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Purpose of review

Allergy and atopic features are now well recognized manifestations of many inborn errors of immunity (IEI),
and indeed may be the hallmark in some, such as DOCK8 deficiency. In this review, we describe the
current IEI associated with atopy, using a comprehensive literature search and updates from the IUIS
highlighting clinical clues for underlying IEI such as very early onset of atopic disease or treatment
resistance to enable early and accurate genetic diagnosis.

Recent findings

We focus on recently described genes, their categories of pathogenic mechanisms and the expanding
range of potential therapies.

Summary

We highlight in this review that patients with very early onset or treatment resistant atopic disorders should
be investigated for an IEI, as targeted and effective therapies exist. Early and accurate genetic diagnosis is
crucial in this cohort to reduce the burden of disease and mortality.
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Inborn errors of immunity (IEI) associated with
atopy provide valuable insights into the pathophysi-
ology of the immune system and pathways respon-
sible for atopic disease. Atopy is a recognized
component of a growing number of IEI as wider
phenotypes are defined, and in some may be the
predominant manifestation. Given atopy-related
manifestations of these diseases may present to a
range of clinical specialists across infancy to adult-
hood, we set out to summarise recent developments
in this field. We highlight novel genetic conditions
that may present at this interface, including gain of
function mutations in the IKAROS transcription
factor [1

&&

], and autosomal dominant gain of func-
tions (GOF) in signal transducer and activator of
transcription 6 (STAT6) [2

&&

,3]. Finally, we propose
an updated mechanistic framework for the develop-
ment of atopy at the interface of IEI whilst high-
lighting pitfalls for associated complications, and
opportunities for precision therapy.
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MATERIALS AND METHODS

We conducted a rapid literature review using the
search terms ‘Atopy AND primary immunodefi-
ciency’ OR ‘atopy’ AND ‘inborn errors of immunity’
in PubMed, considering articles published between
was given to monogenic disorders added to the
International Union of Immunological Societies
(IUIS) 2022 update of IEI [4

&

]. We included disorders
where case reports described clinically significant
features of allergic rhinitis, asthma and atopic der-
matitis (eczema), elevations in IgE or hypereosino-
philia. Two independent reviewers classified each
monogenic disorder within the predominant cate-
gory of mechanism. Where disagreement arose
regarding classification, a consensus was agreed
with the wider team. We identified new genes with
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KEY POINTS

� Atopic diseases are a feature of IEI and some IEI may
predominantly manifest with atopy.

� Patients with very early onset atopic diseases or
treatment resistant atopic disorders should be
investigated for IEI.

� Accurate diagnosis facilitated by genetic analysis is
vital in this cohort, as curative HSCT and targeted
precision-based treatments are available.

Atopic manifestations of inborn errors of immunity Sams et al.
reported atopic presentations within the most
recent 2022 IUIS IEI update combined with a rapid
literature review. The dates these disorders were
reported is shown in Fig. 1, and clinical phenotypes
summarized in Table 1, adapted from Lyons et al. [5],
and Nelson et al. [6

&

]. Table 2 illustrates a compre-
hensive overview of all IEI associated with atopy,
adapted from Lyons et al. [5], Nelson et al. [6

&

] and
IUIS update [4

&

].
CATEGORISATION OF MONOGENIC
INBORN ERRORS OF IMMUNITY INTO
MECHANISTIC PATHWAYS TO ATOPY

Lyons et al. [5] proposed seven broad categories of
inborn errors of immunity favouring development
of atopy. Our adaptation has been modified to
include the following eight categories, summarised
in Fig. 2: impaired skin and mucosal barrier func-
tion; cytoskeletal abnormalities; aberrant TCR sig-
nalling; disrupted cytokine signalling; decreased
T cell repertoire diversity and thymic development
disorders; regulatory T cell (Treg) disorders; innate
cell effector mechanisms; and metabolic disorders.

