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ABSTRACT: Prenatal exposure to single chemicals belonging to
the per- and polyfluoroalkyl substances (PFAS) family is associated
with biological perturbations in the mother, fetus, and placenta,
plus adverse health outcomes. Despite our knowledge that humans
are exposed to multiple PFAS, the potential joint effects of PFAS
on the metabolome remain largely unknown. Here, we leveraged
high-resolution metabolomics to identify metabolites and meta-
bolic pathways perturbed by exposure to a PFAS mixture during
pregnancy. Targeted assessment of perfluorooctanoic acid
(PFOA), perfluorononanoic acid (PFNA), perfluorooctanesulfonic
acid (PFOS), and perfluorohexanesulfonic acid (PFHxS), along
with untargeted metabolomics profiling, were conducted on
nonfasting serum samples collected from pregnant African
Americans at 6−17 weeks gestation. We estimated the overall mixture effect and partial effects using quantile g-computation and
single-chemical effects using linear regression. All models were adjusted for maternal age, education, parity, early pregnancy body
mass index, substance use, and gestational weeks at sample collection. Our analytic sample included 268 participants and was
socioeconomically diverse, with the majority receiving public health insurance (78%). We observed 13.3% of the detected metabolic
features were associated with the PFAS mixture (n = 1705, p < 0.05), which was more than any of the single PFAS chemicals. There
was a consistent association with metabolic pathways indicative of systemic inflammation and oxidative stress (e.g., glutathione,
histidine, leukotriene, linoleic acid, prostaglandins, and vitamins A, C, D, and E metabolism) across all metabolome-wide association
studies. Twenty-six metabolites were validated against authenticated compounds and associated with the PFAS mixture (p < 0.05).
Based on quantile g-computation weights, PFNA contributed the most to the overall mixture effect for γ-aminobutyric acid (GABA),
tyrosine, and uracil. In one of the first studies of its kind, we demonstrate the feasibility and utility of using methods designed for
exposure mixtures in conjunction with metabolomics to assess the potential joint effects of multiple PFAS chemicals on the human
metabolome. We identified more pronounced metabolic perturbations associated with the PFAS mixture than for single PFAS
chemicals. Taken together, our findings illustrate the potential for integrating environmental mixture analyses and high-throughput
metabolomics to elucidate the molecular mechanisms underlying human health.
KEYWORDS: PFAS, high-resolution metabolomics, mixture analysis, quantile G-computation, environmental mixtures

■ INTRODUCTION
A major and current public health concern is exposure to per-
and polyfluoroalkyl substances (PFAS), a family of ≥9000
synthetic chemicals used in a wide range of industrial and
commercial applications, including food packaging, stain-
resistant furniture, and firefighting foam.1 PFAS are persistent
in the environment and human exposure is ubiquitous, though
variable across the United States (US), in part due to long
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biological half-lives and bioaccumulation.2−4 While concen-
trations of legacy PFAS, such as perfluorooctanesulfonic acid
(PFOS) and perfluorooctanoic acid (PFOA), have gradually
declined at the population level, replacement chemicals with
similar structures continue to be introduced to the market and
are associated with toxicity and exposure pathways.3,5

In recent years, a growing amount of epidemiological
evidence has linked prenatal PFAS exposure to a range of
adverse health outcomes, including adverse pregnancy and birth
outcomes.6−13 Further, the maternal metabolome has been
identified as a critical lens into the biomechanisms and
biomarkers underlying exposure−outcome relationships. Meta-
bolic perturbations that result from exposure to PFAS during
pregnancy is associated with gestational diabetes, preterm birth,
and fetal growth restriction.14−16 These metabolic perturbations
are closely involved in the alteration of insulin sensitivity, lipid
metabolism, and neuroendocrine signaling, among other
pathways essential to maternal-placental-fetal health. Our work
has also demonstrated that short-chain PFAS, such as
perfluorohexanesulfonic acid (PFHxS), perturb the maternal
metabolome through biosynthetic and bioenergetic pathways
while legacy long-chain PFAS, such as PFOS and PFOA, tend to
dysregulate signaling pathways.15 Despite awareness that
individuals are exposed to multiple PFAS chemicals, the
cumulative effects of PFAS on the human metabolome remain
largely unknown due to the complexity of integrating high-
dimensional data across statistical approaches.17 The assessment
of biological responses to PFAS exposures and resulting health
outcomes is further complicated by the lack of sensitive and
specific biomarkers, interindividual heterogeneity in toxicoki-
netics, and involvement of numerous endogenous pathways.

Metabolomics is the systemic study of all metabolites
associated with exogenous exposure and endogenous processes,
and has emerged as an innovative and powerful analytical
platform in environmental epidemiology.18,19 Recent inves-
tigations demonstrate the applicability of using metabolomics as
a central platform to link human exposure with internal dose and
biological response.19−24 Specifically, an increase in circulating
concentrations of PFAS has been consistently associated with
several endocrine disruption- and oxidative stress-related
pathways.15,16,25−27 In one of our recent metabolome-wide
association studies (MWAS), we also identified and verified
several biomechanisms and biomarkers mediating the associa-
tion between serum PFAS concentrations and fetal growth
restriction.15 Moreover, in two separate analyses within the same
pregnant population, we found an inverse association between
prenatal exposure to PFAS, modeled as single chemicals and a
mixture, with fetal growth measures.28,29

