AUTOPHAGY
2023, VOL. 19, NO. 12, 3033-3061
https://doi.org/10.1080/15548627.2023.2238577

Taylor & Francis
Taylor & Francis Group

R) Check for updates

REVIEW

The constructive and destructive impact of autophagy on both genders’
reproducibility, a comprehensive review

Mohammad Samare-Najaf ©2P<, Asma Neisy ©?, Ali Samareh ©¢, Delaram Moghadam ®¢, Navid Jamali ©f,

Reza Zarei 3, and Fatemeh Zal 9

2Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; PStudent Research Committee, Shiraz
University of Medical Sciences, Shiraz, Iran; <Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine,
Kerman Regional Blood Transfusion Center, Kerman, Iran; Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences,
Kerman, Iran; ¢Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of
Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran; 9Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran

ABSTRACT

Reproduction is characterized by a series of massive renovations at molecular, cellular, and tissue
levels. Recent studies have strongly tended to reveal the involvement of basic molecular pathways
such as autophagy, a highly conserved eukaryotic cellular recycling, during reproductive processes.
This review comprehensively describes the current knowledge, updated to September 2022, of
autophagy contribution during reproductive processes in males including spermatogenesis, sperm
motility and viability, and male sex hormones and females including germ cells and oocytes viability,
ovulation, implantation, fertilization, and female sex hormones. Furthermore, the consequences of
disruption in autophagic flux on the reproductive disorders including oligospermia, azoospermia,
asthenozoospermia, teratozoospermia, globozoospermia, premature ovarian insufficiency, polycystic
ovarian syndrome, endometriosis, and other disorders related to infertility are discussed as well.

Abbreviations: AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein
kinase; ATG: autophagy related; E,. estrogen; EDs: endocrine disruptors; ER: endoplasmic reticulum;
FSH: follicle stimulating hormone; FOX: forkhead box; GCs: granulosa cells; HIF: hypoxia inducible
factor; IVF: in vitro fertilization; IVM: in vitro maturation; LCs: Leydig cells; LDs: lipid droplets; LH:
luteinizing hormone; LRWD1: leucine rich repeats and WD repeat domain containing 1; MAP1LC3:
microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MTOR:
mechanistic target of rapamycin kinase; NFKB/NF-kB: nuclear factor kappa B; P, progesterone;
PCOS: polycystic ovarian syndrome; PDLIM1: PDZ and LIM domain 1; PI3K: phosphoinositide 3-kinase;
PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns3K: class Il phosphatidylinositol 3-kinase; POI:
premature ovarian insufficiency; ROS: reactive oxygen species; SCs: Sertoli cells; SQSTM1/p62: seques-
tosome 1; TSGA10: testis specific 10; TST: testosterone; VCP: vasolin containing protein.
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Introduction includes glycophagy and lipophagy (macromolecules), mito-

Autophagy is composed of two Greek words auto (that means
self) and phagein (that means to eat), which refers to a highly
conserved catabolic pathway crucially essential to maintain
cellular homeostasis. Although the process was described for
the first time in the 1960s, it took approximately 30 years for
the identification of the involved ATG (autophagy related)
genes to propel main breakthroughs in deciphering the
mechanistic complexities of autophagy [1-3]. Autophagy can
be divided into three major forms, including macroautophagy,
microautophagy, and chaperone-mediated autophagy, all of
which are responsible to deliver the cargo to the lysosomes
regardless of their different pathways [4,5]. Despite the initial
consideration of autophagy, particularly macroautophagy, as
a nonselective bulk degrative process, it is currently repre-
sented a highly selective mechanism due to the discovery of
autophagy receptors, among which SQSTM1/p62 (sequesto-
some 1) was the first [6,7]. The propound of selective cargo
became the basis for further classification of autophagy, which

phagy (mitochondria), reticulophagy (endoplasmic reticu-
lum), nucleophagy (parts of the nucleus), xenophagy
(pathogens), and lysophagy (lysosomes) [6].

Contrary to the fact that autophagy is often referred to as
a degradative mechanism, it is appropriate to describe it as
a recycling pathway to more accurately reflect its physiological
function, since the end products of the autophagic flux are not
discarded but serve either as energy sources or as building
blocks in the synthesis of macromolecules. Notably, a plethora
of evidence demonstrated that autophagy is remarkably
involved in a variety of vital biological processes ranging
from starvation to adaptation, cell development and differen-
tiation, innate and adaptive immunity, aberrant structures
degradation, damaged or excessive organelles turnover,
tumor suppression, cell survival, and regulated cell death [8-
10]. In fact, the beneficial role of this process is assumed to
contribute to diverse aspects of human and other organisms’
physiology and pathology including but not limited to
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metabolism and energy homeostasis, development, prolifera-
tion, differentiation, and cell death [11,12]. Incontrovertibly,
a number of biological processes such as fertility and inferti-
lity, due to their extreme dependence on these beneficial roles
of autophagy, can be considered an exhibition of autophagy
function, which ultimately determines the fate of human
fecundity by its regulatory ability.

It is well-documented that pregnancies and live births are
intricated multi-step processes that result from a variety of highly
regulated molecular pathways’ interactions at several consecutive
levels including the development of female and male gametes,
zygote formation and proliferation, and the development of
embryo prior to, during, and after implantation. All of these
biomolecule-mediated mechanisms require the further interaction
of biomolecules with the surrounding environment such as male
and female gonads, and subsequently after pregnancy in the female
genital tract from tubes to the uterus and endometrium [13,14].
Notably, accumulative evidence has demonstrated that autophagy
functions in a plethora number of cellular events during processes
involved in both genders’ fertility. Interestingly, knowledge of the
association between autophagy and the human reproductive sys-
tem has been paramount to understanding physiology (fertility)
and pathology (infertility), with the conclusive purpose of favoring
describing and treating female and male infertility.

Indeed, numerous pieces of evidence have revealed the indis-
pensable role of autophagy in maintaining the reproductive ability
of both sexes, in which any disruption will lead to subsequent
diseases [15,16]. The present review attempts to comprehensively
describe the function of autophagy during reproductive processes
in two separate chapters, including “male reproduction” and
“female reproduction”, and ultimately illustrates the reproductive
disorders/disruptions associated with autophagic flux interrup-
tion. For this purpose, all conducted studies until
September 2022, without any initial exclusion, were prepared by
searching for related keywords such as autophagy, ovary, uterus,
prostate, fertility, infertility, sperm, spermatid, spermatogonia,
spermatogenesis, testosterone (TST), hormone, estrogen (E,), pro-
gesterone (P4), follicle-stimulating hormone (FSH), luteinizing
hormone (LH), ovum, zygote, embryo, decidualization, implanta-
tion, fertilization, germ cell, follicle, sexual cycle, etc. in Google
Scholar, PubMed, and Scopus search engines. In the next step,
studies that were not in English, the abstract lacked relevant
material, were not original research, or the findings were not
available were excluded, and what remained were included in
this review.

Autophagy overview

The preserved mechanism of autophagic flux is regulated by
a series of proteins. MTOR (mechanistic target of rapamycin
kinase) consists of two complexes including MTORCI and
MTORC2 each of which represents a different function and
location. This kinase, which is involved in vital cellular pro-
cesses such as proliferation and response to stimuli, is con-
sidered the main negative regulator of autophagy as it is able
to directly phosphorylate the ULK1 (unc-51 like autophagy
activating kinase 1) complex (ULK1-ULK2, ATG13, RBICC1/
FIP200, and ATG101) and inactivate autophagy. The anabolic
inputs such as energy, nutrients, amino acids, growth factors,

and hypoxia are considered regulators of MTOR activity
[17,18]. In addition, AMP-activated protein kinase (AMPK)
is a key regulator of autophagy, which controls the autophagic
process by two distinct mechanisms, either through phos-
phorylation of MTORCI and its inactivation or direct phos-
phorylation of ULKI and its activation [19,20]. TFEB
(transcription factor EB) is another positive regulator that
controls autophagy and lysosomal biogenesis whose nuclear
translocation leads to the activation of autophagy by interac-
tion with both MTOR and AMPK [21,22]. Furthermore, the
class I phosphoinositide 3-kinase (PI3K) could regulate the
kinases that modulate autophagy. The incorporation of
BECNI1 (beclin 1), one of the class III phosphatidylinositol
3-kinase (PtdIns3K) subunits and an essential stimulator of
phosphatidylinositol-3-phosphate  (PtdIns3P) biosynthesis,
into class I PI3K is controlled by its association with other
proteins and kinases [23,24].

The process of macroautophagy, which is considered the
major part of the autophagy process and the most evidenced
type of it, could be assumed to consist of two total stages, the
formation of the autophagosome and the delivery of the
cargo to the lysosome. In a state where MTORCI is inhib-
ited, the ULK complex is dephosphorylated and thereby
activated subsequently playing a pivotal role in autophagy
initiation by phosphorylating several downstream factors. It
is documented that the activated ULK localizes to the pha-
gophore and induces the activation of PtdIns3K. Indeed, two
distinct BECN1-PtdIns3K complexes cooperate to produce
PtdIns3P. The produced PtdIns3P contributes to autophago-
some nucleation or endolysosomal and autolysosomal
maturation [25,26]. Subsequently, the ATGs are responsible
for the elongation of autophagosome formation. The mem-
brane of autophagosomes is supplied by vesicles containing
ATGYA, which is described as the only transmembrane core
ATG protein. Moreover, ATG2A and ATG2B, in coopera-
tion with other proteins called WIPI (WD repeat domain,
phosphoinositide interacting), participate in the early stages
of membrane elongation at the site of PtdIns3P generation
[27,28]. ATGI12 conjugates to ATG5, which binds ATG16L1
(forming the ATG12-ATG5-ATG16L1 complex) and acts in
the lipidation of MAPILC3A (microtubule associated pro-
tein 1 light chain 3 alpha), all of which contribute to the
expansion of the phagophore and completion of the auto-
phagosome membrane [29]. Upon the activation of
MAPILC3A, it interacts with phosphatidylethanolamine,
ATG3, and ATG7 resulting in the conversion of
MAPILC3A to MAPILC3B ([30,31]. This protein could
locate in both the inner and outer membrane of the auto-
phagosome and enable the autophagosome to bind its
selected substrates [31,32]. During the final stage, the mature
autophagosome containing the cargo fuses with the lysosome
and forms the autolysosome, which is followed by the degra-
dation of selected macromolecules or organelles [33].