We describe an expansion in both the number of
IEI with associated atopic manifestations and in the
FIGURE 1. Updated timeline of genes discovered responsi
[1&&,2&&,4&,17,19--27].
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mechanistic categories underpinning the pathogen-
esis. This highlights the importance of awareness
and early recognition of atopy as a manifestation of
a growing number of IEI.
Cytoskeletal abnormalities

Cytoskeletal disorders include Wiskott-Aldrich syn-
drome (WAS), Wiskott-Aldrich syndrome protein
(WASP) WAP interacting protein (WIP), Dedicator
of cytokinesis 8 (DOCK8) deficiency and Serine/
threonine kinase 4 (STK4) deficiency. These cause a
combined immunodeficiency with atopic features.
WAS, DOCK8 and STK4 are also linked to a higher
rate of autoimmunity and malignancy, illustrating
the broad effects of immune dysregulation in IEI
[4

&

,5,6
&

]. Deficiencies in the Nck-associated protein
1-like (NCKAP1L) gene, also known as hematopoietic
protein 1 (HEM1), were first reported in humans by
Castro et al. [17]. The gene encodes a haematopoietic
lineage specific regulator of the actin cytoskeleton,
vital for downstream signalling of activated Rac to
stimulate F-actin polymerization in response to
engagement of immune receptors [B cell receptor,
TCR, Toll like receptor (TLR) and cytokine receptors]
and is responsible for actin cytoskeleton reorganisa-
tion. Disruption tomechanistic Target of Rapamycin
(mTOR) 2 and F-actin control results in immune
dysregulation. Nine patients have been reported,
for which a cohort of five patients from four unre-
lated families described byCook et al. [16], had atopic
and inflammatory diseases, chronic hepatospleno-
megaly, lymphadenopathy with elevated IgE in 4
patients. Other features included recurrent bacterial
and viral skin and respiratory infections and specific
antibody deficiencies. Lymphoproliferation, cyto-
kine overproduction, lymphadenopathy, hyperin-
flammation and autoimmune manifestations were
also reported [17].
ble for inborn errors of immunity associated with atopy
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Table 1. Novel IEIs with atopic manifestations – diagnostic features, atopic prevalence and clinical pitfalls

References

Total
cases

described

Age of
diagnosis
(years) Key features Atopic features Clinical pitfalls

STAT6
GOF

Sharma et al. [2&&] 16 3--60 Early-onset atopy within
the first year of life

Treatment resistant atopy
Recurrent viral infections
Recurrent skin and
respiratory infections

Eczema
Food allergies
Asthma
Eosinophilic

gastrointestinal
(GI) disease

Anaphylaxis
Eosinophilia
Elevated IgE

Lymphoma risk

RLTPR Wang et al. [7]: six
patients

Shober [8]: four
patients

Yonkof [9]: two patients
Sorte [10]: four patients
Maccari [11]: one
patient

Anas M Alazami et al.
[12]: seven patients

Kurolap et al. [13]: one
patient

Magg et al. [14]: five
patients

Atschekzei [15]: three
patients

Greater
than 10

Not reported Combined
immunodeficiency
(CID)

Recurrent bacterial
fungal and mycobacterial
infections

Skin infections e.g.
molluscum, diffuse
warts from Human
papillomavirus (HPV)
infection and abscesses

Respiratory tract
infections

Eczema
Eosinophilic

oesophagitis
High IgE
Asthma
Food allergy
Cold urticaria

Epstein--Barr virus (EBV)
lymphoproliferation

IKZF1 Hoshino et al. [1&&] 8 over 40 Autoimmunity (diabetes,
colitis, thyroiditis)

Lymphoproliferation
Plasma cell expansion
Evans Syndrome

Recurrent infections,
Immune dysregulation

Food allergy
Asthma
Rhinitis
Dermatitis
Eosinophilic

oesophagitis

IgG4-related disease
(3/8)

NCKAP1L
LOF

Cook et al. [16]
Castro et al. [17]

9 15 months --
11 years

Autoinflammatory
Recurrent upper
respiratory tract
infection (URTI)

Skin abscesses

Eczema
Elevated IgE

MSN Lagresle-Peyrou et al.
[18] and Fang et al.
[19]

16 Not reported Recurrent infections with
bacteria and varicella
and molluscum
contagiosum

Neutropenia
Decreasing
immunoglobulin over
time

Eczema
Atopic dermatitis

Very Early Onset
Inflammatory Bowel
Disease (VEOIBD)
(1 case report)

