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Abstract 

Background  Long COVID is a debilitating chronic condition that has affected over 100 million people globally. It 
is characterized by a diverse array of symptoms, including fatigue, cognitive dysfunction and respiratory problems. 
Studies have so far largely failed to identify genetic associations, the mechanisms behind the disease, or any com-
mon pathophysiology with other conditions such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) 
that present with similar symptoms.

Methods  We used a combinatorial analysis approach to identify combinations of genetic variants significantly associ-
ated with the development of long COVID and to examine the biological mechanisms underpinning its various symp-
toms. We compared two subpopulations of long COVID patients from Sano Genetics’ Long COVID GOLD study cohort, 
focusing on patients with severe or fatigue dominant phenotypes. We evaluated the genetic signatures previously 
identified in an ME/CFS population against this long COVID population to understand similarities with other fatigue 
disorders that may be triggered by a prior viral infection. Finally, we also compared the output of this long COVID 
analysis against known genetic associations in other chronic diseases, including a range of metabolic and neurologi-
cal disorders, to understand the overlap of pathophysiological mechanisms.

Results  Combinatorial analysis identified 73 genes that were highly associated with at least one of the long COVID 
populations included in this analysis. Of these, 9 genes have prior associations with acute COVID-19, and 14 were 
differentially expressed in a transcriptomic analysis of long COVID patients. A pathway enrichment analysis revealed 
that the biological pathways most significantly associated with the 73 long COVID genes were mainly aligned 
with neurological and cardiometabolic diseases.

Expanded genotype analysis suggests that specific SNX9 genotypes are a significant contributor to the risk of or pro-
tection against severe long COVID infection, but that the gene-disease relationship is context dependent and medi-
ated by interactions with KLF15 and RYR3.

Comparison of the genes uniquely associated with the Severe and Fatigue Dominant long COVID patients revealed 
significant differences between the pathways enriched in each subgroup. The genes unique to Severe long COVID 
patients were associated with immune pathways such as myeloid differentiation and macrophage foam cells. Genes 
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unique to the Fatigue Dominant subgroup were enriched in metabolic pathways such as MAPK/JNK signaling. We 
also identified overlap in the genes associated with Fatigue Dominant long COVID and ME/CFS, including several 
involved in circadian rhythm regulation and insulin regulation. Overall, 39 SNPs associated in this study with long 
COVID can be linked to 9 genes identified in a recent combinatorial analysis of ME/CFS patient from UK Biobank.

Among the 73 genes associated with long COVID, 42 are potentially tractable for novel drug discovery approaches, 
with 13 of these already targeted by drugs in clinical development pipelines. From this analysis for example, we identi-
fied TLR4 antagonists as repurposing candidates with potential to protect against long term cognitive impairment 
pathology caused by SARS-CoV-2. We are currently evaluating the repurposing potential of these drug targets for use 
in treating long COVID and/or ME/CFS.

Conclusion  This study demonstrates the power of combinatorial analytics for stratifying heterogeneous populations 
in complex diseases that do not have simple monogenic etiologies. These results build upon the genetic findings 
from combinatorial analyses of severe acute COVID-19 patients and an ME/CFS population and we expect that access 
to additional independent, larger patient datasets will further improve the disease insights and validate potential 
treatment options in long COVID.

Keywords  Long COVID, Post-acute sequelae of COVID-19, PASC, Post-Covid, Post-acute COVID syndrome, POTS, ME/
CFS, Patient stratification, Combinatorial analytics

Introduction
Post COVID-19 condition (or long COVID) is a debili-
tating syndrome that the World Health Organization 
(WHO) estimates affects up to 20% of people infected 
by SARS-CoV-2 [1]. Other more recent studies put 
the prevalence of long-term symptoms (over 3 months 
post-infection) in COVID-19 patients even higher 
[2], with all estimates implying that over 100 million 
patients have been affected by the condition globally 
[3]. Even though symptoms decline for most patients 
over time, some patients still experienced symptoms 
such as post-exertional malaise or postural tachycardia 
syndrome (POTS) [4] up to 2 years after infection [5], 
and the long-term health consequences of long COVID 
remain unknown, with suggestions of a doubling of the 
risk of developing cardiovascular issues [6].

Reports indicate an extensive array of symptoms 
associated with long COVID [7], with the most com-
mon being fatigue and post-exertional malaise (PEM) 
[8], cognitive dysfunction [9], mood disturbances [10] 
and respiratory problems [11]. However, establishing a 
precise diagnosis for either of these diseases has proved 
challenging, in large part due to the complexity and 
diversity of their clinical presentation and their effects 
across multiple organ systems. In an attempt to pro-
vide some definitive metrics, a recent study developed 
a data-driven scoring framework for diagnosing long 
COVID based on the available symptom data [12].

Although many studies have investigated the genetic 
risks underlying long COVID, only one genome-wide 
association study (GWAS) has identified a single risk 

locus around the lead variant in FOXP4 [13, 14]. Stud-
ies that used combinatorial analytical approaches to 
delineate genetic risk factors in similarly heterogenous 
populations have demonstrated more success, for 
example in severe COVID-19 [15] and ME/CFS [16].

Combinatorial analytics approaches identify combi-
nations of features that together (rather than individu-
ally) are associated with the disease phenotype [17]. 
They capture the non-linear effects of interactions 
between multiple genes (and exogenous factors if avail-
able). These signals are distinct from and complemen-
tary to the monogenic, linear additive associations of 
single SNPs found by GWAS. In complex (multifacto-
rial and heterogenous) diseases these non-linear com-
binatorial signals are significantly more important in 
understanding disease biology than in relatively mono-
genic disorders such as many cancers and rare genetic 
disorders [18, 19].

In this study we used combinatorial analytics to iden-
tify disease risk signatures (combinations of genetic 
variants significantly associated with the development 
of long COVID) and explored the biological mecha-
nisms with which they are involved. We investigated 
subpopulations of long COVID patients who had expe-
rienced either severe disease or a fatigue dominant 
phenotype, to compare the underlying genes and path-
ways that explain some of the heterogenous manifesta-
tions of the disease.

We also compared the output of this study against our 
previous ME/CFS analysis [16] to understand similarities 
in post-viral fatigue and other phenotypes experienced 
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by subsets of long COVID patients. Finally, we compared 
the pathways that were significantly enriched in this 
genetic analysis of long COVID against known genetic 
associations in other chronic diseases that are predomi-
nantly autoimmune, neurological and/or metabolic in 
nature, to evaluate any common pathophysiological 
mechanisms that might be shared by long COVID.

Methods
Sano Genetics GOLD study dataset
Genotypic and phenotypic data for both cases and con-
trols included in this study were generated from Sano 
Genetics’ Long COVID GOLD study [20]. Eligible par-
ticipants (n = 1996), recruited between 2020 and 2022, 
provided saliva samples for an at-home Sano DNA Test 
(evaluated via Illumina Global Screening Array with 
Multi-disease drop-in panel) and completed a ques-
tionnaire hosted on the Sano Genetics platform detail-
ing their acute COVID-19 and long COVID symptoms 

(if experienced), as well as basic demographic data and 
other chronic health conditions (see Additional file 1).

Symptom based score for long COVID severity
Given the heterogeneity of post-COVID symptoms 
reported by the GOLD study and other previous stud-
ies, we developed a data-driven scoring method to char-
acterize the severity of self-reported symptoms. We 
analyzed participant reported scores for each available 
long COVID symptom experienced pre- and post-acute 
COVID-19, including breathlessness, fatigue, degree 
of muscle pain and change in mental health (see Addi-
tional file 5: Table S1 for more details). A ‘Total Change’ 
score was generated for each patient from the sum of 
the reported differences across symptoms pre- and 
post-COVID.

