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Abstract 

Background  As an important vegetable crop, cultivated lettuce is grown worldwide and a great variety of agro-
nomic traits have been preserved within germplasm collections. The mechanisms underlying these phenotypic 
variations remain to be elucidated in association with sequence variations. Compared with single nucleotide poly-
morphisms, structural variations (SVs) that have more impacts on gene functions remain largely uncharacterized 
in the lettuce genome.

Results  Here, we produced a comprehensive SV set for 333 wild and cultivated lettuce accessions. Comparison of SV 
frequencies showed that the SVs prevalent in L. sativa affected the genes enriched in carbohydrate derivative cata-
bolic and secondary metabolic processes. Genome-wide association analysis of seven agronomic traits uncovered 
potentially causal SVs associated with seed coat color and leaf anthocyanin content.

Conclusion  Our work characterized a great abundance of SVs in the lettuce genome, and provides a valuable 
genomic resource for future lettuce breeding.
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Background
Sequence variations among individuals form the basis 
of phenotypic variations in crop species [1]. It is of great 
importance to understand the distribution and impacts 
of these variants in germplasm collections in order to uti-
lize them in breeding programs [2–4]. Sequence variants 
are classified based on their sizes into single-nucleotide 

polymorphisms (SNPs), insertion/deletions (indels), and 
structural variations (SVs) [5, 6]. Indels consist inser-
tions and deletions smaller than 50 bp, while SV is gener-
ally defined as a genomic variants over 50 bp, including 
deletions (DELs), insertions (INSs), duplications (DUPs), 
inversions (INVs) and chromosomal translocations 
(TRAs) [7]. Compared with SNPs and indels, SVs often 
have greater impacts on genome architectures and gene 
functions [8–10]. SV identification is the key to under-
stand these important variants, but it has been hampered 
by the complexity and relatively large size [11, 12].

Lettuce is one of the most valuable vegetable crops 
worldwide, together with chicory produces more than 27 
million tons in 2020 worldwide [13]. Cultivated lettuce is 
a primary ingredient in green salad, and a great variety of 
cultivars have been developed to meet consumers’ needs. 
Various agronomic traits, such as leaf shape, color, and 
texture, have been constantly selected by breeders [14, 
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15]. Understanding the underlying genetic mechanism 
would greatly facilitate the molecular breeding of favora-
ble traits in cultivated lettuce [16]. In a previous study, 
445 Lactuca accessions, including the major lettuce culti-
vated types and wild relative species, were sequenced and 
a comprehensive variome was developed, from which the 
population structure and domestication history of culti-
vated lettuce were revealed [17]. Genome-wide associa-
tion analyses with SNPs Identified genetic loci related to 
important agronomic traits. However, the impacts of SVs 
on the lettuce genome and agronomic traits have not 
been fully characterized.

Here, we generated a set of 3,693,607 SVs using an 
optimized pipeline from 333 cultivated and wild lettuce 
(L. sativa and L. serriola) accessions. Comparison of SV 
frequencies indicates that SVs have potential impact on 
carbohydrate and secondary metabolism in cultivated 
lettuce. Genome-wide association analysis using SVs 
identified candidate genes related to seed coat color and 
leaf anthocyanin content among other agronomic traits. 
This study improves our understanding of SVs in the let-
tuce genome, and provides a valuable resource for lettuce 
research and breeding in the future.

Results
Construction of a comprehensive SV set for cultivated 
and wild lettuce
To construct a comprehensive SV set, we used whole 
genome resequencing (WGS) data of 333 wild and culti-
vated lettuce accessions from a previous work, and three 

SV caller. Manta [18], Delly [19], and Breakdancer [20] 
for SV identification SVs. we optimized the parameters 
for SV combination and generated a total of 3,693,607 
SVs from 133 L. sativa and 200 L. serriola accessions 
(Fig. 1a, Table S1). This SV set was composed of 1,736,147 
DELs, 263,620 INSs, 168,774 DUPs, 74,429 INVs, and 
1,450,637 TRAs (Fig. 1b, Table S2). The SVs ranging from 
50–500  bp and 1–10  kb accounted for the largest two 
proportions of total SVs, 36.81% and 33.66% respectively. 
SVs of 10–100 kb and 0.5–1 kb were 14.88% and 9.51%, 
respectively, and SVs above 100  kb were relatively rare 
(5.14%; Fig. 1c). The lengths of DELs had a similar distri-
bution as the whole SV set with those of 50–500 bp and 
1–10 kb formed the largest two proportions (37.25% and 
35.41%, respectively). Those over 100  kb accounted for 
2.60% of total DELs, which were even rarer than in the 
total SVs (Fig. S1a). The other three SV types exhibited 
different distribution patterns. Nearly all the detected 
INSs were from 50 to 500 bp, most likely caused by dif-
ficulty in detecting long insertions from short reads. The 
most abundant DUPs were from 1–10 kb and 10–100 kb 
(39.62% and 27.91%, respectively), and nearly half of 
INVs were above 100  kb (49.82%) (Fig.  1c, Fig. S1b-d). 
The variation in length distribution among different SV 
types reflect that they may have different influence on the 
lettuce genome.

