comparison of genes that were downregulated in our RNA-seq data

upon TFEB overexpression with our ChIP-seq data failed to reveal

TFEB binding sites in insulin promoter (Fig 3D) despite the evidence

that the insulin gene was under TFEB transcriptional control. These

data suggested that TFEB effect on INS transcription was not caused

by direct promoter binding. Of note, our ChIP-seq data revealed that

only approximately 40% of TFEB binding sites were in promoter

regions (< 2 kb from the TSS) in pancreatic b-cells (Fig 3A). Inter-

estingly, we found that TFEB binds to conserved super-enhancer

(SE) regions previously identified both in the EndoC-bH1 cell line

and in b-cells obtained from human islets and hESC (Mularoni

et al, 2017; Lawlor et al, 2019). By comparing our ChIP-seq data

with available ChIP-seq and ChiA-Pet data collected on the Islet

Regulome browser (http://pasqualilab.upf.edu/app/isletregulome)

and the Shiny App for Visualizing EndoC-bH1 and Human Islet

Genomics Data (https://shinyapps.jax.org/endoc-islet-multi-omics/)

databases (Mularoni et al, 2017, Lawlor et al, 2019), we found that

TFEB binds in at least four different sites of a super-enhancer region

in the close vicinity of the INS locus in EndoC-bH1 cells (Fig 3D).

Interestingly, two out of the four sites are specifically bound by

TFEB, as no other well-known INS transcriptional modulator, such

as MAFB, NKX2-2, NKX6-1, and PDX1, has been reported to bind

these sites in other ChIP-Seq experiments thus far (Fig 3E). These

data suggest a possible mechanism by which TFEB suppresses insu-

lin gene transcription.

TFEB and TFE3 control insulin production and glucose
homeostasis in vivo

To assess the physiological relevance of TFEB on INS transcription

and b-cell function, we performed in vivo gain-of-function experi-

ments by generating mouse models in which TFEB was specifically

overexpressed in b-cells. This was achieved by breeding INS1-CRE

mice (Thorens et al, 2015) with two different conditional TFEB over-

expressing mouse lines (TFEBOELOW and TFEBOEHIGH), previously

generated in our laboratory (Settembre et al, 2013), leading to the

generation of the b-TFEBOELOW and b-TFEBOEHIGH mouse lines in

which TFEB was overexpressed specifically in b-cells at low and

high levels, respectively. b-TFEBOELOW mice showed a ~ 4-fold

increase in TFEB mRNA levels in pancreatic b-cells compared to

controls (Fig 4A), which was associated with smaller size and lower

weight compared to control littermates (Fig 4B and C). Strikingly,

these mice also showed profound glucose intolerance (GTT)

(Fig 4D), impaired glucose-stimulated insulin secretion (GSIS)

(Fig 4E), and insulin resistance (Fig 4F). Hematoxylin/Eosin (HE)

staining on fixed pancreas revealed the presence of numerous

◀ Figure 2. TFEB controls insulin mRNA levels in EndoC-BH1 cells.

A Representative immunoblot using lysates from cells infected with control lentivirus (CTRL) of TFEB-V5-expressing lentivirus (TFEB-OE) and analyzed using a V5 anti-
body. GAPDH was used as a loading control.

B TFEB mRNA levels in TFEB-OE and CTRL EndoC-bH1 cells incubated with full medium (FED) or starved of amino acids (�aa) for 16 h. Data are represented as
mean � standard error (n = 3–4/group). Student’s two-tailed t-test: *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001.

C Principal component analysis plot of transcriptomic data from TFEB-OE EndoC-bH1 cells.
D Gene ontology analysis for significantly upregulated (red) and downregulated (green) genes in TFEB-OE cells compared to control upon amino acid starvation (�aa)

for 16 h. Statistically significant hits (FDR < 0.05) are ranked from the most to the least significant.
E INS mRNA levels from control (CTRL) and TFEB-overexpressing (TFEB-OE) EndoC-bH1 cells incubated with full medium (FED) or starved of amino acids (�aa) for