Despite these promising findings, methodological challenges
remain in elucidating the potential biological responses and
health effects associated with multiple PFAS chemicals,
particularly for critical windows of exposure across the life
course. The vast majority of metabolomics studies continue to
focus on a single PFAS chemical at a time or the linear
summation of PFAS concentrations, which prevents a deeper
understanding about potential joint effects and neglects the high
correlation of exposure within the PFAS family. The
incorporation of chemical mixture models in MWAS is needed
to perform comprehensive assessments of cumulative effects
from multiple exposures. To address these knowledge gaps, we
conducted a high-resolution metabolomics analysis with
advanced environmental mixture methods via quantile g-
computation to assess the single and potential joint effects of

multiple PFAS on the maternal metabolome among 268
participants in the Atlanta African American Maternal-Child
Cohort.

■ METHODS
Study Population.The Atlanta African AmericanMaternal-

Child Cohort is an ongoing prospective birth cohort with
participants recruited during prenatal visits from the Emory
Healthcare and Grady Health systems in metropolitan Atlanta,
Georgia. Participants were eligible for inclusion if they self-
identified as a Black or African American female, were born in
the United States, were between 18 and 40 years of age, were not
pregnant with multiples, and had no chronic medical conditions
or prescription medications. A detailed description of the
recruitment and enrollment criteria has been previously
published.30,31 For this analysis, we restricted the analytic
sample to 268 participants, for whom information on PFAS
exposure and untargeted high-resolutionmetabolomics profiling
was available (Figure S1). All participants provided informed
consent at enrollment, and this study was reviewed and
approved by the Institutional Review Board of Emory University
(approval reference number 68441).
Data and Sample Collection. Maternal blood samples

were collected during routine venipuncture between 6 and 17
weeks gestation and analyzed for targeted measurements of
serum PFAS concentrations and untargeted high-resolution
metabolomics profiling. Following collection, the samples were
processed to obtain the serum, transported to the laboratory,
and stored at −80 °C for future analyses, as previously
described.31

Sociodemographic data was assessed using self-reported
questionnaires and prenatal administrative record review and
included maternal age at enrollment, maternal education, an
income-to-poverty ratio, prenatal health insurance type, marital
and relationship status, and substance use (alcohol, tobacco, and
marijuana) during the previous month.
PFAS Measurement. PFAS were quantified in serum

samples at two laboratories within the Children’s Health
Exposure Analysis Resource (CHEAR) program. The labo-
ratories involved were the Wadsworth Center/New York
University Laboratory Hub (Wadsworth/NYU) and the
Laboratory of Exposure Assessment and Development for
Environmental Research (LEADER) at Emory University. The
samples were analyzed for PFHxS, PFOS, PFOA, and
perfluorononanoic acid (PFNA) at both Wadsworth/NYU
and LEADER. To ensure consistency and reliability of the
results, the laboratories in CHEAR have engaged in activities to
standardize measurements among them.32 Four PFAS (PFHxS,
PFOS, PFOA, PFNA) were detected in >95% of maternal serum
samples using high-performance liquid chromatography inter-
faced with tandem mass spectrometry (HPLC-MS/MS). The
analytical methods used in both laboratories have been
previously described and certified by the German External
Quality Assessment Scheme twice annually. As previously
reported, the results obtained from 11 overlapped samples
showed good agreement between the laboratories, with Pearson
correlation coefficients ranging from 0.88 to 0.93 and relative
percent differences ranging from 0.12 to 20.2% (median 4.8%).3

PFAS concentrations below the limit of detections (LODs) were
imputed with LOD/√2.33

High-Resolution Metabolomics. We conducted untar-
geted high-resolution metabolomics profiling on nonfasting
serum samples using a well-established protocol.34−36 As

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c04561
Environ. Sci. Technol. 2023, 57, 16206−16218

16207

https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c04561/suppl_file/es3c04561_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c04561?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


previously detailed in Chang et al.,15 two chromatography types
were applied to the hydrophilic interaction liquid chromatog-
raphy (HILIC) (Waters XBridge BEH Amide XP HILIC
column; 2.1 × 50 mm2, 2.6 μm particle size) with positive
electrospray ionization (ESI) and reversed-phase (C18)
chromatography (Higgins Targa C18 2.1 × 50 mm2, 3 μm
particle size) with negative ESI. Analyte separation for HILIC
was performed using water, acetonitrile, and 2% formic acid
mobile phases under the following gradient elution: initial 1.5
min period consisted of 22.5% water, 75% acetonitrile, and 2.5%
formic acid, followed by a linear increase to 75% water, 22.5%
acetonitrile, and 2.5% formic acid at 4 min, and a final hold of 1
min. Analyte separation for C18 was performed using water,
acetonitrile, and 10 mM ammonium acetate mobile phases
under the following gradient elution: the initial 1 min period
consisted of 60% water, 35% acetonitrile, and 5% ammonium
acetate followed by a linear increase to 0% water, 95%
acetonitrile, and 5% ammonium acetate at 3 min and held for
the remaining 2 min. For both types of chromatography, the
mobile phase flow rate was 0.35 mL/min for the first minute and
increased to 0.4 mL/min for the final 4 min. Although a gradient
elution that starts at 60% aqueous condition in the C18 column
might miss somemetabolites, which could be separated between
100 and 60% aqueous, these metabolites are likely to be better
detected in the HILIC column. Thus, the application of two
chromatography types in this study can enhance the coverage of
metabolic features for each sample. The void volume ends at
approximately 15 s after injecting samples.