As shown in Fig.  1d, SVs were unevenly distributed 
across the lettuce genome, with the average SV num-
bers per Mb ranging from 1757.87 on chromosome 1 to 
1547.74 on chromosome 9. In the lettuce genome, 88.25% 

Fig. 1  SVs in 133 L. sativa and 200 L. serriola accessions. a The distribution of SVs along the lettuce genome. Circos plot from outer to inter tracks 
shows, (I) gene density in a 1-Mb sliding window, (II) GC content, (III-VII) SV count in the 1-Mb window for various SV types, including DEL (III), INS 
(IV), TRA (V), INV (VI), and DUP (VII). b The number of different SV types. c Detection frequencies of SVs with different sizes. d The density of SVs 
and gene on each chromosome (count per Mb). e The number of SVs from different generic regions
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SVs reside in intergenic region and the rest were from 
protein-coding genes (Fig.  1e). Among those from the 
genic regions, 0.85% were overlapped with exons, 3.21% 
were overlapped with introns, 4.20% were overlapped 
with 1-kb upstream regions, and 3.89% were overlapped 
with 1-kb downstream regions.

SV impact in cultivated lettuce
To investigate the impact of SVs on gene functions, we 
annotated the SVs using SnpEff and found that 38,255 out 
of 38,901 annotated genes were affected by at least one 
SV. Among more than 3.6 million SVs, 223,840 were pre-
dicted with high impacts by disrupting gene functions, 
75,370 SVs with moderate impacts that cause amino 
acid change, 986,174 SVs with low impacts that cause no 
changes in protein sequences, and 2,548,899 SVs were 
classified as modifier. The high-impact SVs included 
138,311 DELs, 454 INSs, 9,696 DUPs, 6,951 INVs, and 
68,428 TRAs, which affected 38,177, 442, 3,820, 1,867 
and 12,346 genes, respectively. As the majority of DELs 
were from 50–500 bp and 1–10 kb, the genes affected by 
DELs were most likely disrupted.

Among 3,693,607 SVs, 480,903 were shared between 
L. sativa and L. serriola, which account for 47.70% of 
those identified in L. sativa and 15.19% in L. serriola 
(Fig. 2a). The length, number and SV positions relative to 

protein-coding genes distribution of SVs in L. sativa and 
L. serriola were similar (Figs. S2b-c and S3b-c). SVs were 
unevenly distributed in the genomes of L. sativa and L. 
serriola, with the largest difference observed on chromo-
some 6. The SVs density in L. serriola was 3.84 times that 
of L. sativa on chromosome 6 (Figs. S2d and S3d).

A filtered set of 308,420 SVs was produced using the 
minor allele frequency of < 0.05 to obtain common alleles 
in the population. In the filtered SV set, 199,301 were 
shared between L. sativa and L. serriola, which account 
for 97.29% of common SVs in L. sativa and 65.80% in L. 
serriola (Fig. 2a). These results agreed with L. serriola as 
the progenitor and primary gene pool of L. sativa [21].