Autophagy and the male reproductive system

The male reproduction process is completely depending on
the testis function consisting of two fundamental parts includ-
ing the mesenchyme and seminiferous tubules. Seminiferous



tubules are made of Sertoli cells (SCs) and several germ cells.
An appropriate interaction between SCs and germ cells within
seminiferous tubules is essential for healthy spermatogenesis
[34]. In fact, the tight connection between SCs and the blood-
testis barrier assists SCs in providing nourishing and spatial
support and makes them the main determinant of the number
of germ cells. Meanwhile, Leydig cells (LCs) are the major
functional part of mesenchyme which are essential for regu-
lating spermatogenesis through the endocrine terms [35,36].
A plethora of research has revealed various important
physiological roles of autophagy essential for testicular cell
functions. Degradation of unnecessary components in semi-
niferous tubules, regulating the normal cytoskeletal organiza-
tion, and adjusting the biosynthesis of sex steroids are the
main autophagic activities in SCs [37,38]. Additionally, it is
evidenced that autophagy could modulate the fundamental
steps of the spermatogenesis process and any disruption in
autophagic flux could end up in infertility. Herein, we will
clarify the role of autophagy in this important process.

Autophagy and spermatogenesis

The spermatogenesis process includes mitotic amplification of
spermatogonia, meiosis of spermatocytes to form spermatids,
and spermiogenesis, the process of spermatid maturation, in
which round haploid spermatids transform to become elongated
spermatids [36,39]. Recent studies have demonstrated the engage-
ment of autophagy in major parts of spermatogenesis, including
the removal of residual bodies, acrosome biogenesis, cytoskeleton
organization, and ectoplasmic specialization assembly [40].

Although autophagy has been assumed as a regulator of impor-
tant processes involved in spermatogenesis, various factors and
genes act as superior regulators of this process during spermato-
genesis. The initiation of autophagy during spermatogenesis is
mediated by Chtop/srag (chromatin target of PRMT1) through
a two-way strategy including its promoter region that binds to
Sox9 (SRY-box transcription factor 9), a transcription factor for
male sex determination, and interaction with preexisting Becnl
[41]. The epg5 gene encodes one of the most vital components of
autophagy and its deficiency leads to impaired autophagic flux.
The maturation or processing of autophagosomes is one of the
possible roles of this gene. The lack of expression or mutation in
this gene is associated with selectively impaired spermatogonia.
The presence of epg5 in fish and its homolog in the mouse testis
(Epg5) provides a conserved function during vertebrate sperma-
togenesis [42]. The rapid increase in the expression of TFEB
during the development and migration of germ cells from the
basal membrane toward seminiferous tubules may indicate the
regulatory role of this factor on autophagy during the differentia-
tion of spermatogonia [43].

Interestingly, recent studies have demonstrated that autophagy
was only activated during late meiotic spermatocytes but not in
spermatogonia and early spermatocytes (Figure 1). In other words,
autophagy must be inhibited for the initiation of the meiotic cell
cycle. The transition from the mitotic phase to the meiotic cell
cycle during spermatogenesis coincides with the suppression of
autophagy by the STRAS8 (stimulated by retinoic acid gene 8),
a meiotic gatekeeper, which is mediated by repression of NridI
(nuclear receptor subfamily 1, group D, member 1) expression,
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anuclear hormone receptor gene [44]. Localization of MAP1LC3B
at different stages of spermatid differentiation with the develop-
ment of a large number of autophagosomes, and transfer of
numerous endoplasmic reticulum (ER) to a Chrysanthemum
flower center, which formed and expanded several double-layer
membranes, indicates active autophagy in spermiogenesis in
Chinese soft-shelled turtle [45]. Autophagy appears to be exacer-
bated by the development of male germ cells because the ATG7
and MAP1LC3 localization is poor in the early stages of germ cells
near the basal membrane, but intensifies toward seminiferous
tubules in the round to elongated spermatids. Furthermore,
there is an increase in the number of lysosomes and autophago-
somes concordant with the progression of spermiogenesis, which
was not found in diploid cells. The transfer of the ER to the
Chrysanthemum flower, involved in the removal of the cytoplasm,
indicates the essential role of autophagy [46]. Similarly, ATG7 is
moderately expressed in cytoplasmic extensions of SCs during
inactive spermatogenesis, whereas it is strongly expressed during
active spermatogenesis [47]. Along with that, MAP1LC3 demon-
strated elevated expression from basal to the luminal compartment
of the seminiferous tubule, as well as a higher expression during
active than inactive spermatogenesis [47]. These findings, in addi-
tion to emphasizing the increase of autophagic flux in the late
stages of spermatogenesis, determine the crosstalk between auto-
phagy with other molecular pathways and cellular processes which
in turn any interruption is followed by male fertility complica-
tions [48].

Mitophagy and spermatogenesis

When mitochondria are defective, mitophagy, the specific degra-
dation of mitochondria by autophagic flux, functions to eliminate
the damaged mitochondria [49]. Thus, it could be claimed that
mitophagy is the most powerful controller of mitochondrial qual-
ity. In case of any disruption in mitochondrial health, mitophagy
initiates the recycling and producing small healthy mitochondria
to save cellular hemostasis. Conversely, shreds of evidence sug-
gested that the dynamic remodeling of mitochondria is
a significant cellular event that occurs during spermatogenesis.
The term dynamic refers to the fusion and fission of the mitochon-
dria [50]. The alterations in the size, number, and shape of mito-
chondria in different stages of sperm growth and development are
reported. For instance, undifferentiated spermatogonia generally
contain tiny and fragmented mitochondria [50]. Whereas, to
initiation of meiosis and differentiation of spermatogonia into
spermatocytes, mitochondria undergo mitofusin-mediated fusion
to supply the required energy. Subsequently, a rapid fragmentation
occurs in the mitochondria to produce small and sphere ones and
organize them in the central spiral pattern between the postmitotic
spermatid. Finally, at the end of spermatid maturation, mitochon-
dria are transformed into residual bodies in order to be recycled by
heterotrophic degradation in SCs [51,52]. Therefore, it is pivotally
necessary to elucidate whether mitophagy is involved in this
dynamic restructure of mitochondria and what is the importance
of mitophagy in male reproducibility.

Spermiogenesis, the end stage of spermatogenesis, requires
various changes in cells including elongation and condensa-
tion of the sperm nucleus, acrosome biosynthesis, and flagella
formation. Throughout this process, the elimination of excess
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Figure 1. The role of autophagy during spermatogenesis. The induced overproduction of GAGA in the second or third mitosis in early spermatogenesis leads to an
increase in the presence of autophagosomes, an increased autophagic flux, and a significant increase in mitophagy in spermatogonia. Moreover, the expression of
Epg5 is involved in the augmentation of autophagy and mitochondrial clearance during spermatogenesis. Interestingly, the Nrid71-mediated suppression of
autophagy by STRA8 is necessary for mitotic to miotic transition. The rate of autophagy in spermatogenesis increases after meiosis I. Conversely, decreased levels
of GSH increase the levels of MAP1LC3 proteins showing that autophagy is induced under oxidative stress, leading to the development and survival of male germ
cells with more DNA damage and sperm deformations followed by azoospermia and oligozoospermia. ANKRD49, along with the NFKB pathway, increases the
spermatogenesis rate via autophagy-dependent survival. In addition, overexpression of MAPK15 disrupts autophagy supportive function that controls the prevention
of DNA damage and the activation of the TP53, hence causing malignant transformation of germ cells.



mitochondria by mitophagy is an indispensable part of sper-
matozoa production [53]. Several studies have shown that any
defect, mutation, or conditional knocking out of genes serving
as key molecules of autophagy, led to mitochondrial dynamic
disruption and male fertility complications. For example,
ATG7-null mice exhibit an intense coiled flagellum and dis-
located poorly condensed mitochondria [53]. Furthermore,
SPATA33 (spermatogenesis associated 33), a vital protein in
localizing sperm calcineurin to the mitochondria and regulat-
ing sperm motility is also a receptor for mitophagy involved
in the degradation processes in male germline cells. SPATA33
is activated under starvation stress and promotes mitophagy
via directly mediating ATG16L1 interaction with VDAC2
(voltage dependent anion channel 2), an outer mitochondrial
membrane protein [54]. Therefore, the findings indicate the
probability of crucial involvement of mitophagy in degrading
mitochondria during spermiogenesis which is extremely vital
for sperm motility too, probably in terms of energy supply,
which will be discussed later.

Autophagy and removal of residual bodies

The first ultrastructural studies described the TST-
independent phagocytic function of SCs, which suggested

Table 1. Autophagy is required for spermatogenesis.
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the removal of residual bodies and germ cell debris in an
autophagy-lysosome-mediated pathway [55]. In nematodes,
although engulfment and degradation of residual bodies in
gonadal sheath cells involve the genes related to apoptotic cell
clearance, the lack of essential genes to activate apoptosis did
not affect the removal of residual bodies. Thereby, the “eat
me” signal and phagocytosis are more critical [56]. In mam-
mals, the segregation of the dominant part of the cytoplasm
into residual bodies is involved in the generation of sperma-
tozoa, which are detached and removed from the spermatids
[57,58]. Moreover, the UPS, which is responsible for Parkin-
mediated mitophagy, is extremely active during mammalian
spermiogenesis [59,60]. Some ATGs such as ATG7 are highly
involved in the removal of extra cytoplasm [61].

Autophagy and acrosome biogenesis

Autophagy can be considered one of the main regulators of
organelles required for the development and differentiation
of germ cells (Table 1). The acrosome is a lysozyme-
dependent specialized fertilization organelle that covers
the anterior of the sperm nucleus and contains enzymes
that penetrate the outer membrane of an egg cell, allowing
the egg to be fertilized. Autophagy could be considered an

Process

Autophagy role

Refs

The progress of ®
spermatogenesis

The population of lysosomes in seminiferous tubules increases toward the time of spermiation.
Autophagy, regulated by TFEB, is involved in germ cell migration and differentiation.

[45-48,55,62]

® The expression of MAP1LC3 and the presence of autophagosomes revealed that autophagy is highly active in
spermatocytes, differentiating spermatids, spermatozoa, and cytoplasmic droplets.
® Moreover, the crosstalk between TSGA10 and autophagy is required for appropriate spermatids differentiation and

sperm biogenesis.