Table 1  Characteristics of the two long COVID cohorts derived from the GOLD study dataset

Data for fields marked with asterisk (*) were not available for all individuals. Comorbidities marked with † were consistently over-represented in cases compared to 
controls in all cohorts

Severe long COVID n = 1323 Fatigue dominant long COVID n = 1386

Cases (n = 459) Controls (n = 864) Cases (n = 477) Controls (n = 909)

Age [median (IQR)] 45 (37–54) 54 (41–64) 45 (37–54) 54 (41–63)

Sex [n (%)] * M: 129 (28.1) M: 402 (46.5) M: 121 (25.4) M: 429 (47.2)

F: 329 (71.7) F: 462 (53.5) F: 355 (74.4) F: 480 (52.8)

Self-reported ethnicity [n (%)] *

 Wh = White Wh: 419 (91.3) Wh: 781 (90.4) Wh: 436 (91.4) Wh: 825 (90.1)

 As = Asian Mx: 19 (4.1) As: 33 (3.8) Mx: 17 (3.6) As: 33 (3.6)

 Mx = Mixed As: 12 (2.6) Mx: 22 (2.5) As: 14 (2.9) Mx: 23 (2.5)

 Bl = Black Ot: 4 (0.9) Bl: 12 (1.4) Bl: 4 (0.8) Ot: 13 (1.4)

 Ot = Other Bl: 2 (0.4) Ot: 12 (1.4) Ot: 3 (0.6) Bl: 11 (1.2)

 No = None No: 2 (0.4) No: 1 (0.1) No: 2 (0.4) No: 1 (0.1)

Recovery time in days (Median [IQR]) 479 (247–572) 18 (8–122) 484 (256–573) 18 (8–111)

COVID-19 related hospitalization [n (%)] 60 (13.1) 26 (3.0) 66 (13.8) 26 (2.9)

Reported problems after COVID-19 related hospital 
discharge [n (%)]

60 (13.1) 20 (2.3) 66 (13.8) 19 (2.1)

Hospitalized [n (%)] 46 (10.0) 7 (0.8) 50 (10.5) 8 (0.9)

Co-morbidities (pre-existing or post-COVID-19) [n (%)]

 Asthma† 108 (23.5) 121 (14.0) 110 (23.1) 133 (14.6)

 Alzheimer’s disease 0 (0.0) 1 (0.1) 0 (0.0) 1 (0.1)

 Coronary artery disease 2 (0.4) 13 (1.5) 3 (0.6) 13 (1.4)

 Chronic fatigue syndrome† 36 (7.8) 6 (0.7) 40 (8.4) 5 (0.6)

 Diabetes type 1 1 (0.2) 9 (1.0) 1 (0.2) 10 (1.1)

 Diabetes type 2 15 (3.3) 33 (3.8) 13 (2.7) 33 (3.6)

 Heart attack 5 (1.1) 7 (0.8) 3 (0.6) 7 (0.8)

 Irritable bowel syndrome† 65 (14.2) 41 (4.7) 74 (15.5) 47 (5.2)

 Kidney disease† 3 (0.7) 2 (0.2) 3 (0.6) 2 (0.2)

 Liver disease† 9 (2.0) 6 (0.7) 8 (1.7) 7 (0.8)
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Cohort characteristics
At the time of analysis, a total of 1829 individuals in 
the GOLD study had a self-reported COVID-19 diag-
nosis. This COVID-19 cohort had a median age of 
50 years [interquartile range (IQR) = 40—60] and median 
COVID-19 recovery time of 169 days [IQR = 14—507.5] 
(Table  1). It consisted of 61.1% females and 92.6% self-
reported their ethnicity as ‘White’. The most prevalent 
self-reported comorbidities (prior to or after COVID-
19) in the cohort were anxiety or panic attacks (30.0%), 
depression (26.2%), asthma (25.5%), eczema (18.6%) and 
migraines (17.4%).

The GOLD study cohort included in this analysis was 
recruited between January 2020 and November 2022. 
Using the Office for National Statistics (ONS) COVID-
19 Infection Survey data [21], we have estimated the 
most prevalent circulating SARS-CoV-2 variant in the 
UK that each participant was most likely to be exposed 
to when they contracted COVID-19 (Fig.  1). This dem-
onstrates that the majority (65%) of samples included 
in the study were most likely infected with the wildtype 
strain. The study does not include any participants who 
contracted any of the more recent SARS-CoV-2 variants 
that emerged in 2023.

Of those confirmed to have had COVID-19, 1345 
(73.5%) reported fatigue symptoms, 1135 (62.1%) 
reported symptoms linked to concentration, 1124 (61.5%) 
reported short-term memory symptoms and 714 (39.0%) 
reported breathlessness. The median ‘Total Change’ 

symptom score for the cohort was 15 [IQR = 2—35] 
(Additional file 5: Figure S1).

In the dataset, 1489 (81.4%) individuals provided free-
text responses on other symptoms that they experienced 
since their illness that were not covered elsewhere in the 
questionnaire. The most frequently reported symptoms 
included loss of smell, headache, pain, tinnitus, loss of 
taste, dizziness, insomnia and postural tachycardia syn-
drome (POTS) (see Additional file 5: Table S2 and Addi-
tional file 5: Figure S2). Following COVID infection, 353 
(19.3%) individuals reported reducing their working 
hours while 359 (19.6%) people discontinued working 
altogether post-illness.

Long COVID cohorts
We defined two long COVID case populations from the 
GOLD study based on self-reported symptom changes 
3  months post COVID-19—‘Severe’ long-haulers who 
reported the greatest variety and severity of symptoms 
and ‘Fatigue Dominant’ cases who reported predomi-
nantly fatigue-associated long COVID symptoms.

The World Health Organization defines long COVID 
patients as those experiencing one or more symptoms 
post initial COVID-19 infection. However, the cohort in 
the GOLD study that met these criteria displayed a great 
range in the severity and length of self-reported symp-
toms experienced post COVID-19. Instead, we aimed 

Fig. 1  Monthly distribution of the first self-reported COVID-19 diagnosis for the 1829 individuals included in Sano Genetics’ Long COVID GOLD 
study (2020–2022)
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to focus on the more ‘severe’ long haulers who reported 
the greatest degree of symptoms experienced as these are 
likely to be the patients experiencing long COVID symp-
toms that do not diminish over time without pharmaceu-
tical intervention.

The Fatigue Dominant’ cohort was chosen primarily 
due to their phenotypic similarity with ME/CFS, allowing 
us to explore potential commonalities between the dis-
eases based on our previously published combinatorial 
analysis for ME/CFS [16].

The number and overlap in cases and controls included 
in the two datasets are included in Additional file 5: Fig-
ure S3.

Severe long COVID cohort
The Severe long COVID cohort (n = 1,323 where 
cases = 459 and controls = 864) was selected using the dif-
ference in scores reported pre- and post-acute COVID-
19 for three long COVID symptom groups—namely, 
respiratory, fatigue and mental health. Severe cases were 
defined as those with a ‘Total Change’ score for these 
symptoms greater than or equal to the upper quartile of 
the distribution. The controls in this study were defined 
as samples with a ‘Total Change’ score greater than or 
equal to 0 but below the median of the distribution.

Fatigue dominant long COVID cohort
The Fatigue Dominant cohort (n = 1,386 where 
cases = 477 and controls = 909) was selected using only 
a subset of symptoms relating to fatigue in the scores 
(‘Fatigue Change’) reported for pre- and post-acute 
COVID-19 symptoms (see Additional file  5: Table  S1). 

The controls in this study were defined as samples with 
a ‘Fatigue Change’ score greater than or equal to 0 but 
below the median of the distribution.

The characteristics of the two cohorts are shown in 
Fig. 2 and described in Table 1, Fig. 1, Fig. 2 and Addi-
tional file 5: Figure S4.

Dataset QC
The two case–control datasets underwent a series of 
quality control (QC) procedures before they were ana-
lyzed using the PrecisionLife platform.

Standard variant-level and sample-level QC procedures 
were applied to the dataset (comprising of 696,382 SNPs) 
as described in the Genotype Quality Control section 
in Supplementary Information. Due to the small sample 
size of the two long COVID cohorts, the genotype data 
was filtered to exclude SNPs with minor allele frequency 
(MAF) < 5%. Very low frequency SNPs were removed as 
significant combinations involving rare variants are espe-
cially infrequent. This filter also increases the statistical 
power of combinatorial analysis to detect genotype-dis-
ease associations by reducing the amount of false discov-
ery rate (FDR) correction required when testing multiple 
SNP-genotype combinations. Following QC, the Severe 
dataset comprised of 283,478 SNPs and the Fatigue Dom-
inant dataset contained 283,444 SNPs.

Combinatorial analytics using the PrecisionLife platform
The PrecisionLife combinatorial analysis platform ena-
bles hypothesis-free identification of high-order com-
binatorial features (known as disease signatures), which 

Fig. 2  Distribution of the (a) ‘Total Change’ score for cases and controls in the Severe long COVID and (b) ‘Fatigue Change’ (part of ‘Total Change’ 
score) score in the Fatigue Dominant long COVID cohorts
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may include multiple SNP genotypes and/or other multi-
modal features in combination. These disease signatures 
capture both the linear and non-linear effects of genetic 
and molecular interaction networks and enable the iden-
tification of associations including those that are only 
relevant to a subgroup of patients. We have previously 
validated this analytical approach across a variety of com-
plex chronic diseases where it has identified more asso-
ciations with increased explanation of observed disease 
variance and reproducibility than comparable GWAS 
studies [15–17].

In the combinatorial analytics approach, disease signa-
tures are identified and statistically validated in ‘layers’ 
of increasing combinatorial complexity, i.e., singletons, 
pairs, triplets etc. (also known as combinatorial order). 
Each disease signature is validated multiple times using 
several statistical tests at each stage of the process to 
avoid false positives. A more detailed description of the 
mining and validation stages is given in our previous ME/
CFS study [16].