To evaluate which SVs were preferably distributed in 
L. sativa, we compared the SV frequencies between L. 
sativa and L. serriola. A total of 224,041 common SVs 
showed significant differences (FDR < 0.0001), among 
which 43,711 displayed higher frequencies in L. sativa, 
while 180,330 with higher frequencies in L. serriola 
(Fig.  2b, Table S3). A total of 6,502 genes were affected 
by L. sativa-predominant SVs, which were enriched with 
carbohydrate derivative catabolic and secondary meta-
bolic process in L. sativa (Fig.  2c, Table S4). Another 
enrichment analysis of metabolic pathways showed 
that isoflavonoid biosynthesis, benzoxazinoid biosyn-
thesis, plant-pathogen interaction, flavone and flavonol 

Fig. 2  SV divergence between L. sativa and L. serriola. a Venn diagram of SVs from L. sativa and L. serriola. In the left panel is from whole SV set, 
and the right panel from the filtered set. b Scatter plot showing SV frequencies in the L. sativa and L. serriola groups. Color from orange to light 
yellow represents FDR-adjusted P values from low to high. c GO terms enriched in genes affected by the SVs with significantly higher frequencies 
in L. sativa than in L. serriola. d Pathway enriched in genes affected by the SVs with significantly higher frequencies in L. sativa than in L. serriola 
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biosynthesis, glucosinolate biosynthesis, and galactose 
metabolism were enriched in the same 6,502 SV-affected 
genes (Fig.  2d, Table S5). Considering the majority of 
common SVs consisting of DELs that may disrupt gene 
function, the enrichment of these pathways suggests 
some of the related genes were likely to be selected 
against during lettuce domestication and improvement.

Population structure revealed by SVs
To determine whether SVs represent the genetic archi-
tecture of this germplasm collection, we carried out 
population analyses using the filtered SV set. The prin-
cipal component analysis (PCA) showed that the 333 
investigated samples were separated into three distinct 
groups, one of L. sativa accessions and two of the L. ser-
riola ones from Asia and Europe (Fig. 3a). In the neigh-
bor-joining tree, all the L. sativa accessions formed a 
single clade while the L. serriola samples formed several 
clusters from various geographical origins (Fig. 3b). The 

cross-validation value met the minimum when assuming 
five ancestries (Fig.  3c, Fig. S5), with two sub-groups in 
L. sativa (Butterhead and other cultivars) and three sub-
groups in L. serriola (Asian, southern and eastern Euro-
pean) (Fig. S4). A detailed intra-specific structure was 
further revealed when assuming ten ancestries, in which 
L. serriola were divided into five major geographic groups 
from central Asia, the Caucasus, western Asia, southern 
and eastern Europe. The admixed samples between L. 
sativa and L. serriola, and L. serriola from Turkey showed 
admixed genetic compositions (Fig. S6).

To determine the differences in SV between geographic 
group, we counted the specific SV of different geographi-
cal groups, and we found that the Caucasus group had 
the highest proportion of specific SV (Table S6), which 
was consistent with the highest nucleotide diversity in 
the Caucasian group [17]. Pathway analyses showed 
that the genes involved in flavone, isoflavonoid and fla-
vonol biosynthesis were enriched in those affected by 

Fig. 3  Population structure in 333 L. sativa and L. serriola accessions. a Principal component analysis (PCA) using the filtered SVs, in which green 
color represents L. sativa, yellow for L. serriola and gray for admixed samples between L. sativa and L. serriola. b Neighbor-joining tree with branch 
colors representing L. sativa (green), L. serriola (orange), and admixed samples (grey). c Model-based clustering analysis with different numbers 
of ancestry kinship (K = 3,5 or 10). Species are indicated in the colored bar at the bottom, with the green color for L. sativa and orange for L. serriola. 
Geographic groups of L. serriola are indicated in text from central Asia (CAS), the Caucasus (CAU), western Asia (WAS), southern Europe (SEU), 
and eastern Europe (EEU). Turkish samples and the admixed ones from L. sativa and L. serriola are indicated by arrows
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Caucasus-specific SVs, and the gene involved in plant-
pathogen interaction enriched in those affected by the 
SVs specific to the western Asian and eastern European 
groups (Table S7). These results revealed the population 
structure of L. sativa and L. serriola, which agreed with 
the previous results based on SNPs [17].