® The numbers of lysosomes, the expression of ATG7 and MAP1LC3, and the number of phagophores and autopha-
gosomes increase as spermiogenesis progresses in male haploid cells. However, autophagy must be suppressed as
the meiotic phase initiates. In fact, the expression of ATG7 and MAP1LC3 is initially inhibited and increases
simultaneously with the progress of spermatogenesis.

Mitophagy °

The elimination of excess mitochondria by mitophagy is an indispensable part of spermatozoa production.
ATG7, for example, is crucially required for the proper location of mitochondria within germ cells.

[42,53,54]

® SPATA33 cooperates with autophagy for the degradation of mitochondria in male germline cells. SPATA33 is
activated under starvation stress and promotes mitophagy via directly mediating ATG16L1-VDAC2 interaction.
® Autophagy, at least partial and in cooperation with EPG5, is involved in paternal mitochondrial reduction during

spermatogenesis and after fertilization.

Removal of residual L]
bodies

Acrosome biogenesis o

The initiation of removal of residual bodies is mediated by autophagy. ATG5 is required for the removal of residual
bodies in the lumen within the seminiferous epithelium.

Autophagy components, particularly ATG7 and ATG5, are involved in acrosome biogenesis as acrosome originated

[46,55,63]

[64,65]

from the modification of the autolysosome system of biogenesis during evolution.
® Also, autophagy cooperates with other factors such as Profilin 4 during acrosome biogenesis.

Cytoskeleton °

reorganization ence to autolysosomes.

ATG7 causes excessive PDLIM1 to be engulfed by the MAP1LC3-labeled phagophore and degraded upon transfer-

[40,61]

® The assembly of F-actin-based and microtubule-based structures is mediated by ATG7.
® F-actin-containing apical ectoplasmic specialization structures and the related microtubule-based structures are
assembled properly by the function of autophagic flux.

Lisophagy and stress o
membrane of the phagophore.

LDs, and in other words, lipophagy regulate autophagosome biogenesis by donating lipids to the outside

[66-68]

® Lipophagy is involved in releasing endogenous energy for the developing germ cells. Micro- and macro-autophagy
provide energy for steroid biosynthesis through lipid metabolism. Moreover, autophagy provides tolerance during

stressful conditions

Note: Autophagy possesses a crucial conserved role in progressing germ cell maturation, removal of residual bodies, maintaining homeostasis, the survival of SCs, the
biogenesis of required organelles, and advancing spermatogenesis in cooperation with other factors.
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inducer of acrosome biogenesis since germ cell-specific atg7
knockout mice have a defect in the biogenesis of this
organelle and exhibited a phenotype similar to human
globozoospermia. ATG7 appears to play a role in the sec-
ondary stages of spermatogenesis, during the Golgi phase in
which preacrosomal vesicles fuse with a single acrosome
vesicle, leading to irregular or round-headed spermatozoa
[64]. ATG5 is an autophagic core protein that is involved in
acrosome biogenesis and normal male fertility by contribut-
ing to elongating spermatid development and sperm indi-
vidualization [63]. A recent study revealed that acrosome
biogenesis and manchette development during mouse sper-
miogenesis is dependent on autophagic flux as well as
PFN4 (profilin family member 4) expression, a protein
that localizes to the acrosome-acroplaxome-manchette com-
plex and is highly expressed during spermiogenesis [65].
The downregulation of this protein is accompanied by
upregulated PI3K-AKT/PKB (AKT serine/threonine kinase)
pathway and reduced AMPK levels all of which lead to
autophagic blockage and thereby inhibition of acrosome
formation [65].

Cytoskeleton organization

The cytoskeleton as the main mechanical support for the
cell consists of two major systems: F-actin and microtu-
bules [65]. The communication between SCs and germ
cells is vital to support the growth and maturation of
germ cells that require ectoplasmic specialization. These
connections are regulated by the cytoskeleton. ATG7 is an
essential factor for F-actin organization in mouse embryo-
nic fibroblast cells. Autophagy causes the breakdown of
PDLIM1 (PDZ and LIM domainl), a negative cytoskeleton
organization regulator in SCs, which is necessary for the
proper accumulation of ectoplasmic specialization [40].
ATG7, and perhaps MAPILC3, are highly involved in
the breakdown of PDLIMI, and defect in these ATGs
leads to pathological alterations such as cytoskeleton dis-
organization, lack of extra cytoplasm removal, and drop in
sperm motility [61].

Ectoplasmic specialization is an actin microfilament-rich
anchoring junction that consists of an apical side which is
a facilitator of spermatid development, and a basal side
which is the structural part of the blood-testis-barrier.
Some early studies showed that the apical ectoplasmic spe-
cialization participates in sperm head shaping [69]. The
remodeling of ectoplasmic specialization is closely con-
nected to cytoskeleton organization. The molecular
mechanism underlying this process is still not clear, how-
ever considering the dependency of ectoplasmic specializa-
tion assembly on the cytoskeleton, the effect of autophagy
on it might be indirectly and through modulating the
cytoskeleton. For instance, the knocking down of ATG7
and ATGS influenced the apical ectoplasmic specialization
structure [40]. In fact, the absence of ATG7 and ATG5 and
the lack of autophagy leads to the accumulation of PDLIM1
and disruption of the F-actin hoops of the apical ectoplas-
mic specialization.

Lipophagy and stress

Colocalization of MAP1LC3 and lipid droplets (LDs) in SCs
during the proliferation of spermatogonia indicates the role of
lipophagy in germ cell development [66]. Autophagy is
involved in the consumption of LDs by Chinese soft-shelled
turtle cells, which is a key process in steroidogenesis [67].
Deficiency of GSH, by altering the levels of MAP1LC3A and
MAPILC3B proteins, showed that autophagy is triggered
under oxidative stress, independent of the AMPK pathway,
and affects the antioxidant capacity of seminiferous tubules,
therefore determining the development and survival of male
germ cells [68]. Overexpression of MAPKI5 (mitogen-
activated protein kinase 15) causes malignant transformation
of germ cells by disrupting an autophagic stress support path-
way that controls DNA damage prevention and consequent
activation of the TP53/p53 tumor suppressor [70]. In addi-
tion, downregulation in the TSGA10 (testis specific 10) during
spermatid differentiation/maturation is accompanied by dis-
rupted autophagy and overloaded reactive oxygen species
(ROS) production leading to teratospermia [59]. Although
under physiological conditions autophagy causes cell survival,
upon exposure to the stress stimuli, the inhibition of apopto-
sis (upregulated BCL2) and autophagy (non-alteration of
MAPILC3B and SQSTMI levels) lead to prolonged survival
of SCs [71] (Figure 2).

By putting the found pieces of the puzzle together, includ-
ing the involvement of mitochondria as the main energy
supplier and dynamic changes in this organelle during sper-
matogenesis, the participation of autophagy in the spermato-
genesis process as well as mitophagy in the recycling of
defective mitochondria, and the autophagy-dependent
removal of residual bodies, a clear picture will be determined.
Taking all together, findings reveal the importance of auto-
phagic flux during spermatogenesis and in different types of
testicular cells. Hence, it could be concluded that autophagy is
a quality control center for the sperm production process in
both a nonspecific (bulk autophagy) or specific (mitophagy)
manner. In addition, either overactive or deactivated autopha-
gy has irreparable consequences for the fate of male fertility.

Autophagy and sperm motility and viability

Sperm Motility is a decisive factor for the qualification of male
fertility, which is under the regulation of various crucial
components, mainly through modulating Ca®* and cAMP
levels [72]. In 1998, Hargreaves et al. demonstrated that
treatment with chloroquine reduced the motility and viability
of human spermatozoa, however, the main reason was not
elucidated [73]. Later studies introduced chloroquine as
a strong autophagy inhibitor, and thus the relationship
between sperm motility with autophagy was considered
[74,75].

The predominant localization of MAP1LC3 and ATG7 in
elongating and round spermatids may indicate the regulatory
role of autophagy in spermiogenesis. Sperm motility is inevi-
tably associated with flagella synthesis. ATG7 is essential for
the biogenesis of spermatozoa flagella and the elimination of
cytoplasm, as the removal of this autophagy-related protein
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Figure 2. Autophagy in Sertoli cells. (a) Mature spermatids released after PDLIM1 breakdown via autophagy in SCs. (b) Activating PI3K-AKT-MTOR signaling could
diminish autophagosome formation and reduce ULK2, the homolog of Atg1 in yeast. In addition, rapamycin as an MTOR inhibitor could positively affect autophagy
flux. (c) MIR26A could reduce the expression of ULK2 in SCs and decrease autophagy flux in these cells.

has led to pathological changes such as a remarkable drop in
sperm motility. These defects can be attributed to the impair-
ment in the organization of the cytoskeleton, because, as
mentioned earlier, the breakdown of PDLIMI in an autopha-
gy-lysosome pathway is essential for the development and
maturation of germ cells [61]. ATGI6LI, a core autophagic
protein, is involved in intraflagella transport, a protective
mechanism required for the assembly and maintenance of

both cilia and flagella. Indeed, this appears to be an auxiliary
function of autophagy and the IFT20 gene plays the key role,
because other major autophagy markers such as MAP1LC3
and ubiquitin have apparently no role, and in addition, the
knockout of this gene in male germ cells causes infertility,
abnormality of spermatids, reduced sperm count and motility,
and even declined ATGI6L1 levels [76]. ATGs such as
MAPILC3, ATGS5, ATGl6L1, BECN1, SQSTMI, etc. are
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highly active in sperm and are involved in the viability and
motility of spermatozoa. Autophagy activation induces
increased sperm motility, reduced TOMM20 (translocase of
outer mitochondrial membrane 20) and PINK1 expression,
inhibited CASP3 (caspase 3)-CASP7 activation, and decreased
apoptosis leading to cell survival [77]. Interestingly, sperm
quality and motility increase after supplementation with
amino acids, especially leucine, by affecting autophagy and
inhibiting the fusion of autophagosomes with lysozyme, in
a manner dependent on activating the Pi3k-Akt signaling
pathway [78].