We applied the PrecisionLife platform to both long 
COVID case–control datasets in a hypothesis-free man-
ner to identify combinations of SNP genotypes that are 
strongly associated with the development of long COVID 
symptoms when they co-occur in the same patient. The 
method prioritizes SNP genotype combinations that have 
high odds ratios, low p-values (p < 0.05) and high preva-
lence (> 5%) in long COVID cases. A permutation-based 
approach was used to compare the observed properties 
of the most highly associated SNP-genotype combina-
tions to the null distribution for randomized datasets 
[22], with p-value cut-offs based on a specified threshold 
(Benjamini–Hochberg FDR of 0.05) after multiple test-
ing correction. Combinations passing these tests were 
reported as validated long COVID disease signatures. 

Finally, a merged network (disease architecture) view is 
generated by clustering all validated disease signatures 
based on their co-occurrence in patients in the dataset.

SNPs found in multiple disease signatures often form 
the central hub of the disease architecture (see Fig.  3). 
These are termed ‘critical SNPs’ if the corresponding net-
works pass a further permutation-based statistical test. 
Potential critical SNPs are scored using a Random For-
est (RF) algorithm with a fivefold cross-validation frame-
work to assess the accuracy with which they predict the 
case–control split in the dataset.

A cascade mapping process was used to map all the 
critical SNPs identified in the validated disease signa-
tures to the human reference genome (GRCh38) [23]. 
SNPs identified in the coding region of a gene (or genes) 
were mapped directly to this gene and any remaining 
SNPs within 2kb upstream or 0.5kb downstream were 
mapped to the nearest gene(s). Due to the uncertainty 
about the wide range of cells and tissues that have been 
implicated in long COVID etiology [7], genes assigned 
by either expression quantitative trait loci (eQTLs) or 
chromatin interaction (Hi-C) data were not specifically 
prioritized for further analysis (as they would likely be in 
other indications) to avoid capturing any spurious associ-
ations from non-trait-related tissues or cells. Genes that 
could additionally be mapped using only eQTL or Hi-C 
data from the critical SNPs were observed and reported 
in Additional file  2, although these were not further 
evaluated.

Finally, a semantic knowledge graph, including data 
from over 50 public data sources (see Additional file  5: 
Table  S3), was used to annotate the SNPs and genes, 
including data on prior genetic associations to disease, 
chromosomal location, tissue expression profiles, splice 
variants, mouse phenotypes, protein function/structure, 

Fig. 3  Conceptual representation of features, combinations and disease signatures that form part of PrecisionLife’s combinatorial analytics 
methodology. In the case of the long COVID study all features were SNP genotypes, but other feature types, e.g., a patient’s expression level 
of a specific protein, medication history or clinical features such as their eosinophil level, can also be used, independently from or in combination 
with the genotype data
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known active chemistry and any pre-existing scientific 
literature or clinical trials among other attributes. This 
allows us to generate evidence-backed mechanism of 
action hypotheses as to each genetic variant’s potential 
impact on a patient’s long COVID phenotype.

Ancestry analysis
Ancestry inference for the samples in the GOLD study 
was performed using GRAF-pop [24]. To maximize the 
number of samples included in each case–control data-
set, samples of all ancestries were included in the analysis. 
Since ancestry-specific analyses could not be performed 
due to limited samples in each cohort, we performed a 
logistic regression analysis to control for confounding 
effects of population structure. Any disease signatures 
that were no longer significantly associated with case–
control status (p < 0.05 with Bonferroni FDR correction) 
in a logistic regression that also includes a binary ances-
try variable for white-European/other ancestry were con-
sidered false positives and removed from further analysis.

Assessing causality with expanded genotypes analysis
The disease signatures output by the PrecisionLife plat-
form represent combinations of SNP genotypes that 

are significantly enriched in cases relative to controls. 
Expanded genotypes analysis (“EGA”) tests how the gen-
otype of a critical SNP from the disease signature affects 
the odds of disease when the genotypes of all interacting 
SNPs are held constant.

For each disease signature, we first assign patients to 
one of the possible combinations of the component SNP 
genotypes (the “expanded genotype signatures”). In the 
example illustrated in Fig. 4, the validated disease signa-
ture is comprised of two SNPs, each in one of 3 states (0, 
1 and 2), which can generate 9 (32) expanded genotype 
signatures. For combinations of 3, 4, and 5 SNPs, the 
number of expanded genotypes signatures is 27, 81, and 
243 respectively. We then calculate the disease odds for 
patients with each expanded genotype signature.

For a given critical SNP of interest, we identify sets of 
expanded genotype signatures that share the same geno-
types for all interacting SNPs (the blocks separated by the 
horizontal lines in Fig.  4). We calculate the “EGA odds 
ratio” by dividing the disease odds ratio for an expanded 
genotype signature with a copy of the critical SNP minor 
allele by the disease odds ratio for the matching expanded 
genotype signature with the critical SNP homozygous 
wild type genotype.

Due to the small number of patients associated with 
individual expanded genotype signatures, we may have 
insufficient statistical power to directly test whether the 
EGA odds ratios are significantly different from zero. 
Instead, the primary aim of the EGA is to test whether 
the observed directionality of the relationship between 
the critical SNP minor allele and disease phenotype is 
consistent across all or most expanded genotype signa-
tures. If the critical SNP genotype does not affect disease, 
then we expect the minor allele genotype will be ran-
domly associated with increased odds of disease for some 
expanded genotype signatures and decreased odds of dis-
ease for others, with no consistent biological pattern.

In the hypothetical example shown in Fig. 4, the EGA 
reveals that the critical SNP minor allele is consistently 
associated with elevated disease risk after controlling for 
the genotype of the interacting SNP. This pattern holds 
even though patients with the critical SNP minor allele 
have below average odds of disease when they also pos-
sess the wild type genotype at the interacting SNP. By 
controlling for the confounding effects of the interacting 
SNP, EGA allows us to gain a better understanding of the 
relationship between the critical SNP and disease.

Each disease signature was assigned to one of the fol-
lowing seven categories based on the broad patterns 
observed from the EGA: universally causative, univer-
sally protective, SNP-specific causative, SNP-specific 
protective, combination-specific causative, combination-
specific protective, or ambiguous. Definitions of each 

Fig. 4  Hypothetical example of an expanded genotypes analysis 
for a disease signature comprised of two SNPs. After controlling 
for the confounding effects of the interacting SNP genotype, patients 
with one or two copies of the critical SNP minor allele (genotypes “1” 
and “2”) have consistently elevated odds of disease relative to patients 
with the wild type genotype (“0”) at the critical SNP
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category are provided in Additional file  5: Table  S5. 
Across these categories, the designation of “Causative” 
and “Protective” do not necessarily guarantee that the 
specific critical SNP identified in the analysis directly 
affects disease risk. Due to low SNP coverage, the criti-
cal SNP could potentially be a neutral marker that is in 
strong linkage disequilibrium with the true biological 
variant.

We excluded all expanded genotype signatures which 
occurred in fewer than 15 patients from the EGA. Like-
wise, we did not consider disease signatures comprised 
of 4 or 5 SNPs due to the limited statistical power pro-
vided by the size of the available datasets. There are 81 
possible expanded genotype signatures for a combina-
tion of 4 SNPs, which corresponds to only 17 patients 
per expanded genotype signature. More problematically, 
there are 243 possible expanded genotype signatures for 
a combination of 5 SNPs, which corresponds to fewer 
than 6 patients per expanded genotype signature. The 
stochastic noise associated with such small sample sizes 
make it very difficult to identify broad patterns across the 
full set of expanded genotype pairs.

Phenotype enrichment analysis
The available clinical data from the questionnaire was 
used to evaluate the long COVID patient profiles associ-
ated with each of the disease signatures generated by the 
analysis. We calculated the statistical significance of the 
association of a particular phenotype with a set of long 
COVID cases with shared genetic variants when com-
pared against the rest of the case population. The two 
proportions Z-test was used for categorical variables, 
such as severity of acute COVID-19 and comorbidities, 
and Mann–Whitney U [25] for any continuous variables, 
such as participant reported scores that reflect change 
in symptoms pre- and post-COVID-19. Statistical asso-
ciations were corrected for multiple testing using Benja-
mini–Hochberg method.

Overlap analysis (“seeded” approach)
We evaluated the genetic overlap between the Severe and 
Fatigue Dominant cohorts by taking the SNPs identi-
fied in the hypothesis-free analysis for one dataset (seed 
SNPs) and testing whether any combinations involving 
them are also significantly associated with disease risk in 
the second dataset when analyzed by the PrecisionLife 
platform (see section “Combinatorial analytics using the 
PrecisionLife platform”).