Association of SVs with agronomic traits
To estimate the impacts of SVs on phenotypic varia-
tions in cultivated lettuce, we conducted a genome-
wide association study (GWAS) on seven agronomic 
traits, including seed coat color, flower anthocyanin 
presence, leaf margin undulation, leaf anthocyanin con-
tent, seedling cotyledon shape, leaf venation and leaf 
morphology. A total of ten signals were found associ-
ated with six traits (Fig. S7, Table S8), which mostly 
agreed with previous GWAS results using SNPs [17]. 
For example, a 1.63-Mb region from 84.53 to 86.16 
Mb region on chromosome 5 was found in association 
with leaf anthocyanin content. This region contains five 
SVs, 29 SNPs, and 44 indels (Fig.  4a). The associated 
variants were linked with LG5_40441 near 85.52  Mb, 
which encode RLL2 transcription factor controlling 

leaf color as previously reported [15]. Although no dis-
ruptive variants were found within the coding region, 
we noticed a deletion surrounding LG5_40441 as illus-
trated in read alignment (Fig.  4b). We calculated the 
sequencing depth within a 100-kb window with a 10-kb 
step from 84 to 87 Mb on chromosome 5, and identified 
a deletion from 85.24 to 85.84 Mb containing the RLL2 
gene (Fig. 4c). This 600-kb deletion was detected in all 
13 accessions with high anthocyanin content and 31 
out of 111 ones with low content (Fig. 4e). Despite the 
600-kb deletion found in those with high anthocyanin 
content, the read alignments on LG5_40441 suggests 
the presence of a functional RLL2A gene (Fig. 4b). We 
therefore assembled contigs for six representative sam-
ples, and identified the RLL2A coding sequence in those 
with high anthocyanin content but not in low-content 
ones. RLL2B was also identified along with RLL2A from 
high-content accessions, while RLL2B-Y37 was the only 
allele found in those with low content (Data S1). Phylo-
genetic analysis showed that the RLL2B alleles was in 
the same clade as RLL2B-Y37, while the RLL2A alleles 
formed a distinct clade (Fig. 4d). Our results suggest a 
possible presence-absence variation carrying different 

Fig. 4  Genome-wide association study (GWAS) of leaf anthocyanin content in L. sativa using filtered SVs. a Manhattan plots of GWAS across nine 
lettuce chromosomes. b Read alignment on the genomic regions flanking the RLL2 gene shown in the IGV interface. The accessions with high 
anthocyanin content were colored in red. The RLL2 gene structure is shown at the bottom. c Sequencing depth ratio within the association region 
in six representative accessions. The 600-kb deletion is indicated by the orange box, and RLL2 is indicated by the arrow. The orange and blue lines 
indicate the relative sequencing depth (read coverage within a 100-kb window with 10-kb step divided by the average depth across the genome) 
in three representative accessions with high and low anthocyanin content, respectively. d A Maximum-likelihood phylogenetic tree of RLL2 protein 
sequences from six representative accessions. The accessions with high anthocyanin content were colored in red. e The frequency of the 600-kb 
deletion in L. sativa accessions with high and low anthocyanin content
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RLL2 alleles leads to the phenotypic variation in leaf 
anthocyanin content.

An uncharacterized trait was explored here in lettuce 
seeds, for which 52 L. sativa accessions were recorded 
with black seed coat and 81 with white seed coat in our 
collection (Fig. S8). PCA analyses were performed using 
filtered SNPs, Indels, and SVs in L. sativa, which revealed 
no apparent correlation between seed coat color and 
population structure (Fig. S9). To uncover the underly-
ing mechanism, we carried out a complementary associa-
tion analysis using filtered SNPs, indels and SVs. A single 
association signal peak was observed in SV-GWAS, and 
a similar peak was identified in the same region in SNP-
GWAS and indel-GWAS but with a high background 
(Fig. S8a-c). We then investigated the linkage disequi-
librium extent based on SNPs, Indels and SVs in the 
Chr7:49–53 Mb and identified three independent blocks 
at 49.23–49.60 Mb, 49.74–51.70 Mb and 51.75–52.67 Mb 
(Fig. S8d-e). The most significant associated signals were 
from the second block of 1.96 Mb, including 174 SNPs, 
693 indels and 71 SVs that were predicted to have disrup-
tive impact on 26 out of 33 genes (Table S9). A candidate 
gene, LG7_36701 that encodes a bHLH transcription fac-
tor homologous to the Arabidopsis TT8, was found the 
closest to the most significant signal (Chr7: 50,243,267, 
P = 1.80 × 10–40). In A. thaliana, the tt8 knockout mutant 
displayed brown seed coat color [22], and therefore the 
lettuce homolog may play a similar role in anthocyanin 
biosynthesis in seed coat.

Discussion
In this study, a total of 3,693,607 SVs were identified from 
333 L. sativa and L. serriola accessions using an opti-
mized pipeline. An in-depth comparison of SVs between 
wild and cultivated lettuce revealed the complexity of SVs 
in the lettuce genome.