The current study in the “Autophagy and Spermatogenesis”
section dealt with the effect of autophagy-dependent mitochon-
drial degradation and other organelle removal processes on
sperm production and quality. Indeed, post-fertilization degra-
dation of sperm mitochondria which is known as mitophagy is
seldom reported in mammals and is mediated by the interac-
tion of the autophagic pathway with the ubiquitin-proteasome
system [79]. In this regard, the ubiquitin-binding autophagy
receptor, SQSTM1, along with the proteasome-interacting ubi-
quitinated protein dislocase called VCP (valosin containing
protein) are considered key factors during post-fertilization
sperm mitophagy in both porcine and primates [80]. A recent
study revealed that SQSTMI is expressed in the midpiece/
mitochondrial sheath of the sperm tail only after coincubation
with oocytes, whereas VCP is expressed both prior to and upon
co-incubation in the sperm mitochondria sheath. Moreover,
subsequent to the binding of these proteins to sperm mito-
chondria, two sperm-borne pro-mitophagy proteins including
SPATAI8 (spermatogenesis associated 18) and PACRG (parkin
coregulated) underwent alterations in the localization and
degradation [81]. Accordingly, the palmitoylation of Vac8, or
its homolog in mice called ARMC3 (armadillo repeat contain-
ing 3), mediates autophagic flux initiation through recruitment
of Pik3c3-cl which in turn promotes PtdIns3P generation at
the phagophore assembly site leading to the recruitment of
Atgl8-Atg2 and subsequently autophagic degradation of cyto-
solic ribosomes. Importantly, this manner of cytosolic ribo-
some elimination by autophagy during spermiogenesis is
highly required for providing energy for flagellar and sperm
motility [82]. As mentioned earlier, ATG5 is involved in acro-
some biogenesis and thereby affects sperm morphology, moti-
lity, and quality [63]. Consequently, autophagy is considered
a novel biomarker of sperm quality as any alteration in related
genes expression is followed by low sperm quality [83].

Autophagy and male sex hormones

Hector Chemes, for the first time, explained that autophagy-
mediated phagocytosis by SCs is TST-independent [55].
Although no link between autophagy and TST had been
described here, it could be considered a spark for further
studies. In 1995, researchers found that autophagy had
a high frequency in steroid-producing cells in which the levels
of autophagy coincided with fluctuations in steroid secretion.
Therefore, they suggested the regulatory role of autophagy in
steroid secretion [84]. Decreased TST production by LCs
occurs in late-onset hypogonadism with a decrease in auto-
phagic activity. In autophagy inhibition, the expression of

STAR (steroidogenic acute regulatory protein), which is
responsible for transporting cholesterol into mitochondria
and subsequent steroidogenesis, is disrupted, which may be
the reason for the decrease in TST production. Interestingly,
autophagy stimulation with rapamycin treatment increases
steroidogenesis in LCs of old, not young, rats. Therefore, the
reduction of steroidogenesis in old LCs can be caused by the
decline of autophagy [85]. Recently, the regulatory role of
Sirtl on TST biosynthesis is believed to be mediated through
autophagy [86]. Accordingly, autophagy is documented to be
involved in the production of TST by transporting cholesterol
to the LCs. Autophagic disruption in steroidogenic cell-
specific, which is primarily the site of TST production, is
associated with decreased serum TST levels due to defects in
cholesterol uptake and causes symptoms similar to late-onset
hypogonadism [65]. By disrupting autophagy, NHERF2/Na*/
H" exchanger regulatory factor 2 accumulates in the LCs and
subsequently degrades SCARBI1 (scavenger receptor class
B member 1), eventually leading to insufficient cholesterol
supply [87]. Lipophagy is involved in modulating the break-
down of cholesteryl esters into free cholesterol which is the
TST biosynthesis substrate [88].

Mitophagy, mitochondrial biogenesis and dynamics, nor-
mal ATP production, physiological levels of TST, and low
levels of NO-cGMP pathway could be considered character-
istics of healthy LCs as any disruption in mentioned factors
leads to aging-related hypogonadism [89]. On the contrary, in
patients with non-obstructive azoospermia, the level of
BECNI is negatively correlated with serum TST levels sug-
gesting this autophagic marker is a predictor of lower chances
of positive sperm retrieval [90].

Conversely, some autophagic degradation functions appear
to be regulated by TST. For example, the clearance of andro-
gen binding protein whose dysregulation causes endocrine
and andrological diseases is mediated by autophagy, and
TST has a negative effect on its degradation, as by selectively
inhibiting autophagy, TST prolongs the half-life of this pro-
tein [91]. In addition, a higher level of TST is documented to
cause growth inhibition of prostate cancer cells through two
parallel autophagy-mediated processes including ferritino-
phagy and nucleophagy [92].

Autophagy and the female reproductive system
Autophagy and folliculogenesis

Folliculogenesis is the process of follicles growth, which is
associated with the maturation, proliferation, and differentia-
tion of oocytes, granulosa cells (GC), and theca cells and finally
results in ovulation or atresia of follicles. Females are born with
a non-expanding pool of primordial follicles of about 2 million,
which declines to 400,000 by the time they reach menarche
[93]. Primordial follicles consist of an oocyte arrested at pro-
phase I and a layer of GCs surrounding the dormant oocyte
[94,95]. Monthly, a certain number of primordial follicles are
recruited which is accompanied by the maturation of the
oocyte and differentiation of GC leading to the formation of
primary follicles. The proliferation and differentiation of GC
along with the maturation of oocytes continue to form



secondary follicles [94,95]. By the recruitment of androgen-
producer cells, known as theca cells, antral follicles are formed
[96]. A plethora of evidence has determined that the autopha-
gic flux is involved in the establishment of the follicular pool,
the proliferation and differentiation of GC, and the survival of
germ cells, oocytes, and follicles. In addition, the programmed
death of GC and germ cells and follicular atresia are dependent
on autophagy, which may be with or without the cooperation
of the apoptotic cell death program.

Morphologically, in invertebrates and during ovarian dif-
ferentiation, the death of germinative cells in the ovarioles
occurs in a process similar to apoptosis, while autophagy is
responsible for somatic cell death. Incidentally, when the
primordial pool is established, autophagy under the influence
of SIRTI-involved epigenetic regulation prevents germ cell
over-loss, which is associated with increased levels of
H4Kl16ac and suppression of apoptosis [97]. Importantly,
histone acetylation is considered the action site of endogenous
and exogenous compounds on the autophagic flux.
Melatonin, for example, could improve oocyte maturation
and subsequent developmental competence of parthenoge-
netic embryos by decreasing the levels of H3K27ac and
H4K16ac and the increase in histone acetylation and autopha-
gy in metaphase II oocytes [98].

In Bactrocera oleae and Ceratitis capitata, two well-known
fruit flies, during the late developmental stages of oogenesis,
autophagy, not apoptosis, is responsible for follicular epithe-
lium programmed death [99]. Furthermore, Atg3 is required
for choriogenesis, the last stage of an insect’s oogenesis [100].
However, both autophagy and apoptosis mechanisms are
involved in cell loss in the perinatal ovary of vertebrates, the
allocation of each mechanism to one type of germ cell or
somatic cell is not proposed, and both autophagy and apoptosis
had a role in the abrupt disappearance of germ cells shortly
after birth [101]. Oogenesis and communication between germ
cells and follicle cells are mediated through starvation-induced
autophagy via insulin/TOR signaling [102]. Indeed, the induc-
tion of autophagy by starvation is necessary for primordial
follicle formation in neonatal mice [103]. During oogenesis,
dysfunctional mitochondria surround the Balbiani body,
a characteristic organelle in both invertebrate and vertebrate
oocytes that is involved in critical functions such as the trans-
port of germplasm and localized RNAs to a specific region of
the oocyte and delivery of the mitochondria toward the germ-
plasm, are eliminated by autophagy [104,105]. orb in inverte-
brates is the homolog of vertebrate CPEB which is involved in
the maturation and polarization of oocytes via poly(A) tail
elongation of several hundred mRNAs, as well as in early
oogenesis through binding to atg mRNAs, which in collabora-
tion with twin/Ccr4, suppresses Atgl2 mRNA translation, leads
to decreased autophagy and cell death in the Drosophila ovary
[106]. Moreover, it is documented that autophagy is involved
in cyst breakdown and primordial folliculogenesis in prenatal
mouse ovaries by ROS clearance [107]. However, starvation in
the mouse at birth causes impairment of germ cell cyst break-
down and follicle assembly by increasing autophagy, apoptosis,
and oxidative stress [108].

The proliferation and differentiation of GC during follicu-
logenesis depend on the autophagic flux. A recent study
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revealed that ATG5 and BECNI affect the expression of
CYPI19A1/Aromatase and FSHR, two genes associated with
GC differentiation, E, synthesis, and degradation of the
WTI transcription factor, which is a GC differentiation inhi-
bitor, hence contributing to the differentiation of ovarian GC
[109]. Concordantly, the inhibition of BECN1 by MIR30A-5p
results in the survival of GCs [110]. Conversely, autophagy is
suggested to be involved in GCs death, too [111]. The invol-
vement of autophagy in a wide range of GC vital processes,
although determines the unique importance of autophagy,
leads to complications of targeting autophagy to confront
pathological conditions as it increases the possibility of unde-
sired effects. Therefore, conducting further studies are
encouraged to determine how autophagy is involved in GC
processes, the interaction of autophagy with other intracellu-
lar regulatory mechanisms, the impact of extracellular factors,
the level of autophagy alterations in different stages of the cell
cycle, and the possible consequences of its manipulation prior
to the initiation of clinical interventions.

It is documented that both apoptosis and autophagy are
involved in germ cell depletion and follicular atresia in the
mammalian ovary (Figure 3). Increased autophagy and even-
tual ovarian reserve depletion may be due to a defect in the
DNA repair system caused by transcription factor LHX8 (LIM
homeobox 8) ablation [112]. Since the loss of BECN1 or ATG7
results in the premature loss of germ cells, autophagy appears
to be a cell survival program for the maintenance of female
germ cell endowment before establishing ovarian primordial
follicle pools [113]. Besides, the ATG7 knockout is associated
with POI and germ cell over-loss, and autophagy protects the
oocytes against over-loss caused by apoptosis in neonatal ovar-
ies under starvation [62]. In contrast, in oocytes deficient in
MCLL1 (myeloid cell leukemia sequence 1), a pro-survival fac-
tor, elevated autophagy and apoptosis, and mitochondrial dys-
function will be followed by POI [114]. Furthermore,
autophagy, which acts genetically upstream of DNA fragmen-
tation in the ovary, mediates cell death during early oogenesis
in Drosophila melanogaster, another invertebrate [115]. In addi-
tion, in the Drosophila ovary, mitochondrial dynamics during
programmed cell death are regulated by both autophagy and
apoptosis mechanisms [116]. Unexpectedly, in Drosophila, cas-
pase activity does not cause cell death in suppressed parteroso-
mal activity due to Hsp83 loss but is essential in other
important processes such as ensuing compensatory autophagy,
female fertility, and organism viability [117].