This hypothesis-driven or ‘seeded’ approach was per-
formed in addition to a direct gene overlap analysis 
between the two cohorts. This approach mitigates the 

effects of stochastic differences in dataset composition 
when defining the combinatorial search space explored 
in our analyses. The number of possible SNP-genotype 
combinations is so extensive that it is impossible to sam-
ple the entirety of the space. This implies that true asso-
ciations may remain unreported because they were not 
tested when the dataset was analyzed using the hypoth-
esis-free approach.

We also employed this technique when evaluating the 
overlap between the genes identified in our analysis of 
the UK Biobank ME/CFS population and the two long 
COVID cohorts generated from the GOLD study. Due 
to the low SNP overlap (n = 42,500) between the arrays 
used to genotype the ME/CFS and long COVID datasets, 
we performed a seeded analysis using 383 SNPs in the 
Severe and Fatigue GOLD dataset that were within 10kb 
up or downstream of the original 14 ME/CFS genes.

Cross disease analysis
Cross disease analysis can provide insights into potential 
drug repurposing opportunities or development of com-
mon therapies. We compared the genes that were sig-
nificantly associated with Severe and Fatigue Dominant 
long COVID against a variety of other chronic diseases 
to identify shared pathophysiological mechanisms. These 
diseases included neurodegenerative, mental and behav-
ioural disorders, cardiovascular, gastrointestinal, auto-
immune and metabolic diseases (see Additional file  5: 
Tables S8, S9). Disease-associated genes identified for 
each indication group are those with known genetic links 
reported in OpenTargets [26] (v 23.02, February 2023 
release). Only genes with strong target-disease genetic 
association scores (> 0.9 out of 1.0) have been used in this 
analysis for each indication group.

Enrichment analysis was performed using the g:Profiler 
tool [27] to determine pathways and biological processes 
that are significantly associated with the disease-asso-
ciated genes for each indication group (p < 0.05, p-value 
correction for multiple testing using Benjamini-Hoch-
berg). This allows us to explore up/downstream of indi-
vidual gene targets to identify biological processes that 
are impacted across diseases.

Results
GWAS analysis
We evaluated the significance of individual genetic 
variants associated with the two long COVID datasets 
(Severe and Fatigue Dominant) using a standard GWAS 
analysis with PLINK [28]. As can be observed from the 
two Manhattan plots (Additional file  5: Figure S5), no 
SNP from either of the two cohorts reached the genome-
wide significance threshold (p < 5 × 10−8).
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Cohort analysis
To determine whether there was a correlation between 
circulation SARS-CoV-2 variant and long COVID symp-
tom severity, we plotted the ‘Total Change’ score for all 
study participants, including cases and controls, against 
the month they first contracted COVID-19 (Fig.  5). As 
defined in our Severe long COVID cohort, the greater the 
‘Total Change’ score, the greater the degree of severity in 
long COVID symptoms experienced by the participant.

This analysis shows a significant decrease in symptom 
severity over time, although the correlation coefficient is 
low, potentially due to data variability (Additional file 5: 
Figure S6).

Hypothesis free combinatorial analysis
Using the PrecisionLife combinatorial analysis platform, 
we identified 86 disease associated critical SNPs for the 
Severe cohort and 84 for the Fatigue Dominant cohort, 
mapping to 43 and 36 genes respectively  (Table  2). A 
total of 74 unique genes were associated with at least 
one of the long COVID cohorts, including 5 genes which 
were identified in both the Severe and Fatigue Dominant 
cohorts.

The disease signatures associated with each cohort 
were all combinations of 2 or more SNP genotypes, 
i.e., they were all combinatorial signals, predominantly 
involving combinations of 3–5 SNPs, that could not have 
been identified using GWAS (Fig. 6). An example of one 
of the disease signatures identified in the analysis of the 
Severe long COVID cohort is shown in Table 3. None of 

Fig. 5  Variation of the long COVID symptom-based ‘Total Change’ scores with COVID-19 diagnosis for 1829 individuals in the Sano Genetics’ Long 
COVID GOLD study (2020–2022)

Table 2  Summary of PrecisionLife combinatorial analysis results on Severe and Fatigue Dominant long COVID cohorts generated from 
the GOLD study

Severe cohort Fatigue dominant cohort

Total disease signatures (n) 1188 1435

Disease signatures by number of component SNPs (n) 0, 2, 88, 322, 776 0, 25, 191, 225, 994

Odds ratio of disease signatures (relative to mean odds, Median [Q1-Q3]) 77.9 [19.5—80.0] 22.5 [9.4—23.6]

RF scored “critical” SNPs (n) 86 84

RF scored genes (n) 43 36 (35 after ancestry confounder check)

Cases containing at least one disease signature (%) 100% 100%
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the SNPs identified in disease signatures were observed 
to be in linkage disequilibrium (LD) with each other.

All cases included in the analysis possessed at least one 
of the disease signatures found to be significant in the 
hypothesis-free study of its cohort. The complete list of 

genetic variants and their mapped genes identified from 
this study are listed in Additional File 2 (Fig. 7).

Upon further evaluation, 118 (10%) disease signatures 
identified in the Severe cohort and 120 (8.4%) signatures 

Fig. 6  Distribution of combinatorial order (i.e., number of component SNPs) for the validated combinatorial disease signatures from the Severe 
and Fatigue Dominant long COVID cohorts

Table 3  Example of one of the combinatorial disease signatures identified by the PrecisionLife combinatorial analysis of the Severe 
long COVID cohort

Bold text indicates the critical (RF-scored) SNPs (and the genes to which they are mapped) in this signature

SNP id/genotype Mapped genes Severe cohort case count for individual SNPs 
(control count, odds ratio)

Severe cohort case count for disease 
signature (control count, odds ratio)

rs2025994/0 SNX9 396 (703, 1.06)

rs6777173/0 KLF15 164 (226, 1.36) 57 (23, 4.67)

rs11072524/1 RYR3 141 (186, 1.43)

Fig. 7  Disease architecture diagrams representing (a) the Severe and (b) Fatigue Dominant long COVID patient populations generated 
by the PrecisionLife platform. Each circle represents a disease-associated SNP genotype, and edges represent their co-association in patients 
in disease signature(s). The critical SNP genotypes identified in each case population are highlighted in dark green
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in the Fatigue Dominant cohort comprised of SNPs that 
could be mapped to genes with shared biological func-
tions or pathways (see Additional file 3).

As there were limited number of cases and controls of 
non-European ancestry (see Additional file  5: Table  S6) 
in each of the two datasets, we evaluated the output to 
identify any disease signatures that may be confounded 
by population structure effects rather than reflecting a 
true disease signal.

All disease signatures in the Severe cohort passed the 
ancestry confounder analysis. We identified 129 (9%) 
disease signatures in the Fatigue Dominant cohorts that 
did not pass the ancestry confounder check (Additional 
file 5: Table S7). However, when we removed the SNPs 
and mapped genes represented only by these poten-
tially confounding disease signatures (and not also by 
one or more additional true disease signatures), only 
one gene (AC005005.1) associated with the Fatigue 
Dominant cohort linked to the critical SNP, rs4820946, 
was eliminated from all final disease associated gene 
lists. This reduced the 74 genes found to 73.

The cohort analysis indicates that fewer than 15% 
of cases that were assigned to either one or both long 
COVID case groups were hospitalized with severe 
COVID-19 or reported co-associated chronic diseases 
such as diabetes, cardiovascular disease or cognitive 
impairment. This meant that the number of cases with 
these phenotypes was too low to identify any associa-
tions, such as COVID-19 severity or a particular comor-
bidity, with genetic disease signatures.

Enrichment analysis of the fatigue, respiratory and 
mental health symptom-based scores for the Severe 
long COVID patients was used to investigate the clinical 
characteristics of the disease signatures identified in the 
Severe cohort study. Unfortunately, the population sizes 
were too small to reach statistical significance (p < 0.05) 
after multiple-testing correction (see Additional file 4).

From the two independent hypothesis-free analyses of 
the datasets, we identified SNP genotypes mapping to 5 
genes that were found to be significantly associated with 
disease in both the Severe and Fatigue Dominant long 
COVID cohorts. For each gene, more than 70% of cases 
from both cohorts possessed at least one disease signa-
ture containing an associated SNP (Table 4). These genes 
have a range of different functions and potential mecha-
nism of action hypotheses as to their role in the develop-
ment of long COVID.

Seeded analysis to test overlap between long Covid 
cohorts
The two independent analyses of the Fatigue Dominant 
and Severe cohorts indicated that 5 genes were strongly 
associated with long COVID in both cohorts. We per-
formed two seeded analyses to understand if any addi-
tional genes identified in either the Fatigue or Severe 
cohorts were also significant in the other population.