Liquid chromatography-high resolution mass spectrometry
(LC-HRMS) was operated in full-scan mode at 120k resolution
to cover a range of mass-to-charge ratio (m/z) from 85 to 1275,
which includes features with a Level-1, -2, -3, or -4 confidence.
Briefly, the evidence for chemical identifies confirmed with
Level-1 confidence includes comparison to an authentic
standard by mass spectrum and retention time; Level-2
confidence includes comparison of the mass spectrum to the
library spectrum data where the spectrum structure match is
unambiguous; Level-3 confidence includes tentative matches
proposed with insufficient information for only one exact
structure; and, Level-4 confidence includes only one reported
unequivocal molecular formula.19,37 Two internal standards,
which include pooled serum and standard reference material for
human metabolites in plasma (NIST SRM 1950), were added at
the beginning and end of each batch of 20 samples for quality
control and standardization.34,38 The raw instrument files
generated from the untargeted high-resolution metabolomics
profiling were first converted to mzML format then metabolic
features were extracted and aligned using apLCMS with
modification of xMSanalyzer.39,40 This improved data quality
control and reduced intra- and interbatch effects. Before
statistical analyses, additional quality control measures were
performed to optimize the data quality. Metabolic features
detected in less than 15% of the samples, which had a coefficient
of variation among technical replicates greater than 30%, and
had a Pearson correlation coefficient less than 0.7 were excluded
to filter out noise signals. The intensities of the remaining
metabolic features were averaged across triplicates and log2-
transformed to normalize the data for subsequent statistical
analyses.
Statistical Analysis.We conducted descriptive analyses for

the serum PFAS concentrations, which involved the calculation
of detection frequencies, geometric means (GMs), geometric
standard deviations (GSDs), and distribution percentiles.

Subsequently, we used two approaches to investigate the
metabolic perturbations associated with four PFAS chemicals
and their mixture. The metabolic features in all MWAS were
analyzed without a priori knowledge of the actual chemical
compound identities.

In our first approach, we used single-chemical linear
regression models to evaluate the association between the
intensity of each metabolic feature and the serum concentration
of each PFAS chemical. In our second approach, we evaluated
the potential joint effect using quantile g-computation, which
estimates the association between the intensity of each
metabolic feature and the serum concentration of the overall
PFAS mixture. An important strength of quantile g-computation
over single-chemical linear regression is that it better reflects
real-world exposure patterns. Said differently, quantile g-
computation estimates the effect of a simultaneous increase in
all exposures within the PFAS mixture by 1-quartile. The
quantile g-computation models also enabled insight into the
mixture components that contributed the most and least to the
cumulative effect by the weights for each PFAS chemical. Partial
effects of single PFAS chemicals included in the mixture were
estimated with positive weights, which were interpreted as
synergism, and negative weights, which were interpreted as
antagonism. Positive and negative weights sum to 1 in either
direction and should not be directly compared. We selected
quantile g-computation as the chemical mixture method due to
ease of regression results comparison to linear regression and
because it does not require directional homogeneity.41 Linear
regression (“MASS” package) and quantile g-computation
(“qgcomp” package) models were performed separately for
each metabolic feature detected by the two different
chromatography columns (HILIC and C18).

For both approaches, we retained maternal age, education,
parity, early pregnancy BMI, history of substance use, and
gestational age at sample collection as covariates in the models.
These covariates were chosen based on a comprehensive
literature review of potential confounding associations between
exposures and outcomes in our study population (Figure S2).3

Previously, we have shown that pregnancy-related hemody-
namics do not confound the association between prenatal PFAS
exposure and fetal growth measures, so we did not adjust for
these variables in any of the models.28 The Benjamini−
Hochberg procedure was used to correct for multiple
comparisons with the significance level set at 0.05 for corrected
q-values, which helps to control the false discovery rate
(FDR).42 FDR correction was performed for each MWAS. All
analyses were conducted using R (version 4.1.0).
Pathway Enrichment Analysis. To predict the pathway

and biological functions of the significant features, we used
mummichog, a statistical application that predicts the functional
activity of metabolic pathways and networks without upfront
chemical identification.43 Pathway enrichment analyses were
conducted separately for PFNA, PFOA, PFOS, and PFHxS as
well as the PFAS mixture containing the entire set of chemicals
by two analytical columns. We visualized the enriched metabolic
pathways associated with the single PFAS chemicals and their
mixture with a bubble plot, where each bubble is shaded based
on the strength of the associations in pathway enrichment
analyses.
Chemical Annotation and Confirmation.To reduce false

positive discovery, we visually examined the extracted ion
chromatographs (EICs) of each significant metabolic feature to
differentiate true peak from noise (exhibiting clear Gaussian
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peak shapes and signal-to-noise ratios above 3:1). The features
passing the examination were annotated and confirmed using
theMetabolomics Standards Initiative criteria.37 Specifically, the
features whose m/z (±10 ppm difference) and retention time
(±30 s) matched the authentic compounds analyzed under
identical experimental conditions were assigned with Level-1
confidence.