Primary immune deficiency disease
Variants in the MSN gene have recently been
described as the cause of X-linkedmoesin-associated
immunodeficiency (X-MAID). Sixteen cases have
been reported worldwide. Patients with hemizygous
mutations in the MSN gene present with lymphope-
nia, impairedT-cell proliferation,hypogammaglobu-
linemia, altered migration and adhesion capacities
and susceptibility to bacterial and viral infections of
the respiratory and gastrointestinal systems. Eight
patients had skin manifestations mainly of eczema,
480 www.co-allergy.com
molluscum contagiosum and atopic dermatitis
[18,19]. MSN, ezrin and radixin are members of the
ezrin-radixin-moesin (ERM) family whichmodulates
the actin cytoskeleton and plasma membranes [42].
Aberrant TCR signalling
Defective TCR signalling is evident in CARD11,
BCL10, MALT1, CARML2, ZAP70, LAT and RLTPR
deficiencies. Presentations consist of CID/severe
Volume 23 � Number 6 � December 2023



Table 2. Atopy as a manifestation of IEI

Mechanism of
pathogenesis

Associated
genes

Immunological features
of presentation

Atopic features of
presentation

Mode of
inheritance

Impaired skin and
mucosal barrier
function

FLG Skin infections Atopic dermatitis
Food allergy
Allergic rhinitis
Asthma
Eosinophilia
High IgE

Autosomal recessive

SPINK5 Skin infections Atopic dermatitis
Food allergy
Allergic rhinitis
Asthma
Eosinophilia
High IgE

Autosomal recessive

CDSN Skin infections Atopic dermatitis
Food allergy
Eosinophilia
High IgE

Autosomal recessive

DSG1 Skin infections Atopic dermatitis
Food allergy
Eosinophilia
High IgE

Autosomal recessive

DSP Skin infections Atopic dermatitis
Food allergy
Eosinophilia
High IgE

Autosomal recessive

sIgA deficiency Antibody deficiency
Bacterial infections
Autoimmunity

Asthma, food allergy,
allergic rhinitis
and eczema

Unknown

NEMO Monocyte dysfunction
Low immunoglobulins

Atopic dermatitis
Asthma
Food allergies
Allergic rhinitis

X-linked

Cytoskeletal
abnormalities

WAS CID Atopic dermatitis
Food allergy
Eosinophilia
High IgE

X-linked

WIP CID Atopic dermatitis
Food allergy
Eosinophilia
High IgE

Autosomal recessive

DOCK8 CID
Susceptibility to

viral infections

Atopic dermatitis
Food allergy
Eosinophilia
High IgE

Autosomal recessive

STK4 CID Atopic dermatitis
Food allergy
Eosinophilia
High IgE

Autosomal recessive

NCKAP1L deficiency Autoinflammatory
Recurrent URTI
Skin abscesses

Atopic dermatitis Autosomal recessive LOF

ARPC1B CID
Recurrent invasive

infections

Eosinophilia
High IgE

Autosomal recessive

Atopic manifestations of inborn errors of immunity Sams et al.
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Table 2 (Continued )

Mechanism of
pathogenesis

Associated
genes

Immunological features
of presentation

Atopic features of
presentation

Mode of
inheritance

MSN
Less than 10 reported

cases to date

Recurrent infections with bacteria
and varicella

Neutropenia
Decreasing immunoglobulin over

time

Atopic dermatitis X-linked

Aberrant TCR
signalling

CARD11 CID/SCID Eosinophilia
High IgE

Autosomal recessive

CARD11 Cutaneous viral infections
Recurrent respiratory tract

infections

Atopy
Eosinophilia

Autosomal dominant LOF
(dominant negative)

BCL10 CID/SCID Eosinophilia
High IgE

Autosomal recessive

MALT1 CID/SCID Eosinophilia
High IgE

Autosomal recessive

CARML2 CID Eosinophilia
High IgE

Autosomal recessive

ZAP70 CID/SCID Eosinophilia
High IgE

Autosomal recessive

LAT CID/SCID Eosinophilia
High IgE

Autosomal recessive

RLTPR deficiency CID
Recurrent bacterial, fungal and

mycobacterial infections
Skin infections e.g. molluscum,

diffuse warts from HPV
infection, and abscesses

Respiratory tract infections
EBV lymphoproliferation

Atopic dermatitis
Eosinophilic oesophagitis
High IgE
Asthma
Food allergy
Cold urticaria

Autosomal recessive

Disrupted
cytokine
signalling

IL6RA Skin infections
Respiratory tract infections
Recurrent pyogenic infections
Abscesses