This approach revealed that 28/43 genes identified in 
the Severe cohort were also significantly associated with 
disease in the Fatigue Dominant cohort, and 25/35 genes 
from the original Fatigue Dominant analysis were also 
associated in the Severe cohort. This left 15 genes unique 

Table 4  List of genes significantly associated with long COVID in both the Severe and Fatigue Dominant cohorts

Gene % Patients with corresponding 
disease signature in Severe 
cases (Severe controls)

% Patients with corresponding 
disease signature in Fatigue 
cases (Fatigue controls)

Gene function Mechanism of action hypothesis 
in long COVID

D2HGDH 90.6 (12.5) 70.2 (1.5) Catalyzes the oxidation 
of D-2-hydroxyglutarate 
(D-2-HG) to alpha-ketoglutarate

Involved in mitochondrial func-
tioning, also exhibits anti-inflam-
matory effects [29]

GUCY1A2 82.1 (7.9) 71.9 (1.6) Guanylate cyclase, cata-
lyzes the conversion of GTP 
to 3′,5′-cyclic GMP and pyroph-
osphate

Downregulated (hub gene) 
in SARS-CoV-2 infection [30]

PCSK2 93.9 (32.9) 94.9 (10.6) Proprotein convertase subtilisin, 
processes hormones, involved 
in glucagon release

Maintains energy homeostasis, 
regulates circulating GLP-1 levels 
[31]. Blood glucose, insulin resist-
ance and diabetes associated 
with long COVID [32]

CCDC146 92.4 (15.2) 86.8 (3.7) Coiled-coil domain contain-
ing 146, a ubiquitous centriole 
and microtubule-associated 
protein

Associated with cognitive func-
tioning and type 2 diabetes [33]

PGPEP1 82.4 (34.0) 91.0 (5.7) Removes 5-oxoproline from vari-
ous penultimate amino acid 
residues

Novel, possibly regulates various 
hormones and neuropeptides
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Table 5  List of genes that were uniquely associated with the Severe case cohort

Gene % Patients with corresponding disease 
signature in Severe cases (Severe 
controls)

Gene function Mechanism of action hypothesis in long 
COVID

ADIPOQ 67.1 (20.6) Adiponectin Controls fat metabolism and insulin sensi-
tivity [34]
Prevents SARS-CoV2-induced acute lung 
injury [35]

C1orf50 88.0 (9.6) Chromosome open reading frame 50 Novel

CETP 72.3 (5.6) Cholesteryl ester transfer protein Role in insulin resistance, metabolic syn-
drome, macrophage-induced inflammation 
[36]

CPLX4 71.2 (4.8) Complexin 4 Novel

DLC1 26.8 (3.3) GTPase, deleted in liver cancer 1 Autophagy [37], oncogene

DSCAML1 47.3 (2.3) Down syndrome cell adhesion molecule 
like 1

Regulates corticotropin-releasing hormone 
in HPA axis, attenuated response to acute 
stressors [38]

ENSG00000283580 88.0 (9.6) Novel protein Novel

ENSG00000285082 52.3 (6.5) Uncharacterized protein Novel

ETS1 30.5 (1) Transcription factor, v-ets avian erythro-
blastosis virus E26 oncogene homolog 1

Differentially regulated in peripheral blood 
of severe COVID-19 patients, modulates 
cytokine response [39–41]

MARCH8 74.5 (5.8) Membrane-associated ring finger, ubiqui-
tin protein ligase

Downregulates host transmembrane pro-
tein, confers resistance to multiple viruses 
including SARS-CoV [42, 43]

NOL4 37.7 7.6) Nucleolar protein 4 Differentially expressed in infective endo-
carditis [44]

PDE6C 39.7 (8.3) Phosphodiesterase 6C, cGMP-specific Novel

PGPEP1 82.4 (34) Pyroglutamyl-peptidase I Novel

SNX9 41.2 (9.7) Sorting nexin 9 Regulated by chronic inflammation, traf-
ficking of mitochondrial-derived vesicles 
[45, 46]

TLR4 52.3 (6.5) Toll-like receptor 4 Mediates innate immune response, genetic 
link to long-term cognitive dysfunction 
post COVID-19 [47, 48]

Table 6  List of genes that were uniquely associated with the Fatigue Dominant case cohort

Gene % Patients with corresponding disease 
signature in Fatigue cases (Fatigue 
controls)

Gene function Mechanism of action hypothesis in long COVID

ABCA9 74.6 (1.5) ATP-binding cassette Cholesterol responsive gene involved in monocyte dif-
ferentiation [49]

ACOT12 14.3 (1.6) Acyl-coA thioesterase Acetyl-coA signaling and cholesterol biosynthesis [50]

ANKRD6 25.6 (1.1) Ankyrin repeat domain 6 Possible links to muscle function and lipid metabolism [51, 
52]

LYRM2 25.6 (1.1) LYR motif containing 6 Assembly of NADH-dehydrogenase complex, involved 
in cellular respiration [53]

POR 23.9 (2.2) Cytochrome P450 oxidoreductase Downstream of MAPK signaling in oxidative stress pathway 
[54]

RRBP1 71.2 (17.6) Ribosome binding protein 1 Relocates to mitochondrial vicinity during mitochondrial 
protein import stress, involved in endurance capacity 
in skeletal muscle during exercise [55]

SPTBN5 72.3 (1.54) Spectrin, beta, non-erythrocytic 5 Novel

TNIK 74.4 (19.1) TRAF2 and NCK interacting kinase Regulates JNK signaling [56]

TNS1 83.2 (2.97) Tensin 1 Lack of AMPK increases tensin expression [57]

TPST1 84.5 (2.64) Tyrosylprotein sulfotransferase 1 Required for monocyte recruitment [58]
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to the Severe cohort and 10 genes unique to the Fatigue 
Dominant cohort.

The unique genes, the percentage of total cases they 
were associated with, and their biological functions are 
summarized in Tables 5 and 6.

Fig. 8  Pathway enrichment plot for disease-associated genes found in the Severe and Fatigue Dominant long COVID cohorts. GeneRatio represents 
the ratio of genes found in the pathway compared to the genes associated with a cohort and p.adjust represents the p-value adjusted for multiple 
testing. The dots in the plot are colour-coded based on their corresponding p.adjust values

Table 7  List of critical SNPs significantly associated with long COVID in the Severe and Fatigue Dominant long COVID cohorts that can 
be linked to genes identified in a combinatorial analysis of UK Biobank ME/CFS patients

Genes identified in UK Biobank ME/
CFS study 

Critical SNP identified in Severe cohort (within 10 kb 
up/downstream of gene)

Critical SNP identified in Fatigue Dominant 
cohort (within 10 kb up/downstream of 
gene)

CLOCK – rs62303689

SLC15A4 rs11059915 rs11059915

GPC5 – rs1536620

– rs16946160

rs462954 –

rs9560843 –

rs989236 –

rs9301839 –

ATP9A – rs6096573

rs77771672 rs77771672

rs2426361 –

INSR rs8110533 rs8110533

USP6NL rs11257114 –
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A comparative pathway enrichment analysis using the 
g:Profiler tool revealed that there were significant differ-
ences in the biological pathways associated with the lists 
of unique genes from the Severe and Fatigue Dominant 
cohorts (Fig.  8). Genes that were uniquely associated 
with the Severe long COVID cohort were more likely 
to be found in immune pathways such as myeloid dif-
ferentiation, macrophage foam cells and lipid signaling 
pathways. Genes that were uniquely associated with the 
Fatigue Dominant cohort were linked to metabolic path-
ways such as JNK/MAPK signaling cascades.

Comparison of long COVID with ME/CFS
We also used the seeded analysis approach to test for 
overlap between disease signatures associated with long 
COVID and those associated with ME/CFS in our previ-
ous study [16].

Taking the list of SNPs within genes that were identi-
fied to be significant within the UK Biobank ME/CFS 
population, we found that 24 SNPs were also associ-
ated with long COVID in the Severe cohort. Of these 
24 SNPs, 9 were critical (RF scored) within the Severe 
long COVID population, mapping to 5 genes (Table 7).

In the Fatigue Dominant cohort, 27 SNPs were asso-
ciated with long COVID, of which 12 SNPs were also 
common with the Severe cohort (Additional file  5: 
Table S4). 7 of these 27 SNPs were critical (RF scored) 
SNPs within the Fatigue Dominant long COVID cases, 
mapping to 5 genes previously found in the ME/CFS 
study (Table 7).

Comparison of long COVID genes identified with acute 
COVID‑19 studies
Whilst few GWAS significant variants have so far been 
identified in long COVID [59], we sought to compare 
the 73 unique genes identified in our long COVID 
studies against the literature for any evidence within 
severe COVID-19 and/or long COVID. Of these genes, 
at least 9 have prior associations—such as differential 
expression and genetic susceptibility analyses—to acute 
COVID-19 after reviewing available publications in 
PubMed and other data sources such as OpenTargets 
(Table 8).