16 h. Data are represented as mean � standard error (n = 3–4/group). Student’s two-tailed t-test: **P-value < 0.01; ***P-value < 0.001.
F Representative immunoblot for TFEB and TFE3 in EndoC-bH1 cells treated with scramble siRNA (siCTRL) or TFEB- and TFE3-targeting siRNA (siTFEB/3). GAPDH was

used as a loading control.
G TFEB and TFE3 mRNA levels in siTFEB/3 and control EndoC-bH1 cells incubated with full medium (FED) or starved of amino acids (�aa) for 16 h. Data are represented

as mean � standard error (n = 4/group). Student’s two-tailed t-test: **P-value < 0.01; ***P-value < 0.001.
H Principal component analysis plot of transcriptomic data from siTFEB/TFE3 EndoC-bH1 cells.
I Gene ontology analysis for significantly upregulated (red) and downregulated (green) genes in cells depleted for TFEB and TFE3 compared to control upon amino acid

starvation (�aa) for 16 h.
J INS mRNA levels from EndoC-bH1 cells treated with scramble siRNA (siCTRL) or TFEB and TFE3-targeting siRNA (siTFEB/3) incubated with full medium (FED) or

starved of amino acids (�aa) for 16 h. Data are represented as mean � standard error (n = 4/group). Student’s two-tailed t-test: *P-value < 0.05.
K Venn diagram showing the comparison of the datasets of TFEB-OE versus TFEB/3-depleted EndoC-bH1 cells.
L Heatmap showing the 751 DEGs significantly regulated in opposite correlation in TFEB-OE versus TFEB/3-depleted EndoC-bH1 cells. The lane corresponding to the

insulin gene (INS) is indicated.
M Gene ontology analysis for significantly downregulated genes in siTFEB/3 and upregulated in TFEB-OE cells in opposite correlation.

Source data are available online for this figure.
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regular-size islets in both b-TFEBOELOW and control mice (Fig 4G).

However, immunofluorescence analysis using insulin and glucagon

antibodies showed a marked reduction in insulin signal in b-cells of
b-TFEBOELOW compared to control mice, with a slightly increased

glucagon staining in a-cells in the islet periphery (Fig 4H). Impor-

tantly, despite the reduced levels of insulin expression in b-cells
observed in b-TFEBOELOW islets, immunostaining analysis using an

antibody recognizing UCN3, an established marker of mature b-cells
(van der Meulen et al, 2012), revealed no effects of TFEB overex-

pression on b-cell differentiation (Fig 4I), thus suggesting that b-
cells produce less insulin despite having a normal islet architecture.

Consistent with increased number of a-cells, TFEB overexpression

resulted in a slight but significant reduction in b-cell area quantified

as UCN3+ staining, indicating that b-cell mass is reduced in b-
TFEBOELOW mice (Fig 4J) likely as a secondary effect of the diabetic

phenotype. Together, these results indicate that TFEB plays an

important physiological role in b-cell function. Accordingly, and in

line with the results obtained in cell lines, RNA-seq analysis of islets

isolated from b-TFEBOELOW mice showed severe downregulation of

the “MODY” gene category (Fig 4K and Dataset EV11). In addition,

mRNA levels of INS1 and INS2 were strongly downregulated in b-
TFEBOELOW mice compared to controls (Fig 4L).

Analysis of b-TFEBOEHIGH mice showed higher levels of TFEB

compared to b-TFEBOELOW mice (Fig EV3A), as expected. This

resulted in a similar but more severe phenotype characterized by

heavily impaired growth (Fig EV3B and C), greater glucose

Figure 3. ChIP-seq analysis identifies TFEB-binding sites in insulin super-enhancer.

A Graphic representation of the different genomic sites of TFEB binding in EndoC-bH1 cells upon 16 h amino acid starvation.
B Venn diagram of genes upregulated upon TFEB overexpression and downregulated in siTFEB/3 and TFEB-binding sites located inside proximal promoters

(�1,000 + 300).
C Gene ontology analysis for TFEB promoter-bound direct targets.
D, E Alignment of the TFEB ChIP-seq track, aligned with ChIP-seq tracks of other known INS regulators (MAFB, NKX2.2, NKX6.1, and PDX1), at the INS locus. Super-

enhancer, black box.
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Figure 4.
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intolerance, and impaired insulin secretion (Fig EV3D and E), as

well as complete absence of INS1/INS2 expression (Fig EV3F). As in

b-TFEBOELOW mice, islet area of b-TFEBOEHIGH mice was indistin-

guishable from controls (Fig EV3G and H).