Atopic dermatitis
Eosinophilia
High IgE

Autosomal recessive

IL6ST Skin infections
Respiratory tract infections
Bronchiectasis
Boils
Aspergillosis

Atopic dermatitis
Eosinophilia
High IgE

Autosomal recessive/
autosomal dominant

STAT3 Skin infections
Respiratory tract infections

Atopic dermatitis
Eosinophilia
High IgE

Autosomal dominant

ZNF341 Skin infections
Respiratory tract infections

Atopic dermatitis
Eosinophilia
High IgE

Autosomal recessive

IL21R
Less than

10 reported
cases to date

CID
Recurrent infections including

PCP and cryptosporidium

Increased IgE Autosomal recessive

TGFBR1/2
(Loeys --
Dietz syndrome)

CID
Recurrent respiratory tract

infections

Eczema
Food allergies

Autosomal dominant

ERBB21P
(ERBIN deficiency)

One case/kindred
been reported
to date

CID
Recurrent respiratory tract

infections
Susceptibility to Staph aureus

Atopic dermatitis
Moderately
increased IgE

Autosomal dominant

Primary immune deficiency disease
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Table 2 (Continued )

Mechanism of
pathogenesis

Associated
genes

Immunological features
of presentation

Atopic features of
presentation

Mode of
inheritance

STAT5B CID
Hypergammaglobulinaemia
Autoimmunity

Atopic dermatitis
High IgE

Autosomal recessive/
autosomal dominant

STAT5B GOF Normal immunoglobulin levels,
T cells and B cells

Diarrhoea

Atopic dermatitis
Urticaria
Eosinophilia
Hypereosinophilic syndrome

Unknown

PIK3CG
Less than 10 reported

cases to date

Antibody deficiency
Recurrent infections

Eosinophilia Autosomal recessive

JAK1 (GOF)
One case/kindred

been reported
to date

Immune dysregulation
Autoimmunity
Viral infections

Eosinophilic enteritis
Eosinophilia

Autosomal dominant

TYK2 Susceptibility to viruses
Multiple cytokine signalling

defects

Elevated IgE Autosomal recessive

OTULIN
Less than 10 reported

cases to date

Autoinflammatory
Neonatal recurrent fever
Neutrophilia

Dermatitis Autosomal recessive

SYK
Less than 10 reported

cases to date

Autoinflammatory
Recurrent infections
Multiorgan inflammatory

disease
Dysgammaglobulinaemia
B-cell lymphoma

Dermatitis Autosomal dominant GOF

Regulatory T cell
Disorders

FOXP3 Autoimmunity Atopic dermatitis
Food allergy
Asthma
Eosinophilia
High IgE

X-linked

IL2RA CID
Autoimmunity

Atopic dermatitis
Food allergy
Asthma
Eosinophilia
High IgE

Autosomal recessive

IKZF1
Less than 10 reported

cases to date

Autoimmunity
Recurrent infections

Allergy Autosomal dominant GOF

IL2RB (CD122 deficiency)
5 kindreds

Immune dysregulation
Autoimmunity
Autoimmune haemolytic

anaemia
Hypergamma
Viral infections -- EBV, CMV

Dermatitis Autosomal recessive

Innate cell
effector
mechanisms

PLCG2 CVID
Autoimmunity
Autoinflammatory

Temperature-sensitive
mast cell degranulation

Autosomal dominant

NLRP3 Autoinflammatory
Fever
Leukocytosis
Conjunctivitis

Urticaria Autosomal dominant GOF

Thymic
development
disorders

PAX1
Less than 10 reported

cases to date

SCID
Omenn’s-like syndrome
Severe, recurrent infections
Athymic

Erythroderma
Eosinophilia
Normal to raised IgE

Autosomal recessive

Atopic manifestations of inborn errors of immunity Sams et al.

1528-4050 Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. www.co-allergy.com 483



Table 2 (Continued )

Mechanism of
pathogenesis

Associated
genes

Immunological features
of presentation

Atopic features of
presentation

Mode of
inheritance

EXTL3
Less than 10 reported

cases to date

CID
Low Immunoglobulins

Eosinophilia Autosomal recessive

FOXN1 CID
Recurrent viral and bacterial

respiratory tract infections

Atopic dermatitis Autosomal dominant

22q11 deletion syndrome CID
Normal or decreased

immunoglobulins
May have low TRECs at newborn

screening

Eczema
Asthma

Autosomal dominant

Decreased T cell
repertoire
diversity

Multiple genes
presenting as Omenn
syndrome, such as
RAG1/2, ADA, LIG4,
ZAP70, etc.