We also compared our results against the blood 
derived gene expression signatures associated with 
post-acute sequelae identified by Thompson et al. [64]. 
There are several key differences between the studies—
Thompson et al. recruited individuals hospitalized with 
severe acute COVID-19 infection, whereas the major-
ity of individuals in our study experienced milder forms 
of the disease (Table 1). We are also drawing compari-
sons from a transcriptomic study derived from whole 
blood against a combinatorial study of germline genetic 
variants.

Nonetheless, we found that 14 of the 73 genes 
(Severe = 7 and Fatigue Dominant = 7) identified in our 
analyses were also differentially expressed at the tran-
scriptomic level in patients experiencing long COVID 
(Additional file 5: Table S10).

Table 8  Known associations of genes identified in either one or both of the cohorts of long COVID patients with acute COVID-19

Gene Long COVID Cohort Function COVID-19 associated literature

ADIPOQ Severe Adiponectin Prevents SARS-CoV2-induced acute lung injury [35]

APCDD1 Severe and Fatigue Domi-
nant

Adenomatosis polyposis coil down-regulated 1 Bioinformatics analysis indicates APCDD1 is a dysregu-
lated gene in COVID-19 [60]

ETS1 Severe Transcription factor, v-ets avian erythroblastosis virus 
E26 oncogene homolog 1

Differentially regulated in peripheral blood of severe 
COVID-19 patients, modulates cytokine response 
[39–41]

GPC6 Severe and Fatigue Domi-
nant

Glypican 6 OpenTargets COVID-19 association (Reactome)—may 
interact with SARS-CoV-2 spike protein [61]

GUCY1A2 Severe and Fatigue Domi-
nant

Guanylate cyclase 1, soluble, alpha 2 Differentially expressed in SARS-CoV-2 infection [30]

MARCH8 Severe Membrane-associated ring finder, E3 ubiquitin 
protein ligase

Downregulates host transmembrane protein, confers 
resistance to multiple viruses including SARS-CoV [42, 
43]

SOX5 Severe and Fatigue Domi-
nant

SRY (sex determining region Y)-box 5 SOX5 + autoreactive memory B cells in COVID-19 [62]

TENM3 Severe and Fatigue Domi-
nant

Teneurin transmembrane protein 3 Genetic variant link to COVID-19 infection susceptibil-
ity [63]

TLR4 Severe Toll-like receptor 4 Mediates innate immune response, genetic link 
to long-term cognitive dysfunction post COVID-19 
[47, 48]
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Overlap between long COVID and other diseases
We identified genes with known genetic associations 
across a wide range of complex diseases including neu-
rodegenerative, mental or behavioral, cardiovascular, 
gastrointestinal, autoimmune and metabolic diseases 
(see Additional file  5: Tables S8 and S9). We evaluated 
the degree of overlap at a biological process level (using 
mapping of genes to biological processes in Gene Ontol-
ogy [65, 66]) to identify the common pathophysiological 
mechanisms that are shared between those diseases and 
long COVID.

27 biological processes are significantly enriched in the 
73 long COVID genes identified in this analysis, of which 
19 processes are also significantly enriched in at least 
one other indication group (Additional file 5: Table S13). 
Based on these 19 pathways, long COVID genes shared 
the greatest number of biological processes (> 50%) with 
cardiovascular disease and mental or behavioral disease 
followed by gastrointestinal disease, neurodegenera-
tive disease, autoimmune disease and metabolic disease 
(Fig. 9, Additional file 5: Table S13).

Expanded genotypes analysis to detect causal features
We conducted expanded genotypes analysis (EGA) for all 
Severe cohort RF scored genes (see Tables 3 and 4) found 
in disease signatures with 2 or 3 SNP genotypes. These 
comprise 5 genes corresponding to 23 disease signatures, 

including a disease signature that contains two RF scored 
genes (see Table 8).

We found that the critical SNP is universally protective 
across at least 2 validated disease signatures for 3 of the 
5 RF scored genes (ADIPOQ, NOL4, and PDE6C). That 
is, when we control for the genotypes at the interacting 
SNPs, expanded genotype signatures featuring at least 
one copy of the critical SNP minor allele are consistently 
associated with lower odds of severe long COVID rela-
tive to expanded genotype signatures with the homozy-
gous wild type genotype for the critical SNP. In all but 
one of the remaining disease signatures for these genes, 
the critical SNP minor allele is most often associated 
with decreased odds of severe long COVID, with narrow 
exceptions: i.e., when it fails to co-occur with the minor 
allele of an interacting SNP (“SNP-specific protective 
effect”) or when it co-occurs with a specific set of geno-
types at multiple interacting SNPs (“combination-specific 
causative effect”).

The critical SNP minor alleles for these three genes are 
typically associated with decreased risk of severe long 
COVID, which either implies that they represent broadly 
protective variants or causative variants that are in LD 
with the wild type allele at the genotyped SNP. This rela-
tionship only becomes apparent, however, when we con-
trol for the confounding effects of other causative and/or 
protective variants. Only one validated disease signature 

Fig. 9  Heatmap plot showing 19 biological processes (Gene Ontology biological process terms) shared between 73 long COVID genes identified 
in the GOLD cohort and genes with genetic evidence in one or more indication groups (neurodegenerative, mental or behavioral, cardiovascular, 
gastrointestinal, autoimmune and metabolic disorders). For each indication group, only the significantly enriched biological processes (p < 0.05) are 
shown in blue and the intensity of the color is based on the p values of the Gene Ontology term in each indication group
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for these three genes fails to exhibit a consistent biologi-
cal association between the critical SNP minor allele and 
disease, indicating a potential false positive.

In contrast, the gene SNX9 is  consistently associated 
with more complex interactions that highlight the com-
binatorial dynamics of disease. For example, we identified 
a disease signature comprising three SNPs that is asso-
ciated with strongly elevated odds of long COVID. This 
disease signature includes:

•	 critical SNP rs2025994 located approximately 40kb 
upstream of the SNX9 coding region

•	 interacting SNP rs6777173 located 12 kb upstream of 
KLF15

•	 interacting SNP rs11072524 located in an intron of 
RYR3

We also  found that the SNX9 minor allele offers sig-
nificant protection against the risk of long COVID 
among patients who possess a copy of the minor allele 
at either interacting SNP (i.e., a SNP-specific protective 
effect). That is, patients with the SNX9 heterozygous or 

homozygous minor allele genotype consistently have 
lower odds of developing severe long COVID than 
patients with the SNX9 homozygous wild type genotype, 
after controlling for the confounding effects of the geno-
types at the two interacting SNPs (see Table 9). Due to the 
small sample sizes associated with many expanded geno-
type signatures, these individual comparisons are not 
statistically significant. However, if we pool all patients 
in this cohort, then patients with a copy of the SNX9 
minor allele have significantly lower odds of disease than 
patients who are homozygous for the SNX9 wild type 
allele (odds ratio = 0.52, 41 cases/134 controls vs. 316 
cases/532 controls, Fisher’s Exact Test p = 0.00047; note 
that these totals include patients with rare expanded gen-
otype signatures not shown in Table 9).

A different pattern arises among patients who are 
homozygous for the wild type genotype at both inter-
acting SNPs  (Table  10). Here, patients with a copy of 
the SNX9 minor allele have higher odds of disease than 
patients who are homozygous for the SNX9 wild type 
allele (odds ratio = 1.86, 19 cases/22 controls vs. 74 

Table 9  Expanded Genotypes Analysis results for 5 RF-scored genes identified in the Severe cohort linked to disease signatures of 2 or 
3 SNPs (one disease signature contains SNPs associated with two genes)

Target Gene SNX9 ADIPOQ DLC1 NOL4 PDE6C

Universally causative minor allele 0 0 0 0 0

Universally protective minor allele 0 3 0 2 2

Minor allele with SNP-specific causative effect 2 0 0 0 0

Minor allele with SNP-specific protective effect 2 3 0 0 2

Minor allele with combination-specific causative effect 0 3 0 2 0

Minor allele with combination-specific protective effect 0 0 0 0 0

Ambiguous/no consistent effect 0 1 2 0 0

Table 10  Assessing the effects of the SNX9 rs2025994 genotype on severe long COVID when controlling for the genotypes of the 
interacting SNPs rs6777173 (KLF15) and rs11072524 (RYR3)

We present comparisons for genotype combinations that are present in more than 10 patients (which excludes the 18 patients who are homozygous for the SNX9 
minor allele). None of the EGA odds ratios for the individual comparisons are statistically significant after correcting for multiple testing. However, among patients 
who possess a copy of the minor allele at either interacting SNP, presence of the SNX9 minor allele consistently results in lower odds of disease relative to the 
homozygous wild type genotype (Fisher’s Exact Test p = 0.00047). Among patients who possess only wild type alleles for both interacting SNPs, presence of the SNX9 
minor allele results in higher odds of disease relative to the homozygous wild type genotype, but the difference is not statistically significant (Fisher’s Exact Test 
p = 0.075)

KLF15 minor 
allele count

RYR3 minor 
allele count

SNX9 homozygous wild type 
odds (cases:controls)

SNX9 heterozygous 
odds (cases:controls)

EGA Odds ratio: SNX9 heterozygous vs. 
homozygous wild type (95% confidence 
interval)

0 0 0.46 (74:160) 0.89 (17:19) 1.93 (0.95–3.93)

0 1 2.48 (57:23) 0.70 (7:10) 0.28 (0.10–0.83)

1 0 0.43 (114:267) 0.28 (14:50) 0.66 (0.35–1.23)

1 1 0.63 (48:76) 0.24 (6:25) 0.38 (0.15–0.99)

2 0 0.66 (71:108) 0.21 (6:28) 0.33 (0.13–0.83)

2 1 0.49 (17:35) 0.38 (3:8) 0.77 (0.18–3.29)
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cases/160 controls), although the odds ratio is not statis-
tically significant (Fisher’s Exact Test p = 0.075).