SV identification is crucial to understand the genetic 
diversity within a given population and to investigate 
the impact of sequence variations [1, 23–25]. Whole 
genome sequencing (WGS) with short reads still repre-
sents a cost-effective way in the circumstance. Numerous 
SV detection software have been developed with WGS 
sequencing data based on read depth (RD), read pairs 
(RP) reads or split reads (SRs) [24, 26], and a great abun-
dance of short-read sequence data accumulated in public 
databases for major crop species [27]. Because these soft-
ware adopt different algorithms and perform differently 
in SV detection, it is recommended to merge outputs 
from multiple software to increase the accuracy [28]. 
However, this approach still has its limitations in detect 
complex SVs and resolve inconsistency in SV coordi-
nates. Recently, long read sequencing enables SV detec-
tion from complex genomic regions and improving the 

detection rate of SV, and therefore facilitates graph-based 
pan-genome construction, for example in soybean, rice, 
tomato, and potato [29–32]. The graph-based pange-
nome construction and SV genotyping by WGS would 
provide a cost-effective way to detect SVs within large 
germplasm collections in the future.

GWAS with high-density SNPs is usually capable of 
identifying genomic regions associated with investi-
gated traits, but without a comprehensive variant set it 
is often difficult to pinpoint causative mutations [33–35]. 
Recent studies demonstrate that including SVs in GWAS 
analyses explain additional heritability and increase the 
possibility for causal variant discovery [4, 30, 35, 36]. 
Association of SNP with lettuce leaf anthocyanin identi-
fied a 3.29-Mb region from 82.85–86.14 Mb on chromo-
some 5 [17], which enclosed the 84.53–86.16-Mb region 
detected by SV-GWAS. This demonstrates a strong asso-
ciation of RLL2A with leaf anthocyanin content detected 
by both SNPs and SVs. Recent work found SVs explained 
missing heritability by resolving incomplete LD, allelic 
heterogeneity, and locus heterogeneity in tomato [30]. 
The evidence from molecular and genetic studies in rice 
that SVs could cause major phenotypic variation. For 
example, an SV located on chromosome 3 (present and 
absent variant, 824  bp) may disrupt the formation of 
serine carboxypeptidase family proteins [37]. This pro-
tein plays a key role in the regulation of grain size [38]. 
Compared with the GWAS based on SNP, the SV-GWAS 
yields fewer significant associations, it could identify 
candidate regions for traits changes due to SVs [37, 39]. 
Therefore, utilizing a comprehensive variation set con-
taining SVs for candidate interval identification enhances 
the probability of finding candidate genes and causal 
mutations, which suggest that future association studies 
would benefit from analysis using a comprehensive vari-
ation set.

Conclusions
Here in this study, we generated a comprehensive SV set 
and characterized its distribution in the 333 L. sativa 
and L. serriola genebank accessions. Further association 
analyses revealed candidate variants and genes related to 
agronomic traits in cultivated lettuce. Overall, this work 
provides a valuable genomic resource for future lettuce 
research and breeding.

Materials and methods
SV identification
Raw sequencing data of 333 were downloaded from the 
CNGB Sequence Archive (CNSA) under the project ID 
CNP0000335 for 333 Lactuca accessions [17]. The raw 
data were generated in the BGISEQ-500 platform, and 
filtered by Trimmomatic (version 0.27) [40] with the 
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parameters ILLUMINACLIP:adapter.fa:2:35:4:12:true 
LEADING:3 TRAILING:3 SLIDINGWINDOW:5:15 
MINLEN:50. The filtered reads were mapped to the L. 
sativa cv. Salinas reference genome (version 8.0) [16] 
using BWA (version 0.7.12) [41] with the mem algo-
rithm using the default parameters. Selected three 
widely-used SV callers, including Manta (version: 
1.5.0.centos6_x86_64) [18], Delly (version: 0.7.8) [19], 
and Breakdancer (version: 1.3.6) [20] were run each 
accession to identify SVs. In order to improve detection 
accuracy, SVs were detected by at least two SV callers 
in our work, and those above 10  Mb were excluded 
from the data set. To check accuracy during SV merg-
ing, a total of manually confirmed non-redundant 229 
SVs on chromosome 8 identified in a L. serriola acces-
sions, TKI-340, were selected for manual authenticity 
validation manual curation (Table S10). The bam file 
was imported into the Integrative Genomics Viewer 
(IGV) [42] software, and the types and positions of the 
SVs within the region were manually validated based 
on read alignment (Fig. S10). In the same region, our 
SV calling procedure detected 142 SVs, including 135 
overlapped with the reference SV set and seven false 
ones. Among the 55 SVs detected by all three software, 
only two SVs were more than 10  bp apart (18  bp and 
41  bp) (Table S10). Based on 229 validated SVs, the 
maximum distance (--max_size_difference 10) for SV 
merging was set as the optimal parameter for svimmer 
(version 0.1) [43]. Then the SVs identified from each 
accession and from three software were merged into 
one vcf file using svimmer with the parameters ‘--max_
distance 10 --max_size_difference 10’. The impacts 
of SVs that overlapped with the genic region or 1-kb 
flanking regions were assessed using the SnpEff (ver-
sion 4.3r) [44] software with the parameter ‘-ud 1000’. 
The ‘-ud’ sets the size of upstream or downstream 
sequences.