Ovarian reserve is considered the main source of female
reproductive ability, which may be insulted by environmental
factors (chemotherapy, environmental toxins) and genetic dis-
orders (hypoestrogenism), which ultimately lead to POI, sub-
fertility, and infertility [118-120]. The involvement of
autophagy in the establishment of the follicular pool and pro-
moting the survival of follicular cells may suggest autophagy as
a novel target to confront ovarian failure in susceptible people
(Table 2). However, augmentation of autophagy to promote the
survival of ovarian follicles may cause undesired effects since
this process also contributes to follicular atresia and granulosa
cell death. Recent studies have clarified that although autopha-
gy impairment is associated with ovarian failure, autophagy,
considered a non-apoptotic cell death program, in cooperation
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Figure 3. Autophagy regulates follicular atresia. Follicular atresia could occur in all steps of follicular development. Both autophagy and apoptosis play a crucial role
in the follicular atresia in each step. The figure depicts the crosstalk between autophagy and apoptosis and the role of the BCL2 family, BECN1, and CTSD in follicular
atresia and post-ovulatory complex. Autophagy appears to be a cell survival program for the maintenance of female germ cell endowment before establishing
ovarian primordial follicle pools. Expression of ATG7 and BECN1 in primordial follicles protects the oocysts against over-loss caused by apoptosis. MCL1 is an ovarian
pro-survival factor that inhibits autophagy and apoptosis to prevent POI. Also, inflammatory markers such as TNF suppress ovulation, which is associated with an
increase in both apoptosis and autophagy. The presence of BECN1 in the corpus luteum during the luteal phase increases life span rather than cell death.

with apoptosis, plays a role in reducing the ovarian reserve of
follicles in females diagnosed with ovarian complications.
Therefore, the dual role of autophagy in follicles sufficiently
proves that introducing ATGs as a novel target to confront
ovarian complications is in the preliminary stages of research,
hence it vitally requires further studies.

By the formation of preantral follicles, GCs differentiate
into cumulus cells, which are responsible for recruiting the
theca cells [96]. Until this stage, folliculogenesis is not depen-
dent on gonadotropins but is considered a paracrine unit
dependent on the secretions of GC. Recruiting theca cells
are from the progenitor pool at ovarian mesenchyme and
mesonephros layers and theca cells are subsequently divided
into theca interna and externa layers. Mature follicles, called
antral follicles, display receptors for gonadotropins and thus
respond first to FSH and then to LH. In the phase of response
to gonadotropins during folliculogenesis, follicles act as sex
steroid-producing units that produce E, in response to FSH,
while the response to LH causes completion of meiosis I,
androgen secretion, progression to metaphase II, and comple-
tion of luteinization phase [94,143-145]. All these processes
result in ovulation, which is an indicator of the termination of
folliculogenesis, and the end product is an oocyte capable of
fertilization.

In the early stages of folliculogenesis, there is evidence of
the involvement of autophagy-related mechanisms in the reg-
ulation of luteinization and ovulation. Recently, it is suggested
that the luteinization of GCs is mediated by hyperactivation of
autophagy but inhibition of apoptosis [125]. In addition to
contribution in luteal formation, autophagy is reported in the
corpus luteum during luteal regression, a process that occurs
in the absence of pregnancy and is characterized by dropped
levels of P, and structural luteolysis (Figure 4). The initiation
of autophagy during luteolysis is mediated through the
PGF2A-Ca®*-AMPK signaling pathway, whereas LH-PRKA-
MTOR luteotrophic signaling exerts inhibiting effects on
autophagy [126]. The presence of BECNI1, an autophagy-
related protein that links autophagy and apoptosis, and the
activity of autophagy in the corpus luteum during the luteal
phase lead to an increase in life span rather than cell death, as
well as in androgen-secreting cells [127].

Changes in the hydrolytic activity of lysosomes during the
preovulatory phase and after ovulation can be considered the
first evidence of the role of autophagy in ovulation [146].
Subsequently, increased acid phosphatase activity, autophagy,
and lipophilic materials were suggested during corpus luteum
formation and its intensification until ovulation in the butter-
fly Calpodes [147]. Although the two studies primarily
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Brain
1. Estrogen modulates neurological
deficits after cerebral ischemia depending
on the effect on autophagy.
2. Autophagy regulation by estrogen may
play an important role in Alzheimer disease
pathogenesis. Harderian Gland
Estrogen is involved
in the regulation of
Mammary Glands autophagy and the
1. The interaction between estrogen and production of porphyrins.
progesterone regulates autophagy.
2. Estrogen and progesterone induce
autophagy during cell death.
3. The induction of autophagy by estrogen
and progesterone is involved in the regulation
of alveolargenesis, proliferation, apoptosis,
and development of the mammary gland.

Bone

The autophagic flux in
bones is dependent on
estrogen levels.

Uterus
Progesterone and estrogen
suppress autophagic flux.

Figure 4. Effects of E, and P, on autophagy in various organs. The interaction between sex steroids and autophagy ensures the physiological function of organs
associated with the reproductive system such as the central nervous system, harderian gland, mammary gland, uterus, and skeletal system.
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Autophagy and female sex hormones

According to the previous section, the ovarian follicular cycle
is regulated with both autophagy and apoptosis, however, the
question that arises is what can control the balance between
these two pathways. Certainly, the crucial role of the endo-
crine system and gonadotropins must be considered as
a fundamental maintainer of GC survival and modulator of
autophagy and apoptosis activity.

Higher doses of FSH result in the activation of autophagy
via the AKT-MTOR signaling pathway which in turn causes
E, production, elevated expression of FSHR, CYP19, STAR,
and BAX along with downregulation of BCL2, and reduced
viability of bovine ovarian GCs [160]. Moreover, FSH-
induced Dbiosynthesis of P, in porcine GCs is mediated
through the enhancement of autophagy and subsequent accel-
eration in LDs degradation [161].

In porcine oocytes, the regulation of autophagy by E, leads
to the improvement of developmental ability, reduction of
ROS levels, and suppression of apoptosis [162]. Other E,
functions such as modulating neurological deficits after cere-
bral ischemia depends on the effect on autophagy, specifically
the NFE2L2/NRF2-ARE signaling pathway in the brain [163].
Autophagy in female bone tissue is E,-dependent, and post-
menopausal osteoporosis may be due to a decrease in auto-
phagic activity and an increase in oxidative stress caused by E,
deficiency, while it is cell-dependent in males [164]. Although
the association of autophagy with E, is involved in the patho-
genesis of female Alzheimer disease, it is likely to help post-
menopausal women with this disease [165]. Considering the
role of steroid hormones, particularly E,, in the regulation of
autophagy and the different performances of autophagy in the
two genders, perhaps the “gendered-autophagy” term is
applicable.

More importantly, the interaction between autophagy and
sex steroids controls the fundamental processes in other
reproductive tissues as well as non-reproductive organs. In
the Syrian hamster Harderian gland, autophagy is regulated
by oxidative stress and redox signaling, as higher levels of
ROS is associated with more extensive autophagy. The inten-
sity of oxidative stress and consequently autophagy in the
female Harderian gland is higher than in the male model,
which affects the secretion of hormones in these glands. As in
the male Harderian gland autophagy activation leads to sur-
vival, while in female glands autophagy peaks in
a detachment-derived cell death that leads to a tremendous
glandular secretion [166]. Thereby, the “gendered-autophagy”
term could be applicated here, too. Porphyrin production by
the Harderian gland is closely linked to the estrous cycle and
E, variations affect autophagy [167].

Autophagy during bovine mammary epithelial cell acini
formation is regulated by interactions between E, and P,
[168]. The regulation of autophagy by mitochondrial UCP2
(uncoupling protein 2) in human cumulus cells affects apop-
tosis, ROS production, and maintenance of gap junction
integrity which leads to the management of follicle develop-
ment, early embryo implantation, and P, synthesis [169].
Apoptosis and autophagy are activated during mammary
epithelial cell death and the dynamic equilibrium between

these processes and proliferation contributes to mammary
gland growth and involution. Autophagy in mammary epithe-
lial cells is inhibited by epidermal growth factor and insulin-
like growth factor-1 via MTOR activation, while E, and P,
induce autophagy [170]. In the involution of the bovine
mammary gland, autophagy is induced by E,, P4, and growth
factor TGFB, which is involved in alveologenesis, proliferation
and apoptosis regulation, and development of the mammary
gland [171]. In human endometrial cancer cells, the crosstalk
between E, and autophagy leads to the overexpression of the
E, receptor by affecting the SRC-EGFR-PI3K-AKT-MTOR
signaling pathway and increased release of this receptor
from the complex formed with KEAP1 [172]. Ovarian ster-
oids, E, and Py, suppress autophagic activation in the mouse
uterus (Figure 5). This could be explained by the role of
uterine autophagy, which is a responsive mechanism to
acute inflammation and an energy provider by degrading
glycogen under hormone deprivation [173].

Autophagy and endometrium receptivity

In addition to the maintenance of the ovarian reserve, the
physiological development of folliculogenesis, and the regula-
tion of the interplay between molecular mechanisms and
endocrine activity, the preparation of the uterus and especially
the endometrium is necessary for the reception of the formed
egg and subsequent processes. Preparation for endometrium
receptivity requires massive cell proliferation, paracrine and
endocrine secretions, and is accompanied by cell death, which
requires intense regulation and energy supply. Therefore, the
degradative and recyclate properties of autophagy along with
its ability to supply energy and regulate cellular processes
involve it as a controlling process.