Together these results suggest that the SNX9 geno-
type is a significant contributor to the risk of severe long 
COVID infection, but that the gene-disease relationship 
is context dependent and mediated by interactions with 
KLF15 and RYR3. Similar non-linear interactions are 
represented by three additional disease signatures com-
prised of the same SNX9 critical SNP and different inter-
acting SNPs. Monogenic approaches such as GWAS that 
do not consider these gene–gene interactions can fail to 
detect potentially important drivers of disease.

Finally, the expanded genotypes analysis did not pro-
vide any additional insight into the relationship between 
DLC1 and disease. This could indicate that the biologi-
cal relationship between DLC1 is highly complex or that 
the result is a false positive. However, the disease signa-
tures associated with strongly elevated odds of severe 
long COVID all contain the rare homozygous minor 
allele genotype for the DLC1 critical SNP. Due to small 
sample sizes, we were unable to analyze other expanded 
genotype signatures containing the potentially causative 
genotype. Thus, the ambiguous results may reflect the 
fact that the relationship between the DLC1 minor allele 
and long COVID does not carry over into heterozygous 
patients.

Evaluation of potential novel drug targets and repurposing 
opportunities
We evaluated the genes identified in the study to find 
potential novel drug targets and their associated mech-
anistic patient stratification biomarkers (the disease 
signatures that connect patient subgroups with the 
mechanistic etiology for their disease). As described in 
our previous ME/CFS paper, the use of combinatorial 
analytics to identify novel targets has been validated in 
other diseases such as ALS, where these novel targets 
have demonstrated disease modifying activity in in vitro 
models [67].

Of the 73 unique genes found across the two cohorts, 
42 are potentially tractable targets for drug develop-
ment strategies based on annotations from OpenTargets 
(defined by a score of greater than 0 across at least one 
metric for tractability), see Additional file  5: Table  S11. 
This includes 26 targets that are suited to an antibody 
approach and 18 that are amenable to modulation by 
small molecules.

Most (> 90%) of the genes are expressed in a wide 
range of tissues (Additional file  5: Figure S7) although 
the expression profile of the genes in specific cell types is 
variable (Additional file 5: Figure S8). Approximately 44% 
(n = 30) of the genes are expressed in inhibitory neurons 

followed by 41% in excitatory neurons (n = 28) and 40% 
in oligodendrocyte precursor cells (n = 27).

Using a systematic repositioning approach [68], we 
identified 13 long COVID targets that already have drugs 
in clinical development. As these drugs or development 
candidates may require fewer preclinical studies and 
already have a known safety profile, they could represent 
a quicker and de-risked strategy for developing poten-
tial new treatments. We are exploring the repurposing 
potential of these compounds for the treatment of long 
COVID and ME/CFS (where appropriate).

From this analysis for example, we identified TLR4 as 
an attractive repurposing candidate. Our analysis indi-
cates that 52% of cases included the Severe long COVID 
cohort had at least one disease signature containing a 
variant in TLR4 and there is additional supporting evi-
dence that inhibition of TLR4 in a mouse model prevents 
long term cognitive pathology such as synapse elimina-
tion and memory deficits that is caused by the SARS-
CoV-2 Spike protein [47]. Clinical studies have already 
shown that antagonizing TLR4 signaling dampens the 
pathological cytokine storm observed in patients with 
severe acute COVID-19 and reduces mortality rates in 
hospitalized COVID-19 patients [69, 70]. However, our 
analysis also indicates that antagonism of TLR4 may 
demonstrate therapeutic effects in long term pathology 
caused by SARS-CoV-2.

We performed a search of the GlobalData [71] database 
to further understand the number and stage of develop-
ment of TLR4 antagonists that are in clinical pipelines. 
This revealed a total of 88 unique drugs that target TLR4 
(either singularly or as part of a combination therapy), 
including 8 in development for acute COVID-19, the 
most advanced of which (Paridiprubart, Edesa Biotech 
Inc) is currently being evaluated in a Phase 3 study in 
hospitalized COVID-19 patients with Acute Respiratory 
Distress Syndrome (ARDS) [72].

Discussion
As an approach to identify the drivers of the complex 
disease biology of long COVID, combinatorial analytics 
yields more useful signal than GWAS. No SNPs reached 
the genome-wide significance threshold in either the 
Severe or Fatigue Dominant cohorts. This underlines 
the difficulties involved in using monogenic analysis 
approaches to understanding disease associated genetic 
variants and mechanistic etiologies in heterogeneous and 
polygenic diseases, especially with small datasets.

Using combinatorial analytics, we identified 73 unique 
genes in a long COVID population and highlighted the 
relevance of subsets of these genes to the different sub-
cohorts of the disease population. At least 9 of the genes 
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identified in this study have been linked to acute COVID-
19, and despite key differences in the study designs, we 
also observe that 14 of the 73 genes were differentially 
expressed in a transcriptomic analysis of long COVID 
patients. We can form strong mechanism of action 
hypotheses for each gene’s role in the development of 
long COVID.

Splitting the population into two long COVID sub-
types, Severe and Fatigue Dominant, allowed us to 
explore the genetic and biological differences underpin-
ning different clinical manifestations. The comparative 
pathway enrichment analysis identified differences in 
pathways between the genes uniquely associated with the 
Severe long COVID group and those uniquely associated 
with the Fatigue Dominant phenotype (Figure  8). The 
greater number of genes involved in immune response in 
the Severe long COVID cohort may also indicate a more 
severe form of the acute infection. This may potentially 
arise as a result of patients experiencing higher viral 
loads than average, as we identified 4 genes that have 
been functionally linked to SARS-CoV-2 host response 
and/or acute severe COVID-19 (Table 5).

The pathway enrichment analysis also highlighted an 
overrepresentation of genes involved in macrophage 
foam cell differentiation. The formation of foam cells 
leading to a profibrotic macrophage phenotype is criti-
cal in the development of atherosclerosis [73]. However, 
there is also evidence that profibrotic pulmonary mac-
rophages contribute to acute respiratory distress syn-
drome (ARDS) and lung injury associated with patients 
with severe COVID-19 [74].

The genes that were associated only with the Fatigue 
Dominant long COVID cohort are enriched in MAPK 
and JNK signaling cascades as well as other metabolic 
processes involved in mitochondrial function and cel-
lular respiration (Table 6). As discussed in our previous 
ME/CFS paper, dysregulated mitochondrial function, 
resulting in the inability to increase respiration rates in 
response to increased demand from stressors such as 
exercise [75], may result in the post-exertional malaise 
(PEM) that is a hallmark of ME/CFS. The finding of 
similar pathways in the Fatigue Dominant long COVID 
cohort suggests that these patients may also struggle to 
meet energy demands.

It is known that NK cell effector function (cytotoxic 
activity) regulated by MAPK signaling cascades, includ-
ing via the c-Jun N-terminal kinase (JNK) [76] signal-
ing pathway, is dysregulated within patients with ME/
CFS, who exhibit reduced NK cell cytotoxic activity 
[77]. Further work will be required to confirm if similar 
pathological events occur in patients who develop fatigue 
dominant long COVID.

When we evaluated the degree of similarity between 
the genes associated with ME/CFS and long COVID, we 
found 13 critical SNPs (39 in total) within at least one of 
the long COVID populations that could be mapped to a 
gene previously associated with ME/CFS.

In both Severe and Fatigue Dominant long COVID 
populations, we identified SNPs mapping to the genes 
ATP9A, INSR, CLOCK, SLC15A4 and GPC5. All of these 
genetic variants were found in a higher proportion of the 
Fatigue Dominant and Severe long COVID populations 
than in the ME/CFS case group. This finding may indi-
cate that the long COVID case group defined by fatigue 
symptoms is more homogenous than those within the 
self-reported UK Biobank ME/CFS population, which 
likely includes a mix of viral and non-viral triggers of 
chronic fatigue symptoms.