Comparison of SV frequencies
The frequencies of SVs in L. sativa and L. serriola were 
calculated within a filtered SV set with the minor allele 
frequency (MAF) of < 0.05. The significance of the dif-
ferences in the SV frequencies between two groups was 
determined using the Fisher’s exact test, with the result-
ing p values corrected by the false discovery rate (FDR) 
method implemented in the R package “fdrtool”. SVs with 
FDR < 0.0001 and the ratio of allele frequency between L. 
sativa and L. serriola > 2 were classified as significantly 
differentially distributed. The protein-coding genes over-
lapped with differentially distributed SVs were used in an 
enrichment analysis of Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 
with the EnrichPipeline [45].

Population structure analysis
A principal component analysis (PCA) was carried out 
on the filtered SV set using GCTA (version 1.91.4beta3) 
[46], and a neighbor-joining tree was constructed using 
PHYLIP (version 3.696) [47]. Population structure was 
deduced using Admixture (version 1.3.0) [48] with each 
K from 2 to 10 repeated 20 times, whose outputs were 
aligned by CLUMPP (version 1.1.2) [49].

Genome‑wide association of agronomic traits
Phenotypic records were downloaded from the Centre 
for Genetic Resources, the Netherlands (CGN) (http://​
www.​wur.​eu/​cgnsc​002) website (Table S11). Genome-
wide association analyses were carried out on seven 
agronomic traits in L. sativa, including seed coat color, 
flower anthocyanin presence, leaf margin undulation, 
leaf anthocyanin content, seedling cotyledon shape, 
leaf venation and leaf morphology. A mixed linear 
regression model was run on the filtered SV set using 
EMMAX (beta-07Mar2010 version) [50] with five prin-
cipal components and Balding–Nichols kinship [51] as 
covariance. For seed coat color, a filtered SNP and inset 
set was also used for GWAS using EMMAX. The SNPs 
and indels were filtered with a missing rate of > 10% or 
a minor allele frequency (MAF) of < 0.05, and the SNP 
set was further pruning by PLINK using a window size 
of 10 kb with a step size of one SNP and an r2 thresh-
old of 0.5, as previously reported [17]. The significance 
threshold was adjusted using the Bonferroni method.

Phylogenetic analysis of RLL2
To get the full sequences of gene RLL2 in L. sativa germ-
plasm, raw reads were assembled into contigs by SOAP-
denovo (version 2.04; https://​github.​com/​BGI-​Qingd​ao/​
SOAPd​enovo​LR) for three accessions with high anthocy-
anin content, TKI-073, TKI-117 and TKI-122, and three 
with low content, TKI-001, TKI-074 and TKI-086. The 
RLL2 alleles were retrieved by blastn [52]. A phylogenetic 
tree was constructed with the RLL2 protein sequences 
using MEGA (version 11) [53] by the maximum likeli-
hood method.

To detect the large SVs around RLL2, we developed a 
custom script based on read alignment filles. Sequencing 
depth was calculated within a 100-kb window with 10-kb 
step using igvtools (Version 2.4.15) [54]. Deletions were 
determined as regions with its sequencing depth below 
half of the average depth across the genome, as imple-
mented in CNVnator [55].

http://www.wur.eu/cgnsc002
http://www.wur.eu/cgnsc002
https://github.com/BGI-Qingdao/SOAPdenovoLR
https://github.com/BGI-Qingdao/SOAPdenovoLR
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