■ RESULTS
Our study population was composed of a socioeconomically
diverse group of African American pregnant people (N = 268).
Participant characteristics were representative of the overall
cohort (Table 1). Over half of the participants reported use of
tobacco, alcohol, or marijuana in the prior month (N = 146;

55%). The majority of participants had a high school education
or less (N = 142; 53%) and Medicaid as their insurance (N =
210; 78%). At enrollment, the mean age of participants was 25.0
years (SD = 4.8), and the mean early pregnancy BMI was 29.0
kg/m2 ± 7.7 kg/m2. Four PFAS were detected in >95% of
participants, with GMs of 0.98 (GSD = 1.98), 1.95 (GSD =
2.20), 0.63 (GSD = 2.42), and 0.24 ng/mL (GSD = 2.41) for
PFHxS, PFOS, PFOA, and PFNA, respectively (Table 2).
Pearson correlation coefficients between PFAS ranged from 0.37
to 0.76 (Figure S3).15

After QA/QC and data preprocessing, we extracted a total of
13,616 metabolic features from serum samples using the HILIC
positive ESI column and 11,900 metabolic features using the
C18 negative ESI column. We conducted a total of 10MWAS to
examine the associations between the four PFAS chemicals and
their mixture using data from each of the chromatography
columns. For the PFAS mixture MWAS, after FDR correction,
one metabolic feature yielded a significant association in the
HILIC column while 20 metabolic features yielded a significant
association in the C18 column (q < 0.05). Because we found a
limited number of significant features at either 5 or 20% FDR
thresholds, the cutoff for significance was set as the unadjusted p-
value < 0.05 to include a sufficient number of metabolic features
in the pathway enrichment analyses.

Our single-chemical MWAS reflect the separate associations
for each PFAS and are interpreted as follows: for every 1 ng/mL
increase in natural log-transformed serum PFNA, PFOA, PFOS,
and PFHxS at early pregnancy, there were 899, 736, 874, and
904 metabolic features significantly enriched in the maternal

Table 1. Characteristics of Pregnant People in the Atlanta
African American Maternal-Child Cohort, 2014−2020

characteristics
analytic
sample overall

N 268 525
Age (years)

mean ± SD 25.0 ± 4.8 25.0 ± 4.9
missing 0 2 (0.4%)

Gestational age at sample collection (wks)
mean ± SD 11.5 ± 2.2 11.0 ± 2.2
missing 0 2 (0.4%)

Sex of infant
male 134 (50.0%) 252

(48.0%)
female 134 (50.0%) 264

(50.3%)
missing 0 9 (1.7%)

Parity
mean ± SD 0.99 ± 1.1 0.94 ± 1.1
missing 0 2 (0.4%)

Prenatal body mass index (BMI; kg/m2)
mean ± SD 29.0 ± 7.7 29.0 ± 7.8
missing 0 2 (0.4%)

Married or cohabiting
yes 131 (48.9%) 249

(47.4%)
no 137 (51.1%) 274

(52.2%)
missing 0 2 (0.4%)

Medical insurance
medicaid 210 (78.0%) 413

(78.7%)
private 58 (22.0%) 110

(21.0%)
missing 0 2 (0.4%)

Education level
less than high school 38 (14.2%) 83 (15.8%)
high school 104 (38.8%) 202

(38.5%)
some college 81 (30.2%) 152

(29.0%)
college and above 45 (16.8%) 86 (16.4%)
missing 0 2 (0.4%)

Alcohol, marijuana, or tobacco use in the prior
month

yes 146 (54.5%) 292
(55.6%)

no 122 (45.5%) 231
(44.0%)

missing 0 2 (0.4%)

Table 2. Distribution of Serum PFAS Concentrations (ng/
mL) in the Atlanta African American Maternal-Child Cohort,
2014−2020a

PFAS ng/mL

PFOA
detection rateb 97.0%
GM ± GSD 0.63 ± 2.42
P25−P75 0.47−1.09
max. 4.42

PFNA
detection rateb 95.5%
GM ± GSD 0.24 ± 2.41
P25−P75 0.16−0.42
max. 2.27

PFOS
detection rateb 98.5%
GM ± GSD 1.95 ± 2.20
P25−P75 1.42−3.12
max. 12.42

PFHxS
detection rateb 95.9%
GM ± GSD 0.98 ± 1.98
P25−P75 0.75−1.52
max. 4.80

aAbbreviations: GM, geometric mean; GSD, geometric standard
deviation; P25, 25th percentile; P50, 50th percentile; P75, 75th
percentile; PFAS, per- and polyfluoroalkyl substances; PFOA,
perfluorooctanoic acid; PFNA, perfluorononanoic acid; PFOS,
perfluorooctanesulfonic acid; PFHxS, perfluorohexanesulfonic acid.
bThe percentage of values above the limit of detection (LOD); values
below the LOD were replaced by LOD/√2.
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serum metabolome when analyzed by the HILIC column (p <
0.05). We identified a total of 531, 771, 664, and 674 significant
metabolic features in the C18 column that were associated with
PFOA, PFNA, PFOS, and PFHxS, respectively (p < 0.05). For
the single PFAS chemicals, between 4.5 and 6.6% of the detected
metabolic features were significantly enriched in the maternal
serummetabolome (Table 3). Alternatively, ourmixtureMWAS
reflect the potential joint effects of the PFAS mixture and are
interpreted as follows: for a simultaneous increase in natural log-
transformed serum PFOA, PFOS, PFHxS, and PFNA by 1-
quartile, there were 971 and 734 metabolic features significantly

enriched in the maternal serum metabolome when analyzed by
the HILIC and C18 columns, respectively (p < 0.05). The
HILIC column enrichment percentage was 7.1%, and the C18
column enrichment percentage was 6.2%. Across the 10 MWAS
conducted, more metabolic features were significantly asso-
ciated with the PFAS mixture (total N = 1705) than any of the
single PFAS chemicals in both the HILIC and C18 columns
together (Table 3 and Figure 1). Finally, the PFOS MWAS had
the greatest number of overlapping metabolic features with the
PFAS mixture MWAS (Figure 2).