Importantly, a recent study revealed that endometrial
receptivity is regulated by CRIM1 (cysteine rich transmem-
brane BMP regulator 1), a downstream target for MIR143, by
affecting ATG7-dependent autophagy and controlling cell
proliferation, cell adhesion, and prostaglandins secretion
[174]. Besides, low and high expression of BSCL2
(Berardinelli-Seip congenital lipodystrophy 2 (seipin)), an
integral ER membrane protein, in myometrium and uterine
luminal epithelium respectively, and its association with
MAPILC3 expression demonstrates regulation of autophagy
in the uterine luminal epithelium but not myometrium [175].
In goats, the physiological level of ER stress contributes to
early pregnancy development, and autophagy cooperates with
the ATF6 (activating transcription factor 6) signaling pathway
for the regulation of endometrial function by modulating the
MTOR pathway [176]. Additionally, diet-induced obesity
impairs autophagy which leads to the impairment of endo-
metrial stromal cell decidualization [177].

Furthermore, the deficiency of BSCL2 causes pathological
conditions such as lipodystrophy, diabetes, muscle hypertro-
phy, and male infertility. Interestingly, the lack of expression
of this protein revealed normal embryo implantation and
body weight gain during pregnancy, however, a reduction in
delivery rates and an increase in gestation period and parturi-
tion problems were achieved [175]. During early pregnancy,
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Figure 5. Autophagy in fertilization, menstruation, and infertility. (a) Autophagy has arole in GCs proliferation, differentiation, and death. ATG5 and BECN1 affect the
expression of CYP19A7 and FSHR, two genes associated with GCs differentiation, E, synthesis, and degradation of the WTT transcription factor, hence contributing to
the differentiation of ovarian GCs. Also, elevated levels of MAP1LC3 and decrement in the expression of SQSTM1 resulted in GCs cell differentiation and proliferation.
(b) Dropped levels of P, in the absence of pregnancy result in the induction of autophagy in the corpus luteum during luteal regression. The initiation of autophagy
during luteolysis is mediated through the PGF2A-Ca’*-PRKA signaling pathway, whereas LH-PRKA-MTOR luteotrophic signaling exerts inhibiting effects on
autophagy. Also, HIF1A regulates GCs through autophagy activation, affecting MAP1LC3 and BECN1, in aBNIP3-dependent manner. Autophagy and apoptosis-
related markers such as MAP1LC3, ATG5, CTSB, CASP3, CASP8, TNF, and BCL2 contribute GCs death. (c) in ovarian GCs, ATGsand autophagy markers increase which is
positively correlated with hyperandrogenism indicating that autophagy mechanisms are involved in PCOS development. Autophagy-disrupted MAP1LC3 accumula-
tion leads to the death of oocyte-supporting GCs causing areduction in oocyte quality and female fertility. In GCs, higher levels of autophagy, indicated by BECN1,
contribut to late follicular P, elevation by the promotion of LDL degradation via lysosomal pathways which ultimately leads to the aggravation of endometriosis.
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COPS5 (COP9 signalosome subunit 5) has a negative regulat-
ing role on goat endometrial function through ERN1 and
MTOR-autophagy pathways [178]. Interestingly, in oocytes
exposed to obesity, the pre-attachment development of bovine
embryos depends on an autophagy-ER stress balance, as auto-
phagy promotes this process by reducing ER stress [179]. In
the disruption of mitochondrial function, mitophagy is acti-
vated by the PINK1-PRKN (parkin RBR E3 ubiquitin protein
ligase) pathway leading to the loss of embryonic developmen-
tal potential [180,181].

Autophagy, implantation, and fertilization

Embryonic development begins with the fertilization of the
egg by sperm. During this process, some intracellular com-
ponents derived from germ cells must be eliminated.
Removal of germ cell organelles includes not only the pater-
nal organelles but the maternal germ cell organelles. In many
species, the elimination of paternal mitochondria, but not
maternal mitochondria, after fertilization occurs using the
process of selective autophagy (Figure 6). During fertiliza-
tion, the lysosomal pathway has a vital role in the degrada-
tion of paternal mitochondria in C. elegans [130]. After
fertilization autophagy is triggered localized around sperm
mitochondria via sperm-derived components resulting in the
engulfment of paternal mitochondria by autophagosomes in
early embryogenesis in C. elegans [136]. This process, known
as allophagy, is mediated by an autophagy receptor called
ALLO-1 in C. elegans embryos. This receptor is vital for the
formation of autophagosomes around paternal organelles
and binds to the MAP1LC3 homolog LGG-1 directly [131].
FUNDC1 (FUN14 domain containing 1), a mammalian
mitophagy receptor expressed on the mitochondrial outer
membrane, contributes to mitochondrial quality control.
The C. elegans ortholog of FUNDCI, FNDC-1, is strongly
expressed in sperm but not in oocytes attribute to paternal
mitochondria elimination [182]. Taking together, two differ-
ent mechanisms are considered for the elimination of pater-
nal mitochondria in C. elegans, one involves ubiquitination
and the other one involves the mitochondrial-associated
autophagy receptor, FNDC-1 [183]. Additionally, the clear-
ance of other sperm-inherited organelles in C. elegans
depends on MAPI1LC3-controlled autophagosome targeting
a specific pericentral area [184]. In Drosophila, an almost
similar mechanism that depends on the autophagic flux is
involved in the elimination of paternal mitochondria [132].
Incidentally, in mice, although ATGs such as SQSTM1 and
MAPILC3 were assembled around sperm mitochondria
immediately post-fertilization, the engulfment and degrada-
tion of sperm mitochondria in lysosomes occurred when
ATGs were disengaged from mitochondria. Furthermore,
most motile sperms that had arrived at the oviduct had
eliminated their mitochondria [133], which is similar to
nematodes [183]. Interestingly, if sperm mitochondria
entered the zygote, paternal mtDNA could remain and be
detected in newborn animals. These findings revealed that
the inheritance of mitochondria is not an active process, but
is a passive process that depends on pre-fertilization elim-
ination of paternal mtDNA or uneven distribution of

mitochondria in embryos [133]. Furthermore, strict maternal
transmission of mitochondria in mice depends on mitophagy
which is collaborated by E3 ubiquitin ligases, PRKN and
MULI1 (mitochondrial E3 ubiquitin protein ligase 1), and is
related to depolarization of paternal mitochondria requiring
the autophagy receptor SQSTM1, mitochondrial outer mem-
brane protein FIS1, and PINKI1 kinase [134]. In higher
mammals such as boar, both autophagy and ubiquitin-
proteasome systems, including SQSTM1, VCP, and 26S pro-
teasome, contribute to sperm mitophagy in mammalian
post-fertilization zygotes [80].

Maternal proteins in oocytes are degraded after fertiliza-
tion and the zygotic genome encodes new ones. This process
requires autophagy, as fertilization upregulates this catabolic
process in early mouse embryos. Furthermore, autophagy-null
embryos have a reduced rate of protein synthesis. Together,
these findings demonstrate the necessity of oocyte protein
degradation by autophagy within early embryos for pre-
implantation development [128]. Perhaps autophagy, by
degradation of maternal proteins, provides the raw materials
necessary for the synthesis of new macromolecules. Therefore,
in the absence of autophagy, the cell loses the ability to break
down old maternal proteins and suffers subsequent conse-
quences. A recent study, in addition to emphasizing the
essential role of autophagy and the ubiquitin-proteasome sys-
tem in the removal of maternal organelles, determined that in
mouse embryos maternal membrane proteins are selectively
internalized from the membrane to endosomes, mediated by
clathrin and PRKC (protein kinase C) signaling, transported
to lysosomes, and finally degraded by both lysosomal and
ubiquitination processes [135]. Confirmingly, BECN1~/~
mouse embryos are incapable of completing the embryogen-
esis process. Altogether the data propose that autophagy is
a protective growth mechanism for the early embryogenic
process. In the blastocyst stage, embryonic cells are differen-
tiated into trophoblast cells and inner cell mass. Autophagy is
reported to play a vital role in trophoblast functions, includ-
ing invasion and vascular remodeling in extravillous tropho-
blasts, for normal placental development [201]. Furthermore,
in the middle of the trophoblast, a cavity called blastocoel is
formed when the early dividing cells of the recently fertilized
zygote begin to differentiate, which seems to be associated
with autophagic cell death. This cavity is vital in the later cell
migration during gastrulation. Embryoid bodies derived from
cells lacking the autophagy genes, ATG5 or BECNI, fail to
cavitate [77].

The process of autophagy from pre-implantation to post-
implantation seems to be different in different animals.
Although some studies have shown that during pre-
implantation development in pig embryos’ and cloned
mouse embryos’ the induction of autophagic flux improves
embryo viability via the management of the cellular redox
state and affects somatic cell nuclear transfer, other studies
have associated the increase in the expression of Mir291
clusters in mouse preimplantation embryos with the inhibi-
tion of autophagy, as the level of BECN1, ATG5, and auto-
phagosomes gradual decrease from 1-cell stage to the 4-8-cell
[137-139]. Contradictory, autophagic flux is documented as
an indicator of mice embryo viability [140]. Such conflicts
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complicate the clarification of the autophagy process in pre-
implantation, therefore, conducting further studies consider-
ing the types and strains of the studied animals, the length of
the study, as well as the application of biochemical-
immunological confirmatory methods including western
blot, transmission electron microscopy, and flow cytometry
are encouraged.

The first studies on the role of autophagy in implantation
are related to ultrastructural examinations. In the 1970s,
Abraham suggested that autophagy is involved in the destruc-
tion of the lysosomal membrane and the release of lysosomal
enzymes in the adjacent cytoplasm before and during implan-
tation, indicating the lysosome-dependent role of autophagy
in the removal of the barrier so that trophoblast penetrates the
uterine epithelium [141]. ACP (acid phosphatase)-dependent
autophagy was subsequently indicated by the cytochemical
establishment of the enzyme in the bovine endometrial
gland epithelium and trophoblast giant cells during implanta-
tion [142]. Embryo implantation, which involves breaking the
zona pellucida by a mature blastocyst and its penetration into
the endometrium, is another cellular process dependent on
autophagy. In delayed implantation conditions, blastocysts
remain dormitophant in utero via activation of autophagy,
called embryo diapause. This can be assumed as an adaptive
phenomenon that guarantees embryonic survival during the
lack of nutrients in some mammals [202]. Additionally, auto-
phagic activation by FGFR signaling is a pre-condition for
multivesicular body formation and accumulation in the tro-
phectoderm of dormant blastocysts upon implantation
required activation [203].