Finally, we generated TFEB b-cell-specific/TFE3 double-KO mice

(b-DKO mice) by crossing INS1-CRE mice with TFEBfl/fl (Settembre

et al, 2012) and TFE3 full KO mice (Steingrimsson et al, 2002). Con-

sistent with in vitro data, b-DKO mice failed to suppress Ins2 mRNA

upon overnight starvation and showed elevated Ins2 levels upon

refeeding, as demonstrated by RNA scope analysis in pancreatic sec-

tions (Fig 5A). No differences were detected in islet area (Fig 5B),

b-cell mass, and b-cell maturation, as demonstrated by UCN3

staining (Fig 5C). Despite the striking increase in Ins2 mRNA,

b-DKO mice were characterized by lower body weight (Fig 5D) and

glucose intolerance (Fig 5E) compared to control littermates, likely

as a result of defective insulin release and consistent with recently

published data (Park et al, 2022). Together these data suggest that

TFEB and TFE3 act, at multiple levels, as crucial mediators of pan-

creatic b-cell function and metabolic homeostasis.

Discussion

Considerable work in the past years has tremendously advanced our

knowledge of the mechanisms regulating insulin granule maturation

and secretion as an acute response to increased nutrient levels. Pre-

vious studies have shown that mTORC1 activity is crucial for main-

taining pancreatic b-cell homeostasis by modulating insulin mRNA

translation and b-cell mass (Rachdi et al, 2008; Mori et al, 2009;

Blandino-Rosano et al, 2017). However, the mechanisms governing

insulin transcriptional regulation in response to variations in nutri-

ent availability have remained less understood. In the present man-

uscript, we define a nutrient-controlled transcriptional mechanism

that regulates insulin production to fine-tune glucose homeostasis at

both cellular and organismal levels. Over the years, TFEB and TFE3

have emerged as important metabolic regulators in the liver and

muscles, impacting body weight and glucose homeostasis

(Settembre et al, 2013; Mansueto et al, 2017; Pastore et al, 2017).

Here, we identify TFEB and TFE3 as key modulators of pancreatic b-
-cell function and further highlight the importance of these tran-

scription factors in overall organismal metabolic regulation. As

previously described in other cell types, TFEB and TFE3

are activated under scarce nutrient conditions and mTORC1 inhibi-

tion. In b-cells, fasting is associated with insulin downregulation

(Rabinovitch et al, 1976; Zawalich et al, 1979; Giddings et al, 1981;

Iwashima et al, 1994; Boland et al, 2018) to prevent undesired insu-

lin secretion and further glycemic decrease in a hypoglycemic state.

Our data show that TFEB and TFE3 mediate this process by suppres-

sing insulin transcription and thus controlling glucose homeostasis.

Accordingly, INS gene expression is severely suppressed both in

vitro and in vivo upon acute and constitutive TFEB overexpression,

respectively. Moreover, the physiological suppression of insulin

transcription that occurs upon nutrient starvation in b-cells is

severely impaired in TFEB/TFE3-depleted cells and mice. Although

our in vitro studies were mainly focused on TFEB/TFE3-mediated

control of insulin gene expression during amino acid starvation, we

also observed that glucose deprivation promotes TFEB nuclear

translocation in pancreatic beta cells, thus indicating that TFEB and

TFE3 are main physiological regulators of insulin transcription in

response to variations in the availability of different nutrients. Our

data also suggest that mTORC1 activity in b-cells controls both acute

and sustained responses to circulating nutrients, by regulating not

only insulin mRNA translation, as previously shown (Blandino-

Rosano et al, 2017), but also by controlling INS transcription via

TFEB and TFE3 transcription factors. Surprisingly, however, TFEB/

TFE3-deficient mice, despite showing a massive increase in INS

mRNA levels, do not show hypoglycemia but instead are glucose

intolerant, suggesting that lack of TFEB and TFE3 may affect b-cell
function and insulin production at different levels.

Our findings also highlight a potential function of these transcription

factors as negative transcriptional modulators. The evidence shown here

that TFEB binds to enhancer cluster regions flanking the INS locus,

◀ Figure 4. Beta-cell-specific TFEB gain- or TFEB/TFE3 loss-of-function in vivo leads to impairment of insulin production and glucose homeostasis.

A mRNA levels of TFEB in isolated islets from control and bTFEBOELOW mice. Each dot represents one mouse (n = 3–4/group). Data are represented as
mean � standard error. Student’s two-tailed t-test: ***P-value < 0.001.