Table 3. Metabolic Features Associated with Single PFAS Chemicals and Their Mixture during Early Pregnancy in the Atlanta
African American Maternal-Child Cohort (N = 268), 2014−2020a

HILIC (no. features = 13,616) C18 (no. features = 11,900)

raw
p-value <

0.05
%

enriched

FDR
q-value <

0.20
%

enriched

FDR
q-value <

0.05
%

enriched

raw
p-value <

0.05
%

enriched

FDR
q-value <

0.20
%

enriched

FDR
q-value <

0.05
%

enriched

PFAS
mixtureb

971 7.1 1 0.01 1 0.01 734 6.2 37 0.31 20 0.17

PFOA 736 5.4 0 0 0 0 531 4.5 25 0.21 18 0.15
PFNA 899 6.6 0 0 0 0 771 6.5 35 0.29 21 0.18
PFOS 874 6.4 10 0.07 8 0.06 664 5.6 58 0.49 26 0.22
PFHxS 904 6.6 1 0.01 1 0.01 674 5.7 61 0.51 19 0.16
aNote: FDR indicates Benjamini−Hochberg procedure for false discovery rate correction of multiple comparisons. Models were adjusted for
maternal age, education, parity, early pregnancy BMI, history of substance use, and gestational weeks at sample collection. bOverall effect of the
PFAS mixture was estimated using quantile g-computation.

Figure 1. Manhattan plots (A, B) and Volcano plots (C, D) of metabolic features associated with the PFAS exposure mixture during early pregnancy.
Note: Potential joint effects of PFAS mixture on maternal serum metabolome were examined by quantile g-computation. Red denotes a positive
association with the PFAS mixture. Blue denotes a negative association with the PFAS mixture. Dashed lines refer to raw p-values; threshold is set to
0.05. Abbreviations: HILIC, hydrophilic interaction liquid chromatography column; C18, reversed-phase C18 column.
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Metabolic pathways associated with prenatal exposure to
PFNA, PFOA, PFOS, PFHxS, or their mixture are shown in
Figures 3 and 4, with detailed information provided in Tables S1

and S2. In the C18 column, we found the greatest number of
pathways were enriched in the MWAS for PFNA and PFHxS,
relative to those for PFOA and PFOS (Figure 3). Alternatively,

Figure 2. Venn diagrams of overlapping metabolic features associated with exposure to the PFAS mixture and individual PFAS chemicals during early
pregnancy. Note: Potential joint effects of PFAS mixture on maternal serum metabolome were examined by quantile g-computation Abbreviations:
HILIC, hydrophilic interaction liquid chromatography column; C18, reversed-phase C18 column.

Figure 3. Metabolic pathways associated with exposure to individual PFAS and their mixture during early pregnancy in the C18 column. Note: Bubble
color denotes the pathway significance level (−log10 p-value). Bubble size denotes the percentage of significant metabolomic features (overlap size)
versus the total number of metabolomic features within a pathway (pathway size). Only significant associations (p < 0.05) are indicated by bubbles in
the plots. Only the following adducts were considered: M − H[−], M + Cl[−], M + ACN-H[−], M +HCOO[−], M(C13) − H[−], M-H2O − H[−], andM
+ Na − 2H[−].
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in the HILIC column, there were 36 pathways enriched in the
PFOSMWAS, out of the 74 identified across all MWAS (Figure
4). When comparing the pathways associated with any of the
single PFAS chemicals to the PFAS mixture, we observed
consistent metabolic perturbations involving systemic inflam-
mation and oxidative stress, including metabolism of gluta-
thione, histidine, leukotrienes, Ω-3 and Ω-6 fatty acids,
prostaglandins, and vitamins A, C, D, and E. More interestingly,
we found nine pathways exclusive to the PFAS mixture MWAS,
which were not enriched in any of the single PFAS MWAS. For
example, glycosphingolipid biosynthesis of neolacto-, lacto-, and
ganglioseries in the C18 column as well as peroxisomal fatty acid
oxidation and β-alanine metabolism in the HILIC column were
associated with exposure to the PFAS mixture but not PFNA,
PFOA, PFOS, or PFHxS. For the PFAS mixture MWAS, the
percentage of metabolic features enriched in each pathway
ranged from 19 to 100% among those measurable. Several
pathways had a higher percentage of overlap and a lower p-value
in the PFAS mixture MWAS than in any of the single PFAS
chemicals MWAS, including lysine metabolism (HILIC

column) and valine, leucine, and isoleucine degradation (C18
column).