We found that the CLOCK gene is significantly associ-
ated with Fatigue Dominant long COVID and ME/CFS. 
CLOCK (Circadian Locomotor Output Cycles Kaput) 
is an important regulator of circadian rhythm, disrup-
tions of which have been associated with pain, insomnia, 
insulin resistance, immunological function and impaired 
mitochondrial function [78–82]. Interestingly, one of the 
most common variants identified in ~ 86% of the long 
COVID Fatigue Dominant population mapped to the 
gene NLGN1. NLGN1 is also transcriptionally activated 
by CLOCK in the forebrain [83], which could indicate 
multiple genetic contributions to dysregulated circadian 
rhythm in long COVID.

Of the remaining 4 genes common between long 
COVID and ME/CFS, we identified 3 common variants 
in the genes ATP9A, INSR and SLC15A4 in both Severe 
and Fatigue Dominant cohorts (Table 7).

SLC15A4 encodes a transmembrane transport that 
has previously been associated with inflammatory auto-
immune diseases such as systemic lupus erythematosus 
from genome-wide association studies [84, 85]. However, 
SLC15A4 also plays a key role in mitochondrial func-
tion, with knock down of the gene resulting in impaired 
autophagy and mitochondrial membrane potential under 
cellular stress [86].

We also hypothesized that the genetic variants in 
ATP9A and INSR both contribute to dysregulated insulin 
signaling in subgroups of ME/CFS patients. Type 2 dia-
betes-related signaling pathways and insulin resistance 
were also a key theme within the genes associated with 
long COVID, and 11 of the gene targets identified in this 
analysis have prior associations with type 2 diabetes in 
the OpenTargets database (Additional file 5: Table S12). 
Metabolic dysfunction and type 2 diabetes may increase 
risk of developing severe acute COVID-19 [87] and epi-
demiological studies have demonstrated that there is an 
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increased risk of developing diabetes post COVID-19 
compared against controls who had not been infected 
with SARS-CoV-2 [88]. Furthermore, increased inci-
dence of insulin resistance and glycemic dysregulation 
was observed in patients 2 months post COVID-19 and 
in long COVID patients [32, 89].

Several of the biological processes that genes identi-
fied in this study are significantly enriched for—such 
as foam cell differentiation—are also associated with 
known genetic links to metabolic diseases such as type 
2 diabetes (Figure). Metabolic dysfunction has a variety 
of biological consequences, including increased levels of 
chronic inflammation, dysregulated immune response to 
acute infection, endothelial cell dysfunction and defects 
in coagulation pathways. All of these have been linked to 
long COVID and severe acute COVID-19 pathogenesis 
[90].

It is therefore plausible that patients with genetic vari-
ants that predispose them to metabolic dysfunction and 
insulin resistance are more likely to suffer from long term 
pathological sequelae after the acute phase of COVID-19 
infection. From these findings we would indeed expect 
this population to have increased rates of new-onset type 
2 diabetes compared to the non-long COVID population. 
Unfortunately, longitudinal health record data after the 
survey was completed was not available to validate this 
hypothesis in this analysis.

Similarities in indications observed from the cross-dis-
ease analysis have also highlighted shared pathways and 
biological processes associated with genetic drivers of 
these indications. The results are supported by common 
clinical manifestations reported in long COVID stud-
ies. Of the 27 pathways significantly enriched in the long 
COVID genes identified in this analysis, 16 (60%) are 
associated with gene targets previously associated with 
mental or behavioral disease (Figure  9). This includes 
indications such as major depressive disorder, anxi-
ety disorder and schizophrenia. A recent meta-analysis 
of over 10,000 patients indicated that neurological and 
neuropsychiatric symptoms, such as brain fog, atten-
tion deficits and fatigue, were some of the most reported 
3 months after acute COVID-19 [91]. This analysis may 
indicate some of the genetic underpinnings of these man-
ifestations post-COVID.

Study limitations
There are several limitations to this study. The most obvi-
ous is that the available datasets, even in a disease as top-
ical, prevalent, and debilitating as long COVID are still 
very small, which notwithstanding the improved sensitiv-
ity offered by the combinatorial analytics approach, inev-
itably poses limits on the statistical power of the study.

The most challenging limitation is the poor represen-
tation of diverse ancestries, which is essential to gain a 
deeper understanding of the variability of disease etiol-
ogy and achieve a level of health equity. As demonstrated 
by the cohort analysis, even though considerable effort 
was made to recruit as diverse a population as possible, 
the majority of participants recruited to the GOLD study 
were of self-reported white Caucasian ancestry. It is evi-
dent that long COVID is a highly heterogeneous disease 
with a variety of different symptoms, clinical presenta-
tions and underlying disease mechanisms including neu-
rological and metabolic dysregulation. From this dataset, 
we cannot understand the varying prevalence of these 
symptoms, or the effects that different genetic ancestries, 
socioeconomic factors, pathogen exposure levels or geo-
graphical differences may have in influencing the risk and 
presentation of long COVID in different ancestries.

Our cohort analysis also revealed that the incidence of 
other comorbidities (such as type 2 diabetes, cardiovas-
cular disease etc.) was lower than expected for a cohort 
with the same average age as the long COVID popula-
tion. This may indicate a degree of ‘otherwise healthy’ 
volunteer bias that limits this dataset as a representative 
sample of long COVID. Alternatively, it could reflect a 
problem with under-reporting of other medical condi-
tions within the self-reported questionnaire.

All the non-genomic data was self-reported by the 
participants via a questionnaire upon recruitment to 
the study, including long COVID symptoms, level of 
acute COVID-19 severity and medical history. Unfor-
tunately, no further EHR/primary care data was avail-
able. This method for reporting the degree of long 
COVID symptoms experienced is likely to be more 
subjective and prone to memory lapses and retrospec-
tive interpretation than direct and concurrent clinical 
information. This creates challenges in identifying the 
most relevant clusters of long COVID symptoms (e.g., 
respiratory, fatigue, GI etc.) and evaluating the severity 
of those symptoms experienced by different subgroups 
of cases.

We were unable to fully evaluate some of the most 
significant consequences and secondary diagnoses 
associated with long COVID disease. In particular, 
we would have liked to evaluate the specific drivers 
underlying the development of POTS, which was only 
recorded as part of participants’ free-text responses and 
not captured in the main questionnaire. In the absence 
of consistent diagnosis and clinical reporting for POTS, 
we attempted to analyze the symptoms that patients 
reported when recruited to the study. Tachycardia, diz-
ziness, palpitations, brain fog and even in some cases 
POTS were recorded but in insufficient numbers for a 
meaningful analysis.
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Hospital admission with a more severe form of acute 
COVID-19 has previously been identified as a risk fac-
tor for the development of long COVID [92]. We were 
unable to test this finding, as fewer than 10% of any of 
our case cohorts were hospitalized with COVID-19. As 
a result, there was insufficient data available to explore 
if long COVID cases with the 9 variants mapped to 
genes previously associated with acute COVID-19 
(Table 8) were more likely to have experienced a more 
severe form of acute COVID-19.

Finally, there is some emerging evidence that vacci-
nation against COVID-19 may be protective against the 
development of long COVID [93]. The analysis of our 
cohort does show a small but significant reduction in 
the severity of symptoms over the course of the period 
Jan 2020-Nov 2022. The majority of cases included in 
our study were first infected in 2020 or early 2021 (pre-
widespread vaccination) but the questionnaire did not 
contain any questions regarding vaccination/booster 
status, or if the participants contracted acute COVID-
19 before or after vaccination. As such, we are unable 
to evaluate the effect of vaccination on long COVID 
development within this cohort.

There is some additional evidence that omicron vari-
ants are less likely to cause long-term symptoms even 
after adjusting for vaccine status [94] and the evidence 
available in this study does not contradict that sugges-
tion. However, as demonstrated by our cohort analysis, 
it was difficult to assess the association of SARS-CoV-2 
variant status with long COVID risk due to the limited 
number of study participants recruited who contracted 
COVID-19 when omicron and more recent variants 
were the most prevalent in the UK, the limited amount 
of information on repeat infections, or vaccination/
booster status.

Conclusions and future perspectives
The results of this study, while encouraging and build-
ing consistently on findings in ME/CFS and other 
diseases with related symptomology, still need to be 
validated and replicated within an independent long 
COVID population, which ideally would have much 
deeper clinical phenotype and longitudinal history 
information.

Various groups have been collecting large acute 
COVID-19 and long COVID patient datasets over 
the last 3  years and we hope that they will now make 
the individual patient level data available to the wider 
research community quickly. We can realistically 
expect that analyzing an independent, larger and more 
detailed patient dataset using combinatorial analytics 
approaches will further improve the disease insights 
that we are gaining in long COVID, offering routes 

forward to alleviate the massive unmet medical need 
which has blighted the lives of millions of patients.
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