B Weight gain of control (n = 20) and bTFEBOELOW mice (n = 14). Data are represented as mean � standard error. Two-way ANOVA: ***P-value < 0.001.
C Representative images of control and bTFEBOELOW mice showing different body sizes.
D Glucose tolerance test (GTT) of control (n = 15) and bTFEBOELOW (n = 11) mice. Data are represented as mean � standard error. Two-way ANOVA: ***P-value

< 0.001.
E Glucose-stimulated insulin secretion (GSIS) for control (n = 9) and bTFEBOELOW (n = 7) mice. Data are represented as mean � standard error. Two-way ANOVA:

***P-value < 0.001.
F Insulin tolerance test (ITT) normalized to T0 in control and bTFEBOELOW mice (n = 9/group). Data are represented as mean � standard error. Two-way ANOVA: *P-

value < 0.05.
G Representative images of pancreas slides from control and bTFEBOELOW mice stained with hematoxylin/eosin and quantification of islet area (n = 6/group; n = 5–10

islets per mouse). Data are represented as mean � standard error.
H Representative immunofluorescence picture using insulin and glucagon antibodies on fixed pancreas of control and bTFEBOELOW mice (scale bar 50 lm). The graph

shows the quantification of the relative insulin (INS+)- and glucagon (GCG+)-positive area from islets of control and bTFEBOELOW mice. Each dot represents an islet
(n = 15 for CTRL and n = 12 for bTFEBOELOW). Data are represented as mean � standard error. Student’s two-tailed t-test: ***P-value < 0.001.

I, J Representative immunofluorescence images for TFEB and UCN3 (I) on fixed pancreas of control and bTFEBOELOW mice (scale bar 20 lm) and quantification of the
UCN3+ area per islet in control and bTFEBOELOW pancreas (n = 3/group; n = 3–14 islets per mouse) (J). Data are represented as mean � standard error. Student’s
two-tailed t-test: *P-value < 0.05.

K Gene ontology analysis of RNA-seq data of isolated islets from control and bTFEBOELOW mice.
L mRNA levels of indicated genes assessed on isolated islets from control and bTFEBOELOW mice. Each dot represents one mouse (n = 3–4/group). Data are represented

as mean � standard error. Student’s two-tailed t-test: **P-value < 0.01.

Source data are available online for this figure.
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previously proposed to act as a super-enhancer (Miguel-Escalada

et al, 2019), suggests that TFEB and TFE3 may directly suppress INS

transcription via super-enhancer binding. Interestingly, a previously

reported motif-based binding prediction analysis identified TFEB as part

of a core regulatory circuit (CRC) controlling b-cell function via super-

enhancer binding (Alvarez-Dominguez et al, 2020). However, at this

stage, we cannot exclude that TFEB and TFE3 instead repress the tran-

scription of insulin and other b-specific genes in an indirect manner. For

instance, consistent with a previous study (Carey et al, 2020), we found

that TFEB promotes the transcription of BHLHE40 and BHLHE41

(Fig EV2E), two important transcriptional repressors which have been

recently shown to suppress insulin gene expression via transcriptional

inhibition of INS master regulators PDX1 and MafA (Tsuyama

et al, 2023). Interestingly, TFEB, BHLHE40, and BHLHE41 have been

shown to play a role in circadian rhythm regulation (Honma et al, 2002;

Kato et al, 2014; Brooks & Dang, 2019; Pastore et al, 2019) which is cen-

tral for b-cell function (Marcheva et al, 2010; Perelis et al, 2015;

Alvarez-Dominguez et al, 2020). Whether TFEB, BHLHE40, and

BHLHE41 are part of a transcriptional cascade that results in insulin

gene regulation remains to be established in future studies.

Dysregulation of glucose homeostasis and b-cell dysfunction is a

hallmark of human diseases, such as diabetes. Our study supports

the key role of TFEB and TFE3 in pancreatic b-cell regulation and

uncovers a new mechanism by which these transcription factors

modulate organismal metabolism. These data may have important

clinical implications in diabetes and other metabolic diseases.

Materials and Methods

Materials

Reagents used in this study were obtained from the following sources:

antibodies to phospho-p70 S6 kinase (Thr389) (1A5) (Cat# 9206),

Figure 5. Beta-cell-specific deletion of TFEB and TFE3 results in enhanced insulin transcription and impaired glucose homeostasis.

A Representative images of RNA scope analysis for Ins2 mRNA in pancreas from control and b-DKO mice in fed and starved conditions with relative quantification
(n = 3/group). Each dot represents one mouse. Data are represented as mean � standard error. Student’s two-tailed t-test: *P-value < 0.05; ***P-value < 0.001.

B Representative images of pancreas slides from control and b-DKO mice stained with hematoxylin/eosin and quantification of islet area (n = 6/group; n = 11–25 islets
per mouse). Each dot represents one mouse.

C Representative immunofluorescence images for UCN3 and quantification of the UCN3+ area per islet in control and b b-DKO pancreas (n = 3/group; n = 8–25 islets
per mouse). Each dot represents one mouse. Data are represented as mean � standard error. Student’s two-tailed t-test: ***P-value < 0.001.