In mouse embryos, the induction of autophagy by fertiliza-
tion is not dependent on MTORCI [122]. However, MTOR
and associated signaling molecules such as PI3K-AKT-MTOR
and MAPK/ERK-p-MAPK/ERK participate in implantation
[204]. Stimulation of microgravity inhibits decidualization,
the differentiation of endometrial stromal cells, by
a reduction in proliferation and migration via affecting AKT-
MMP2 and FOXO3 (forkhead box O3) transcription factor-
autophagic flux [205]. Upon deactivating the Mapkl/Erk2-
Mapk3/Erkl pathway, unfertilized sea urchin eggs are tar-
geted for apoptosis, which autophagy counteracts as
a survival program [129].

Angiogenesis and vascularization are critical processes for
placenta development, and endangering them could lead to
pregnancy complications such as preeclampsia and intrauter-
ine growth restriction. CXCL12 (C-X-C chemokine ligand 12)
and its receptor, known as CXCR4, provide a signaling path-
way that in collaboration with autophagy regulate placental
homeostasis by being a crucial upstream mediator of angio-
genesis, vascularization, and cell viability [206]. The CXCL12-
CXCR4 axis induces AKT and MTOR phosphorylation in
various cell types, and it probably helps to increase autophagy
in this way [206]. In addition, one of the most important
processes attributed to autophagy is embryonic organogenesis.
The basic role of autophagy in neurogenesis, and the devel-
opment of blood tissue, bone, and heart have been reported.
Loss of ATG5 and a positive regulator of the BECN1 known
as AMBRA1 (autophagy and beclin 1 regulator 1) at earliest
organogenesis led to severe neural tube defect and Spina

bifida. These conditions confirm the important role of
ATGS in neurogenesis [207]. ATGS5 regulates astrocyte differ-
entiation through the SOCS2-JAK2-STATS3 signaling pathway
[208], and promotes the differentiation and proliferation of
cortical neural progenitor cells (NPCs) by controlling the
CTNNB1 (catenin beta 1) signaling pathway [209].
Altogether, successful pregnancy depends on the sequential
happening of biological processes such as embryo implanta-
tion, and this process by itself includes blastocyte migration
and embryo adhesion as two major parts. Appropriate
implantation is an essential factor for the proper interaction
between the maternal uterus and embryo, and according to
the axial role of autophagy in this process, it might be used as
a therapeutic target to improve embryonic transplantation.

Autophagy and infertility
Autophagy and male infertility

Approximately half of the infertility cases are attributed to
males. Several factors are involved in male infertility, includ-
ing spermatogenesis disorder, obstruction of the seminal tract,
the disorder of sperm motility and quality, and reduced sperm
count [37,210]. Autophagy as a double-edged sword appears
to play a dual role in cellular life, whether somatic cells or
germ cells. In ejaculated stallion spermatozoa, for example,
autophagy promotes cell survival on the first day, although,
after 5days, autophagy enhancement indicates decreased
sperm motility and cooperation with apoptosis due to
increased membrane permeability [152]. Interestingly, the
performance of the various extenders used to increase sperm
survival during incubation at 5°C depends on how they inter-
act with autophagy [129]. The cryopreservation of testicular
tissue to maintain male fertility in patients with cancer is
unsatisfactory due to impairment of human testicular graft-
ing, contamination by malignant cells, and deregulation of
angiogenesis-related signaling. However, IVM is more effec-
tive as modifies the expression of proteins related to autopha-
gy and apoptosis in mouse testicular tissue, in which the
impact of cryopreservation is minimal [153].

Autophagy and oligo/azoospermia

The conditions where there is no sperm to ejaculate or the
number of sperm is insufficiently low are known as azoospermia
and oligospermia, respectively [211]. Considering the basic role of
autophagy in advancing the processes involved in spermatogen-
esis it appears logical to expect that any disruption in autophagic
flux will cause reproductive complications and ultimately inferti-
lity. In this regard, a recent study demonstrated that in patients
with non-obstructive azoospermia, the expression of BECNI in
testicular tissue was significantly up-regulated. It also was posi-
tively related to LH serum levels, and negatively associated with
serum TST levels and testicular volume suggesting that autophagy
could be assumed as a marker with a predictive value in sperm
retrieval rate [212]. The levels of BECN1, MAP1LC3, and ATG7
are highly expressed in non-obstructive azoospermia with
a negative correlation with MIRI88-3p, a regulator of ATG7
expression [185]. The downregulation of MIR188-3p leads to
abnormal sperm formation. In fact, there is a mutual binding



site between MIR188-3p and ATG?7, and the expression of ATG7
is impeded by MIR188-3p, revealing that MIR188-3p contributes
to autophagy regulation by modifying ATG?7 expression, leading
to spermatogenesis disorder and non-obstructive azoospermia
[185]. Moreover, a cross-sectional study on patients with azoos-
permia reported that the reduction in BECNI, MAPILC3B, and
ATGS5 expression is significant in infertile patients [213]. In addi-
tion, there is a disease-causing missense variant in an autophagy
gene located on human chromosome Xpl1.23, known as
TBCI1D25 (TBCl domain family member 25), which leads to
aberrant interaction with ATG8 homologs, oligospermia, and
male infertility [214]. Finally, aberrant autophagy activation
germline Foxj2 overexpression-induced LAMP2A upregulation
results in the failure of spermatogenesis at the initiation of meiosis
leading to infertility revealing the importance of autophagy reg-
ulation in spermatogenesis [215].

Autophagy and globozospermia

Round-headed sperm syndrome or globozoospermia is one of
the most common types of monomorphic severe teratozoos-
permia [216]. Dysmorphic spermatozoa lose the ability to
normal function and motility [217]. The globozoospermia
phenotype usually occurs after a disturbance in acrosome
biogenesis [218]. As mentioned earlier, the process of acro-
some biogenesis is closely associated with autophagic flux,
particularly ATG7. A case-control study demonstrated
a significant elevation in ATG7 compared to the control
group in patients with globozoospermia [187]. However,
MAPILC3 expression between the two groups was the same.
Previously, it was suggested that deacetylation of MAP1LC3
by SIRT1 is a necessity for the localization of MAPILC3 from
the nucleus to the cytoplasm, initiation of autophagy, and
acrosome biogenesis [219]. Altogether the results proposed
that in globozoospermia autophagy initiates, however,
a disorder of other genes involved in acrosome biogenesis
inhibits the progression of this pathway. This could be the
reason that MAP1LC3 levels remained unchanged. Although,
further studies with larger sample sizes and investigation of
the levels of sex steroids, gonadotropins, and other genes
involved in acrosome biogenesis are encouraged.

Autophagy, metabolic homeostasis, and male infertility

The processes involved in cell death, including apoptosis,
necrosis, and autophagy in spermatocytes may be influenced
by the metabolic energy source. The lack of an energy source
leads to necrosis, whereas the absence of lactate, the main
source of ATP in spermatocytes and spermatids, is associated
with increased apoptosis. However, autophagy increases either
in the presence of lactate or its deficiency in cultured cells
[220]. Highly disrupted autophagy in testicular LCs is
a feature of non-breeding males described at the reduced
levels of ATG7, ATG5, MAP1LC3B, and MAP1LC3A, and
the number of autophagosomes. With disrupted autophagy
TST production suppression, testicular atrophy, and
decreased levels of androgens occur [221]. Furthermore, tes-
ticular dysfunction due to diabetes is caused by autophagy
abnormalities [188]. Hyperlipidemia is accompanied by
higher levels of fatty acids which are able to interfere with
steroidogenesis via the downregulation of CYP11Al and
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inhibition of late-stage autophagy [189]. Autophagy inhibi-
tion, due to the lack of degradation of cholesteryl esters to free
cholesterol, is involved in increasing the number and size of
LDs and total cholesterol, lowering free cholesterol, and redu-
cing TST synthesis in rat primary LCs. Interestingly, the initial
inhibition of autophagy due to the induction of hypoxia is
associated with increased TST secretion, although over time
this effect becomes abolished [88]. Starvation promotes auto-
phagy-dependent maturation in Macrobrachium rosenbergii,
a giant freshwater prawn [222]. Surgically-induced cryptorch-
idism induces both apoptosis and autophagy in mice sperma-
togenic cells [223].

Varicocele-induced infertility

Varicocele (VC) is an abnormal venous dilatation and/or
tortuosity of the pampiniform plexus in the scrotum which
is one of the most prevalent causes of male infertility. VC can
alter the testis normal physiological function by increasing of
local temperature, inducing hypoxia and/or oxidative stress.
Chronic VC changes the seminiferous tubule’s structure and
causes disorganization in seminiferous epithelial cells. All
these factors eventually disturb the process of spermatogenesis
[224,225]. Autophagy plays an important role in the VC-
induced infertility of male rats. The HIF1A-BNIP3-BECN1
signaling pathway in VC rat testes leads to the initiation of
autophagy [226]. But the question that arises here is whether
the activation of autophagy in these conditions is a VC accel-
erator factor or a protective testicular response against VC.
Pathological states such as hypoxia and impaired testicular
blood flow at the beginning of VC could impair the energy
supply system necessary for the activity of testicular cells. It
seems that in this situation autophagy activation is
a protective mechanism that can be a way to recycle damaged
organelles and a way to supply the required energy from
alternative sources. However, apoptosis inhibits autophagy
in later stages [227,228].

Autophagy, endocrine-disrupting chemicals, and male
infertility
Endocrine disruptors (EDs) are described as exogenous sub-
stances that shift the endocrine function and consequently
cause harmful effects in an organism. Exposure to EDs may
exacerbate the process of development and differentiation of
male germ cells by increasing or decreasing the autophagy
flux, leading to infertility, which may be consistent with or
against apoptosis [119,229]. For example, mitochondrial dys-
function along with alterations in autophagic flux and meta-
bolomic homeostasis in spermatogonia as well as
spermatogenic failure, germ cell loss, and testicular structural
abnormalities accompanied by the induction of apoptosis
occur in animals and offspring upon exposure to arsenic
trioxide or fluoride [230,231]. In toxicity induced by co-
exposure to bisphenol a and nonylphenol, which are asso-
ciated with spermatogenic epithelial atrophy and loss of germ
cells, both autophagy and apoptosis have increased, possibly
reinforcing each other’s effects [48].