Of the metabolic features significantly associated with the
PFAS mixture, 26 metabolites were confirmed with Level-1
evidence using their chemical identity, m/z, and retention time
(Table 4). During early pregnancy, the intensity of γ-
aminobutyric acid (GABA) was higher by 0.09 (95% CI: 0.03,
0.15) in the maternal serum metabolome when the PFAS
mixture was simultaneously increased by 1-quartile. In the
HILIC column, 12 other metabolites, including γ-linolenic acid,
carnitine, leucine, and uracil, were significantly associated with
prenatal exposure to the PFAS mixture. Analysis of the maternal
serum metabolome also revealed that a simultaneous one-
quartile increase in the PFAS mixture was associated with a
lower intensity of thyroxine (T4; ψ = −0.06; 95% CI: −0.11,
−0.01). An additional 12 metabolites, including eicosapentae-
noic acid (EPA), isoleucine, ketoleucine, tryptophan, tyrosine,
and valine, were significantly associated with the PFAS mixture
in the C18 column.

We observed several patterns of synergism and antagonism
between PFAS chemicals in the exposure mixture associated

Figure 4. Metabolic pathways associated with exposure to individual PFAS and their mixture during early pregnancy in the HILIC column. Note:
Bubble color denotes the pathway significance level (−log10 p-value). Bubble size denotes the percentage of significant metabolomic features (overlap
size) versus the total number of metabolomic features within a pathway (pathway size). Only significant associations (p < 0.05) are indicated by
bubbles in the plots. Only the following adducts were considered:M[1+], M +H[1+], M − H2O +H[1+], M +Na[1+], M +K[1+], M + 2H[2+], andM(C13)
+ 2H[2+].
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with Level-1 confirmed metabolites (Table 4). PFNA exhibited
antagonistic effects (i.e., negative quantile g-computation
weights) on metabolites related to nucleic acids and synergistic
effects (i.e., positive quantile g-computation weights) on
metabolites related to amino acids. Finally, the overall mixture
effect on the fatty acid and lipid metabolite intensities was
predominantly driven by PFOS, based on the direction and
magnitude of quantile g-computation weights.

■ DISCUSSION
In one of the first studies of its kind, we demonstrate the
feasibility and utility of using statistical methods designed for
exposure mixtures in combination with high-resolution
metabolomics to investigate the cumulative effects of prenatal
PFAS exposure on the maternal metabolome. Overall, we found
more pronounced metabolic perturbations associated with the
PFAS mixture than with any of the single PFAS chemicals. Our
findings indicate that simultaneous exposure to PFNA, PFOA,
PFOS, and PFHxS during early pregnancy is associated with
inflammatory and prooxidative pathways and metabolites.
Specifically, the biological perturbations suggested systemic

inflammation, endocrine disruption, nucleic acid damage, and
redox dyshomeostasis, which may guide future public health and
clinical interventions. The patterns observed across all of the
MWAS also illustrate the consistency of this method, which may
be leveraged in future studies to examine the joint impact of
environmental exposures on the human metabolome in
association with health outcomes.

The majority of population-based metabolomics studies have
assessed the effect of a single environmental chemical. However,
these models do not accurately reflect how human exposures
occur in reality, as more than 350,000 chemicals and their
mixtures exist in commerce and cumulative exposures may
produce additive or synergistic effects.44 In the present study, we
utilized quantile g-computation to assess the cumulative and
potential joint effects of a PFAS mixture, thereby providing an
important proof-of-concept for future work. The serum
concentrations of most PFAS in our study population were
comparable to participants with the same race, age, and sex in US
NHANES and pregnant people who identify as a minority
racial/ethnic group in other prospective cohorts during the same
time frame; a notable exception is PFHxS, which is significantly

Table 4. Level-1 Confirmed Metabolites Associated with Exposure to the PFAS Mixture, Estimated Using Quantile g-
Computation, during Early Pregnancy in the Atlanta African American Maternal-Child Cohort (N = 268), 2014−2020a

overall mixture effectb partial effectsc

metabolite m/z RT column ψ (95% CI) p-value PFOA PFNA PFOS PFHxS

Amino acids
α-acetyl-L-asparagine 175.0714 65.7 HILIC 0.18 (0.02, 0.34) 0.03 0.26 0.35 −1.00 0.39
3-hydroxyanthranilic acid 154.0499 35.4 HILIC 0.24 (0.08, 0.40) 0.004 −1.00 0.22 0.05 0.73
indole-3-acetaldehyde 158.0610 74.1 C18 0.03 (0.005, 0.05) 0.02 −0.18 0.65 −0.82 0.35
isoleucine 130.0874 23.9 C18 0.05 (0.01, 0.08) 0.01 −1.00 0.77 0.23 0.005
ketoleucine 129.0558 21.1 C18 0.05 (0.02, 0.09) 0.004 0.13 0.68 0.20 −1.00
leucine 132.1020 39.8 HILIC 0.04 (0.01, 0.08) 0.03 0.11 0.57 0.32 −1.00
tryptophan 203.0818 24.7 C18 0.03 (0.001, 0.05) 0.04 −0.72 0.67 −0.28 0.33
tyrosine 180.0665 23.3 C18 0.03 (0.001, 0.07) 0.048 −0.69 0.67 0.33 −0.31
valine 116.0718 24.7 C18 0.04 (0.01, 0.07) 0.02 −1.00 0.67 0.11 0.22