D Body weight of control and b-DKO mice at 8 weeks of age.
E Glucose tolerance test (GTT) of control and b-DKO mice. Each dot represents one mouse (n = 8/group). Two-way ANOVA: ***P-value < 0.001.

Source data are available online for this figure.
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p70 S6 kinase (Cat# 9202), Rheb1 (Cat# 13789), 4E-BP1 (Cat#

9644), phospho-4E-BP1 (Ser65) (Cat# 9456), human TFEB (Cat#

4240), and insulin (Cat# 4590) were from Cell Signaling Technology;

antibodies to GAPDH (6C5) (Cat# sc-32233) and LAMP1 (Cat#

Sc20011) were from Santa Cruz; antibodies to TFE3 (Cat#

HPA023881), glucagon (Cat#G2654), and V5 (Cat # V8137) were

from Sigma Aldrich; antibody to TFEB (Cat# A303-673A) was from

Bethyl; antibody to HA.11 Epitope Tag (Cat# 901513) was from

Biolegend; and the antibody for UCN3 was from Phoenic Pharma-

ceutical (Cat#H-019029).

Plasmids: pRK5-HA GST RagA-Q66L (#19300) and pRK5-HA GST

RagC-S75L (#19305) were a kind gift from David Sabatini (Addgene

plasmids).

Chemicals: Torin 1 (Cat# 4247) was from Tocris; Protease Inhibi-

tor Cocktail (Cat# P8340) was from Sigma Aldrich; and PhosSTOP

phosphatase inhibitor cocktail tablets (Cat# 04906837001) were

from Roche.

Cell culture

Human EndoC-bH1 cells were obtained from Univercell� com-

pany and maintained following the company instructions in a

DMEM-derived medium. INS-1E cells were purchased from

AddexBio (C0018009) and grown in RPMI 1640 supplemented

with 10% FCS, 10 mM Hepes, 2 mM glutamine, 0.05 mM b-
mercapto-ethanol, 1 mM PyrNa, and 1× penicillin–streptomycin

solution. For experiments involving amino acid starvation, cells

were rinsed twice with PBS and incubated in amino acid-free

RPMI (Cat# R9010-01, USBiological) supplemented with 10%

dialyzed FBS. Where indicated, cells were re-stimulated with

1× water-solubilized mix of essential (Cat#11130036, Thermo

Fisher Scientific) and non-essential (Cat# 11140035, Thermo

Fisher Scientific) amino acids re-suspended in amino acid-free

RPMI. For glucose starvation, cells were rinsed twice with PBS

and incubated with cell culture medium prepared in a DMEM

w/o glucose (Cat# 11966025, Thermo Fisher Scientific). Glu-

cose re-feeding was obtained by replacing glucose starvation

medium with full-nutrient cell culture medium. For silencing

experiments, cells were transfected using the RNAi Max�
reagent from Invitrogen following the kit instructions and incu-

bated for 72 h. The following siRNAs were used in this study:

ON-Target plus� SMART pool Human TFE3 #L-009363-00-0020,

ON-Target plus� SMART pool Human TFEB #L-009798-00-

0020, and ON-Target plus� SMART pool Non-targeting control

#D-001810-10-20.

CRISPR Cas9 gene editing of the INS-1E cells

For KO clone generation in INS-1E cells, wild-type cells were trans-

fected with the Sigma CRISPr plasmids carrying simultaneously the

gRNA and Cas9 (TFEB gRNA: GCTGCCATGGCGTCGCGCATCGG,

TFE3 gRNA: CCGGCGAGCTTGCTGCAAG).

Single clones were screened for desired editing by sequencing

(TFEB sequencing primers: FW 50-ACTGAAGGACAGAGTCTTCACC,
RV 50-GACAGAAGAGGCAGAGGCCTTA; TFE3 sequencing primers:

FW 50-TGTGCCCCAGGTGTTTATGG, RV 50-GCTACGGCCTCTTACC
TCCT) and immunoblot. At least two clones per condition were

tested in parallel for control and edited cell lines.

Viral infection

Retroviral plasmids encoding TFEB-3X-FLAG (Settembre et al, 2012)

were co-transfected with pCMVgag/pol and CMV VSV-G packaging

plasmids into actively growing HEK-293T cells using FuGENE 6

transfection reagent. Virus-containing supernatants were collected

48 h after transfection, diluted 1:2, and used to infect one six-well

plate of INS1-E cells in presence of 8 lg/ml polybrene. Cells were

analyzed 3 days after infection.