4-Nonylphenol toxicity, a xenoestrogen, was reported to
induce apoptosis in various cell types through oxidative stress
and ROS production. 4-Nonylphenol eventually could
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phosphorylate and activate AMPK and simultaneously sup-
presses MTOR activity in the testis. It seems that autophagy is
involved in SCs’ survival against apoptosis and necrosis
caused by 4-nonylphenol [191]. However, exposure to this
xenoestrogen by oxidative stress-mediated activation of auto-
phagic and apoptotic mechanisms, and involving the PI3K-
AKT-MTOR pathway, leads to morphological abnormalities
in epididymal sperm, TST depletion, and decreased semen
quality [232]. The difference in the effect of 4-nonylphenol
on prepubertal and adult rats can be a result of the depen-
dence of autophagic flux on the spermatogenesis stages. In
acute exposure to ethanol, for example, the increase in auto-
phagy in SCs during androgen-dependent stages, spermato-
genesis stages, is more significant than in other stages.
However, the reason for and role of stage-depended altered
activity have not been determined [233]. Microcystin-leucine-
arginine (MLR) as a hazardous material induces apical ecto-
plasmic specialization disassembly. It seems that it can func-
tion through the disruptions of F-actin arrangement. In
addition, its accumulation is able to induce testicular atrophy,
spermatogenic cell apoptosis, and endocrine disruption and
affects the motility and morphology of sperm, contributing to
spermatogenesis impairment [234-236]. Interestingly, in the
di-2-ethylhexyl phthalate-induced toxicity, autophagy triggers
apoptosis activation, which has side effects such as decreased
TST output, the insult to LCs, the disintegration of the germ-
inal epithelium, inhibition of cell viability, and decreased
sperm density in the epididymis [237]. Conversely, develop-
mental impairment induced by flutamide and di-2-ethylhexyl
phthalate in the Cryptorchid rats is mediated by excessive
apoptosis and autophagy disruption which results in sperm
abnormality, testicular damage, and decreased TST [231]. By
the mentioned findings, it is understood that contrary to
traditional belief, autophagy does not act just like a cell pro-
tector. Interestingly, autophagy appears to play a dual role in
cellular life, whether in somatic cells or germ cells. Therefore,
in the interaction between autophagy and apoptosis after
exposure to EDs, synergistic or confrontational approaches
could be expected that depends on the type of exposed ED
and probably the concentration and route of exposure. Hence,
predicting the outputs and how autophagy behaves, whether
as a cell protector or as a facilitator of cell death, requires
further specialized studies.

Autophagy and female infertility

Autophagy and endometriosis

Endometriosis is a chronic, E,-dependent disease character-
ized by the implantation of endometrial glands and stroma
randomly into the outside uterine cavity. Endometriosis could
be considered one of the most prevalent causes of pelvic pain,
amenorrhea, dysmenorrhea, and infertility [238,239]. Previous
studies indicated that the BCL1 level is significantly low in
stroma cells of endometriosis tissues. Currently, it is known
that disrupted autophagy occurs in endometriosis, which can
be caused by inflammation or under the influence of E, levels.
Autophagy-disrupted MAPILC3 accumulation leads to the
death of oocyte-supporting GCs causing a reduction in oocyte

quality and female fertility [193]. The autophagy dysregula-
tion accompanied by endometrial inflammation causes recur-
rent implantation failure with chronic endometritis in women
[240]. Recently, it is reported that reduced Indian hedgehog
signaling could activate autophagy markers such as
MAPILC3B in endometrial tissues of women with endome-
triosis or adenomyosis leading to improper survival of ectopic
sites endometrial cells of these two gynecological disorders
[241]. Higher levels of autophagy, indicated by BECNI, in
GCs, contribute to late follicular P4 elevation by the promo-
tion of LDL degradation via lysosomal pathways which ulti-
mately leads to the aggravation of endometriosis [242]. On the
contrary, elevated p-AKT and MTOR expressions accompa-
nied by reduced BECN1 and MAP1LC3B levels in endome-
triosis lesions suggest that autophagy inhibition could be
a causative agent in the development of endometriosis.
Surprisingly, the activation of autophagy and mitophagy
leads to increased apoptosis and reduced angiogenesis in the
lesions revealing that autophagy activation may be
a therapeutic target against endometriosis [194]. Similarly,
we demonstrated that reduced autophagy, along with
decreased levels of NQO1 (NAD(P)H quinone dehydrogen-
ase 1) enzyme activity and gene expression levels of NFE2L2
and MTOR overexpression and ROS production are involved
in ectopic endometrial tissues which could alleviate by activa-
tion of autophagy [243]. On the one hand, these contradic-
tions could be considered appropriate examples of the dual
role of autophagy as a protector and destroyer of female
fecundity, and on the other hand, it highlights the importance
of autophagy in maintaining female reproductive health, as
any alteration in autophagic flux, whether suppression or
enhancement, leads to female reproductive abnormalities
(Table 3).

Autophagy and PCOS

Polycystic ovary syndrome (PCOS) is a common endocrine
disorder prevalent among women of reproductive age. PCOS
is frequently caused by hyperandrogenism [244]. One of the
most clinical consequences of PCOS is infertility and the
pathophysiology of it is still unclear. Considering the relation-
ship between sex steroids, especially TST, and autophagy,
PCOS might be associated with autophagy [245]. Impaired
autophagy during different stages of folliculogenesis is
reported in the PCOS ovary [246]. Immunohistochemistry
study of ATGs demonstrated an accumulation of SQSTM1
and ubiquitin in the theca cells layer in the PCOS ovary [195].
The suppression of autophagy is followed by higher levels of
ROS. Conversely, elevated levels of palmitic acid are also
found in sera of patients with PCOS. It is reported that
palmitic acid inhibits the final stages of the autophagy path-
way and could induce androgen production via ROS-MAPK
/p38 and MAPKS signaling [195]. Although in ovarian GC
ATG7 and ATGS increase which is positively correlated with
hyperandrogenism indicating that autophagy mechanisms are
involved in PCOS development [196]. The comparison of
a healthy follicle and PCOS one reveals impaired folliculogen-
esis in the early stages suggesting the vital role of MTOR-
autophagy in the development of PCOS or normal
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folliculogenesis [195]. Moreover, the analysis of the MTOR
expression in the DHEA-induced PCOS ovary showed an
elevated level of this regulator of autophagy [247].

Autophagy and POI

POI is another cause of female infertility characterized by
premature depletion of ovarian follicles and high levels of
FSH [248]. POI etiology is highly heterogeneous but disrupted
autophagy-induced follicular atresia might be one of the main
causative factors. Premature ovarian failure (POF) is thus
considered the end stage of POI with FSH > 40 IU/L [249].

High doses of FSH result in the activation of autophagy via
the inhibiting the AKT-MTOR signaling pathway which in turn
enhances the E, production, FSHR expression, CYP19, STAR,
and BAX along with downregulation of BCL2, and reduced
viability of bovine ovarian GCs [160]. In addition, the admin-
istration of FSH provoked autophagy in mouse GC via upregu-
lation of HIF1A [197]. Conversely, due to the pivotal role of
autophagy in follicular atresia a group of studies claimed that
overactivated autophagy results in follicular atresia and POI
[250,251]. Studies conducted in this regard have shown that
using POI ameliorative compounds that can activate the PI3K-
AKT-MTOR or AMPK-MTOR pathways could result in the
attenuation of POI GCs [252,253]. Since FSH is an activator of
autophagy, it is logical to expect that alteration in FSH levels
could be followed by the activation of autophagy hence con-
tributing to the pathogenesis of POL.

However, as autophagy represented a dual function in
other pathological states, this property of autophagy may be
involved in the development of POL In silico analysis of two
variants affecting ATGs, which were identified in women with
POI, showed the decreased expression of ATG7 and ATG9A
representing haploinsufficiency and ATG7 p. Phe403Leu and
ATGI9A p. Arg758Cys variants were deleterious for autophagy
[198]. It is proposed that the induction of autophagy in
patients with ATG variants at birth was low in ovaries
which might lead to an alteration of the ovarian reserve
[198]. Additionally, atg7 knockout in murine germ cells led
to POI, as the number of follicles and oocytes was markedly
diminished in the adult mutant animals [254].

Autophagy and chemicals-caused infertility

Environmental contaminants are considered the main causa-
tive factors for female reproductive disorders [119,120].
Exposure to chemicals can affect the ovaries in both direct
and indirect ways. For instance, exposure to BPA causes
alterations in apoptotic factor, autophagy, and oxidative stress
gene expression in the ovaries, and eventually, germ cell nest
breakdown is even passed on to future generations In the
mealworm Tenebrio molitor, after Neb-colloostatin injection,
both apoptosis and autophagy processes are involved in folli-
cle cell death which is accompanied by ovarian atresia,
delayed ovulation, slowed vitellogenesis, reduced number of
eggs laid, F-actin cytoskeleton disorganization, and changes in
chromatin organization [255].

Chemotherapeutic agents especially alkylating agents are
able to exert their cellular toxicity via transferring the alkyl
group. One of the vulnerable parts of the cell is the genomic
DNA that if get damaged, could trigger programmed cell

death. Adjuvants are reported to protect ovarian tissue from
reproductive toxicity induced by doxorubicin, a well-known
antineoplastic agent, through suppression of both autophagy
and apoptosis [120,199]. Investigation of the possible reason
for ovarian cancer resistance to cisplatin, a chemotropic agent,
showed that MAPK-mediated autophagy can lead to cisplatin
resistance [200]. In cisplatin resistance cells autophagy is sig-
nificantly activated. It seems that effect of this chemothera-
peutic agent is mediated through the ERK pathway and
affecting on ATGS5 levels. In addition, the inhibition of auto-
phagic activity or knockdown of ATG5 results in cisplatin-
induced apoptosis in ovarian cancer cells. It is proposed that
the sensitivity to cisplatin is regulated via the interaction
between autophagy and apoptosis [200].

Conclusions and perspectives

The indispensable importance of autophagic flux, by preser-
ving its dynamic characteristics, which is accompanied by
a highly regulated and conserved increase and decrease in
different stages, coordination with intracellular signaling
mechanisms, and a highly processed crosstalk with regulated
cell death programs at each relevant reproductive-associated
stage is completely evident for both sexes fertility.
Considerably, any disruption and inconsistency will be
accompanied by the lack of formation of essential organelles,
the lack of removal of extra organelles, cell malformation,
destructive irregular somatic and germ cells’ death, defects
in cell development, impairment of the production of intra-
cellular or secretory macromolecules, and finally reproductive
disorders and infertility. More importantly, autophagy can be
considered a promising favored molecular target for the pre-
vention or treatment of reproductive disorders, although
further studies are required.
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