Fatty acids
carnitine 162.1125 46.8 HILIC 0.04 (0.003, 0.07) 0.04 0.12 −1.00 0.70 0.17
eicosapentaenoic acid 301.2173 249.4 C18 0.12 (0.001, 0.23) 0.049 −1.00 0.14 0.43 0.43
γ-linolenic acid 279.2319 22.3 HILIC 0.10 (0.02, 0.19) 0.02 0.33 −1.00 0.45 0.22
propionylcarnitine 218.1386 32.5 HILIC 0.07 (0.01, 0.14) 0.04 0.15 0.33 0.41 0.11

Nucleic acids
inosine 269.0883 43.3 HILIC 0.18 (0.01, 0.34) 0.04 0.13 −1.00 0.24 0.63
uracil 113.0347 39.0 HILIC −0.08 (−0.13, −0.02) 0.01 0.75 −0.67 0.25 −0.33

Other endogenous metabolites
γ-aminobutyric acid 104.0707 57.6 HILIC 0.09 (0.03, 0.15) 0.004 0.28 0.40 0.11 0.21
benzoic acid 121.0295 20.3 C18 0.10 (0.04, 0.17) 0.002 −0.82 −0.18 0.64 0.36
kynurenic acid 190.0498 37.2 HILIC 0.14 (0.03, 0.24) 0.02 −1.00 0.27 0.68 0.05
thyroxine 775.6796 46.6 C18 −0.06 (−0.11, −0.01) 0.03 −0.84 −0.03 −0.05 −0.07

Exogenous metabolites
aniline 94.0653 39.1 HILIC −0.11 (−0.22, −0.01) 0.03 −0.19 −0.28 1.00 −0.53
ferulic acid 195.0661 23.7 C18 −0.18 (−0.34, −0.02) 0.03 −0.06 1.00 −0.25 −0.69
10-hydroxydecanoic acid 189.1483 22.7 HILIC −0.04 (−0.07, −0.01) 0.02 1.00 −0.27 −0.26 −0.48
3-methoxy-4-hydroxymandelic acid 197.0434 22.3 C18 0.07 (0.03, 0.11) 0.001 0.43 0.55 0.02 −1.00
3-methyl-2-oxindole 162.0559 28.8 C18 0.30 (0.05, 0.55) 0.02 0.86 0.05 −1.00 0.10
nicotine 163.1230 34.5 HILIC 0.41 (0.12, 0.70) 0.01 0.04 0.38 0.14 0.44
oxovaleric acid 115.0402 22.9 C18 0.05 (0.01, 0.08) 0.01 0.39 0.43 −1.00 0.18

aNote: Models were adjusted for maternal age, education, parity, early pregnancy BMI, history of substance use, and gestational weeks at sample
collection. bOverall effect of the PFAS mixture on the maternal serum metabolome examined by quantile g-computation. ψ estimates are
interpreted as the overall mixture effect on the intensity of a maternal metabolite for a simultaneous increase in each PFAS chemical by 1-quartile.
cDirection (±) of weights indicate positive (+) or negative (−) effects. The magnitude (−1 to 1) of weights indicates relative importance to the
overall mixture effect in either direction and should not be directly compared.
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higher in the Atlanta African American Maternal-Child
Cohort.3,16 Furthermore, we observed that more metabolic
features were associated with the PFAS mixture containing
PFNA, PFOA, PFOS, and PFHxS relative to when we assessed
their individual effects in single-chemical models across both
analytical columns, which has important implications for
precision environmental health. To our knowledge, this is the
first application of quantile g-computation in high-throughput
-omics analyses examining the impact of environmental mixtures
on the human metabolome.14,21,22,45 This approach allows for
continuous and categorical outcomes, which can be easily
incorporated into the meet-in-the-middle approach and high-
dimensional mediational analysis in the future to examine how
the metabolic perturbations mediate the associations between
mixtures of environmental pollutants and complex adverse
health outcomes.46

In previous work, we reported on the maternal and fetal
metabolomic associations with prenatal exposure to single PFAS
chemicals and adverse birth outcomes.15,16 The present analysis
builds on this work by examining the effects of a PFAS mixture.
Similar to our approach, a 2023 study also examined the impact
of a PFAS mixture on the plasma metabolome of adolescents
and young adults enrolled in the Study of Latino Adolescents at
Risk (SOLAR) and Southern California Children’s Health
Study (CHS).17 Across our study and the study conducted
within SOLAR and CHS, amino acids and fatty acids critical to
energy production and endocrine signaling for healthy growth
and development in early life were consistently perturbed. In
addition, we have shown in two separate study populations that
pregnant people exposed to higher levels of PFNA, PFOA,
PFOS, PFHxS, perfluorodecanoic acid (PFDA), and perfluor-
oundecanoic acid (PFUNDA), and their mixture, are associated
with elevated oxidative stress.47 Our prior findings align with
those presented in the current study. A diverse suite of
inflammatory (e.g., histidine metabolism, prostaglandin for-
mation, leukotriene metabolism, Ω-6 fatty acid metabolism),
proteinogenic [e.g., branched-chain amino acid (BCAA)
metabolism, tyrosine metabolism, vitamin K metabolism], and
redox or otherwise bioenergetic-related (e.g., CoA biosynthesis
and degradation, glutathione metabolism, fatty acid β-oxidation,
TCA cycle, glycerophospholipid biosynthesis and metabolism,
carnitine shuttle) pathways were also enriched in our PFAS
mixture MWAS. A similar set of maternal metabolites were
negatively associated with the PFAS mixture, including T4 and
uracil, which were mainly driven by PFOA and PFNA,
respectively. In contrast, PFNA had a positive partial effect for
all amino acid metabolites, as well as GABA, with the greatest
contribution to the overall mixture effect for 11 of the 26
confirmed metabolites. This observation may reflect the wide
usage and longstanding production of PFNA, a long-chain
PFAS, that only recently began to phase out in the US.