EndoC-BH1 were infected with lentivirus for TFEB-V5 and con-

trol luciferase expression using the Lenti-XTM Tet-OneTM Inducible

Expression System (Puro) from Takara.

High-content analysis of TFEB subcellular localization

EndoC-bH1 cells were seeded in 96-well plates and incubated for

24 h. Cells were then treated as indicated, rinsed with PBS once,

fixed for 10 min with 4% paraformaldehyde, and stained with TFEB

antibodies (Cat# 4240, Cell signaling) and DAPI. For the acquisition

of the images, at least 10 fields were acquired per well of the 96-well

plate by using confocal automated microscopy (Opera High Content

System; Perkin-Elmer). A dedicated script (Medina et al, 2015) was

used for analysis of TFEB localization on the different images (Har-

mony and Acapella software; Perkin-Elmer). The script calculates

the ratio value resulting from the average intensity of nuclear TFEB

fluorescence divided by the average of the cytosolic intensity of

TFEB fluorescence. P-values were calculated on the basis of mean

values from independent wells.

RNA extraction and RT–PCR

RNA extraction was performed using the Qiagen RNeasy� kit, fol-

lowing the kit instructions.

cDNA was generated from extracted RNA using the Qiagen Quan-

tiTect Reverse Transcription Kit following the kit instructions. RT–

PCR was done using the LightCycler� 480 SYBR Green I Master fol-

lowing the kit instructions using the LightCycler 480 II detection sys-

tem (Roche). For expression studies, the qRT–PCR results were

normalized against an internal control (HPRT). Primers used are

listed in Table EV1.

30mRNA sequencing library preparation, data processing,
and analysis

Total RNA was quantified using the Qubit 2.0 fluorimetric Assay

(Thermo Fisher Scientific). For RNA-seq analysis, library prepara-

tion was performed with a total of 100 ng of RNA from each sample

using QuantSeq 30mRNA-Seq Library prep kit (Lexogen) according

to manufacturer’s instructions. Amplified fragmented cDNA of

300 bp in size was sequenced in single-end mode by NovaSeq 6000

(Illumina) with a read length of 100 bp. Illumina NovaSeq 6000

base call (BCL) files were converted into fastq file through bcl2fastq.

Sequence reads were trimmed BBDuk (sourceforge.net/projects/

bbmap/) to remove adapter sequences and low-quality end bases

(Q < 20). Alignment was performed with STAR 2.6.0a (Dobin

et al, 2013) on the Hg38 reference provided by UCSC Genome

Browser (Lee et al, 2020). Alignment to mm10, and rn6 reference

genome assembly (Dobin et al, 2013), and counting by gene (Anders
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et al, 2015) has been performed by using Ensembl assembly (release

93). Gene expression levels were determined with HTseq-count

0.9.1 (Anders et al, 2015). Differential expression analyses were

performed using edgeR (Robinson et al, 2010), a statistical package

based on generalized linear models, suitable for multifactorial

experiments. The threshold for statistical significance chosen was

false discovery rate (FDR) < 0.05. Gene ontology (GOEA) and func-

tional annotation clustering analyses were performed on the

induced and inhibited differentially expressed genes (DEGs)

obtained in each RNA-sequencing dataset by using DAVID Bioinfor-

matic Resources (Huang da et al, 2009a,b) restricting the output to

Biological Process terms (BP_FAT). The “Kyoto Encyclopedia of

Genes and Genomes” (KEGG Pathway) analyses were also

performed (Kanehisa & Goto, 2000; Kanehisa et al, 2012). The

threshold for statistical significance of GOEA was FDR < 0.1 and

enrichment score ≥ 1.5, while for the KEGG pathway analyses was

FDR < 0.1.

Heatmap and Venn diagrams were generated using custom anno-

tation scripts.

List of abbreviations: FDR, false discovery rate; DEGs, differen-

tially expressed genes.

Immunoblot assay

Protein lysates were extracted in RIPA buffer (Thermo Fisher)

supplemented with the phosphatase inhibitor PhosSTOP EASY-

pack (Roche #04906837001) and the protease inhibitor cocktail

(Sigma #P8340). Lysates were centrifuged for 10 min at 14,000 g

at 4°C and supernatant conserved. Protein concentration was

measured by Bradford assay and 50 lg of protein lysates were

loaded for each sample, supplemented with Laemmle buffer. The

lysates were run on precast NuPAGETM 4–12% Bis-Tris Gel (Invi-

trogen #NP0335BOX [10 wells] or #NP0336BOX [15 wells]) inside

the Xcell SureLock Mini cells and MOPES running buffer. Proteins

were wet transferred for 1 h 30 min at 100 V on Immobilon�
membrane (#IPVH00010) using the Bio-Rad� Mini Trans- blot�
Cell. Membranes were subsequently incubated in 5% skim-milk

TBS-T blocking solution for 1 h at room temperature. Incubation

in the TBS-T 5% BSA primary antibody-containing solution was

performed overnight at 4°C. After three TBS-T washes, incubation

in the TBS-T 5% BSA secondary antibody-containing solution was

performed for 1 h at room temperature, followed by three TBS-T

washes. Membranes were developed using the ECL solution from

Cyanagen gC Ultra 2.0 ECL #XLS075L. Pictures were acquired

with the GE� Amersham Imager 600, the UVITEC Q9 Mini Alli-

ance, or UVITEC Mini HD9.

Immunofluorescence assay

PhenoPlate 96 wells (Perkin Elmer) were coated and then seeded

with EndoC-BH1 cells at a density of 25,000 cells/well. Following

treatment, cells were fixed in 4% PFA for 10 min then washed with

PBS and permeabilized with PBS 0.02% Triton-X solution for 7 min.

A blocking step was then performed using the blocking buffer (PBS,

3% BSA, 0.05% Saponin, 1% horse serum, and 50 mM NH4Cl). Fol-

lowing the blocking steps, primary and secondary antibody incuba-

tions were performed in blocking buffer solution. Nuclei were

stained with DAPI.

Histological analysis

H&E staining was performed following the IHC World protocol.

Bright-field sections were scanned with ZEISS Axio Scan.Z1.

Immunofluorescence analyses were performed in 6 lm paraffin

sections with VENTANA BenchMark Ultra automated staining

instrument (Ventana Medical Systems, Roche), using VENTANA

reagents except as noted, according to manufacturer’s instructions.

Slides were deparaffinized using EZ Prep solution (cat # 950-102)

for 16 min at 72°C. Epitope retrieval was accomplished with CC1

solution (cat # 950-224) at a high temperature (95°C) for a period

that is suitable for a specific tissue type. Antibodies were titered

with a blocking solution into user-fillable dispensers for use on the

automated stainer. Slides were developed using DISCOVERY FAM

Kit (cat # 760-243) and DISCOVERY Red 610 Kit (cat #760-245,

Roche) for 8 min. Slides were then counterstained with DISCOVERY

QD DAPI (cat # 760-4196) for 8 min. Fluorescent sections were

acquired using ZEISS microscope.

Automated RNA detection (RNA scope)

Insulin mRNA expression was determined using ISH with the fully

automated RNA-scope assay on the VENTANA BenchMark Ultra

(Ventana Medical Systems, Roche) platform. Sections were deparaf-

finized on the instrument, followed by target retrieval (16 min at

97°C) and protease treatment (16 min at 37°C). Probes (RNAscope�
2.5 VS Probe- Mm-Ins2-O1 #497819, ACD) were then hybridized at

43°C followed by RNAscope amplification (RNAscope� VS Univer-

sal AP Reagent Kit #323250, ACD) and red chromogenic detection

using VS detection reagents (DISCOVERY mRNA Red Detection Kit

#07099037001, Roche). Slides were then counterstained with hema-

toxylin II (cat # 790-2208) for 8 min, followed by Bluing reagent

(cat # 760-2037) for 4 min. Bright-field sections were scanned with

ZEISS Axio Scan.Z1. The whole digital slides were viewed by zen

blue software. Antibodies used: TFEB (Bethyl A303-673A). Quantita-

tive analysis of Insulin mRNA transcripts was performed using

QuPath software.

Chromatin immunoprecipitation, library preparation,
and sequencing

EndoC-bH1 cells were washed twice using PBS Ca2+/Mg2+ free, and

HBSS (14025092, Gibco) supplemented with HEPES (H0887, Euro-

clone) was added for 6 h to perform the starvation treatment. Then,

15 × 106 cells were fixed with 1% formaldehyde for 15 min at room

temperature and subsequently quenched using glycine 0.1 M. Cell

lysis, nuclear extraction, and sample preparation were performed as

previously described (Cesana et al, 2018). Chromatin sonication

was performed using the Branson UltrasonicsTM SonifierTM SFX150.