Often referred to as pyridoxine, vitamin B6 is essential to the
nervous system and functions as a cofactor for the biosynthesis
of neurotransmitters.48 We found that vitamin B6 metabolism
was associated with prenatal exposure to PFOS and PFNA in
single-chemical MWAS, as well as the PFAS mixture. Consistent
with pathway enrichment analysis, the effect of the PFAS
mixture on GABA was primarily driven by PFNA, as evidenced
by PFNA having the largest partial effect. The ability for in utero
exposure to PFAS to cross the blood−brain barrier, particularly
long-chain chemicals like PFNA, and bioaccumulate in lipid-rich
tissues, such as the brain, have raised concerns about neurotoxic
health effects even before birth.49,50 However, there are mixed

reports of a link between prenatal PFAS exposures and altered
neurodevelopment or neurotransmitters in laboratory and
population-based settings.51−54 Our findings provide a potential
mechanism and marker, vitamin B6 metabolism and GABA�to
investigate in follow-up investigations of PFAS mixtures.

Pathways enriched in the PFAS mixture of MWAS with the
greatest size and strength were related to fatty acid biosynthesis,
activation, metabolism, and oxidation as well as eicosanoid
metabolism. Many of these pathways were also enriched in the
single-chemical PFOS MWAS. Furthermore, the PFAS mixture
had a positive cumulative effect on EPA (an Ω-3 fatty acid), γ-
linolenic acid (an Ω-6 fatty acid), and carnitine, which shuttles
long-chain fatty acids to the mitochondrion for β-oxidation. For
each of these, the effect of the PFAS mixture was driven by
PFOS. These findings are supported by prior work that has
shown exposures to PFOS and other PFAS chemicals interfere
with lipid homeostasis in the mother, placenta, and fetus.55 For
example, lipid-derived biomarkers of systemic inflammation,
oxidative stress, and hormone function are altered by
simultaneous exposure to multiple PFAS chemicals during the
perinatal period.47,56,57 The results we present align with
previous epidemiologic work and contribute new information
about how fatty acid and lipid metabolism are jointly affected by
the four most commonly detected and highly concentrated
PFAS in Americans.

An important strength of our study is the use of
comprehensive, high-resolution metabolomics methods to
assess global metabolism profiles and investigate broad
metabolic changes. Additionally, we utilized quantile g-
computation to characterize the cumulative and potential joint
effects of a PFAS mixture on the maternal metabolome, which
we compared to patterns observed with single PFAS chemicals.
Second, our study population was exclusive to African
Americans, who are often exposed to higher levels of
environmental hazards and experience a disproportionate
burden of adverse pregnancy outcomes. Nonetheless, we
acknowledge that this limits our external generalizability to
other racial and ethnic groups, as well as nonpregnant
populations; although, the consistent perturbations identified
in our study are similar to metabolic pathways previously
reported in independent studies and other populations.25,26,58,59

Our study had several other limitations. The PFAS
concentrations and metabolic features were both assessed in
serum samples obtained between 6 and 17 weeks gestation. In
this sense, our study is cross-sectional. Nonfasting status may
also introduce measurement variation. However, we believe any
measurement error is minimal, as we used pool standards and
internal references in the metabolic profiling plus followed a
comprehensive metabolomics workflow to minimize the
potential impact of nonfasting status, as successfully demon-
strated in previous studies.34,60 Additionally, we did not consider
dietary predictors, such as fish consumption or drinking water,
which may be a source of unmeasured confounding, and cannot
rule out the possibility that participants had an unknown,
undiagnosed medical condition or took medications or
supplements during pregnancy, which may have influenced
our results. At the time of analysis, we did not have information
on previous breastfeeding practices either, an established
determinant of maternal PFAS body burden. Further, our
results may be subject to recall bias for specific confounders
(e.g., substance use), where participants may be more likely to
under-report usage. Lastly, given the purpose of this proof-of-
concept analysis is to demonstrate the feasibility and utility of
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applying mixture analysis in metabolomics application, we used
unadjusted p-values for the pathway enrichment analysis due to
insufficient power, which is common in environmental
metabolomics studies.19 Despite the use of a less conservative
significance cutoff, we identified pathways and metabolites
similar to other PFAS MWAS that corrected for multiple
comparisons.16,61

■ IMPLICATIONS
This study presents a novel approach to examine the combined
effects of multiple PFAS exposures on the maternal metabolome
using environmental chemical mixture methods in conjunction
with high-resolution metabolomics. Our findings suggest that
exposure to multiple PFAS during early pregnancy may activate
inflammatory and prooxidative pathways and metabolites in the
maternal metabolome. Our study serves as a proof of concept of
how high-throughput omics and environmental molecular
epidemiology can be integrated, which is an important step
toward a precision medicine model in public health and
translational science.
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