Immunoprecipitation was performed using 20 ll per sample of

TFEB antibody on two independent replicates. Libraries were pre-

pared from 10 ng of DNA using the NEBNext UltraTM II DNA

Library Prep Kit for Illumina (New England Biolabs) of each repli-

cate and the corresponding input whole cellular extract. The quality

of libraries was assessed using Bioanalyzer DNA Analysis (Agilent

Technologies) and quantified using Qubit 4 Fluorometer (Thermo

Fisher Scientific). Libraries were sequenced on a NovaSeq 6000

sequencing system using a paired-end (PE) 100 cycles flow cell
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(Illumina Inc.). Paired sequencing reads were aligned on human

hg38 reference genome using BWA (Li & Durbin, 2009) and filtered

with samtools (Danecek et al, 2021) to remove unmapped read

pairs, not primary alignments, reads failing platform quality, with

mapping quality score below 30, and duplicate reads were then

removed using picard MarkDuplicates [http://broadinstitute.github.

io/picard].

Each sample (IP or input) was equally split by randomly

assigning half of the read pairs to each of two pseudo-replicates,

the two biological replicates were pooled, and pools were split

into two pseudo-replicates as well. Irreproducible discovery rate

analysis [IDR] (Li et al, 2011) was applied as described in the

ENCODE guidelines (Landt et al, 2012). Peaks were called for

each IP/input pair using MACS2 (Zhang et al, 2008) with a

threshold P < 0.1, then IDR was performed using the P-value as

sorting column and an IDR score threshold of 0.01 on each of the

following trio: (1) biological replicate 1 versus its own pseudo-

replicates; (2) biological replicate 2 versus its own pseudo-repli-

cates; (3) pool versus its own pseudo-replicates; and (4) pool ver-

sus biological replicate 1 and biological replicate 2. As final peak

selection, we merged the coordinates of peaks called (1), (2), and

(4) and only kept those supported by at least two of the three

analyses.

Mouse maintenance

All procedures on mice were approved by the Italian Ministry of

Health. Mice were housed at the TIGEM animal house under SPF

certification. To generate mice, we bred the INS1Cre mice from the

Thorens laboratory (B6(Cg)-Ins1tm1.1(cre)Thor/J), with TFEB-

overexpressing mice (Settembre et al, 2011). For the generation of

double-KO mice, INS1Cre mice were crossed with TFEB conditional

KO mice (Settembre et al, 2012) and TFE3 KO mice (Steingrimsson

et al, 2002).

Mouse metabolic phenotyping

All metabolic tests were performed in age-matched, sex-matched

cohorts. All mice were bred on a pure C57Bl6/J genetic back-

ground. Glucose tolerance test (GTT) was performed by intraperi-

toneally injecting 2 g of glucose/kg body mass of an aqueous

20% glucose solution to overnight fasted mice. Prior to injection,

fasting glycemia was measured using the Wellion� LUNA gluc-

ometer with the corresponding Wellion� LUNA test stripes GLU

by collecting a blood drop from the tail. Glycemia was measured

the same way at 15, 30, 60, 90, and 120 min after glucose injec-

tion. When applying, blood sampling from the tail for glucose-

stimulated insulin secretion (GSIS) was performed using Sarstedt

Microvette CB300. Insulin tolerance test was performed in a simi-

lar way as the GTT, injecting 0.75 IU/kg body mass in 6 h fasted

mice.

Statistical analysis

Data are expressed as mean � standard error. Statistical signifi-

cance was calculated using the Student’s two-tailed t-test or two-

way ANOVA as indicated in figure legends. A P-value < 0.05 was

considered statistically significant.

Data availability

All the RNA-seq datasets discussed in this work were deposited in

GEO repository (Barrett et al, 2011).

The titles of the dataset are as follows: “Transcriptome profile of

INS-1E Ctrl and hTFEB OE cells”, (GSE155221); “Transcriptome pro-

file of ENDOC-BH1 cells silencing TFEB and TFE3 (siTFEB/TFE3) or

controls”, (GSE155220); “Transcriptome profile of INS-1E Ctrl and

DKO cells”, (GSE153709); “Transcriptome profile of ENDOC-BH1

cells overexpressing TFEB-V5 or controls”, (GSE154059); and “Tran-

scriptome profile of isolated murine islets overexpressing TFEB or

controls” (GSE154062). The SuperSeries GSE154063 whose title is

“Transcriptome profile of ENDOC-BH1 cells and isolated murine

islets modulating TFEB expression” includes the three datasets

GSE153709, GSE154059, and GSE154062.

Expanded View for this article is available online.
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