Leaky SCID Erythroderma
Eosinophilia
High IgE

Autosomal recessive

BCL11B CID Severe atopic dermatitis
Food allergies
Allergic asthma
Urticaria
Eosinophilia
Elevated IgE

Autosomal dominant

Metabolic MAN2B2
One case/kindred

reported to date

CID
Recurrent infections

High IgE Autosomal recessive

PGM3 CID
Recurrent pneumonia
Recurrent skin abscesses
Bacterial and viral infections

Severe atopy
High IgE
Eosinophilia

Autosomal recessive

PEPD
(prolidase deficiency)

Immune dysregulation
Autoimmunity
Autoantibodies
Chronic skin ulcers
Infections

Atopic dermatitis Autosomal recessive

Genes are ordered into their associated pathway/mechanism of disease; however, there may be overlap between mechanisms of pathogenesis for the same gene
(Adapted from Milner 2018, and Nelson 2022 and including recent IUIS updates). FLG and DSG1 are marked in italics, as they are not necessarily associated
with IEI but are monogenic defects supporting the pathogenic category. We have grouped thymic development disorders and decreased T cell repertoire diversity
[4

&
,5,6

&
,26,28--41].

Primary immune deficiency disease
combined immunodeficiency (SCID) with atopic
features such as eosinophilia and high IgE. TCR
signalling can either be absent or of reduced
strength. Low strength signals between the TCR
and major histocompatibility complex (MHC) com-
plex have previously been demonstrated to skew
naive T cell differentiation toward a T helper cell
(Th) 2 response, promoting atopy [4

&

,5,6
&

]. Depend-
ing on the type of defect in CARD11, presentation
can differ. Dominant negative mutations are asso-
ciated with atopy, including moderate to severe
dermatitis, high IgE and CID, like MALT1 deficien-
cies [5,6

&

]. ZAP70 deficiency may manifest as atopic
disease before the immunodeficiency becomes
apparent [6

&

].
RLTPR deficiency causes aberrant TCR signal-

ling, by interfering with CD28 stimulation in T-cells
484 www.co-allergy.com
[7]. Patients present with CID, recurrent bacterial,
fungal and mycobacterial infections, and skin
manifestations such as diffuse and recurrent warts.
Atopic features include dermatitis, eosinophilic
oesophagitis, asthma, food allergy, cold urticaria
and high IgE [4

&

,5,6
&

].
Disruption of cytokine signalling
Genetic defects causing ineffective cytokine signal-
ling include IL6RA, IL6ST, STAT3 and ZNF341.

Patients with dominant negative loss of func-
tion mutations in STAT3, present with recurrent
infections, atopic dermatitis, eosinophilia, food
allergy and high IgE. ZNF341 is involved in
STAT3 gene expression and presents in a similar
fashion. This condition promotes atopy, as STAT3
Volume 23 � Number 6 � December 2023



FIGURE 2. Categories of pathogenic mechanisms of atopy in inborn error of immunity.

Atopic manifestations of inborn errors of immunity Sams et al.
phosphorylation leads to suppression of Th2
responses and favours Th17 responses, thereby
reducing the propensity for atopy. Mutations in
STAT3 diminish this effect, resulting in increasing
Th2 responses [6

&

].
Autosomal dominant STAT6 GOF variants asso-

ciated with early-onset (<12months) severe atopy
have been reported by multiple groups [2

&&

,3,43–
45]. Treatment-resistant atopic dermatitis and food
allergies were most common, followed by asthma,
eosinophilic gastrointestinal disease and anaphy-
laxis. Elevated IgE levels and eosinophilia were
noted [2

&&

]. STAT6 is an intracellular transcription
factor downstream of IL4 and IL4R/JAK-kinase
1528-4050 Copyright © 2023 The Author(s). Published by Wolters Kluwe
signalling cascade and a central node of immune
polarization and a key modulator for the risk of
allergic disease in humans and mice [3,46]. Trans-
location of STAT6 to the nucleus, activates a pattern
of gene expression mediating Th2 cell differentia-
tion, M2 macrophage polarization, promotion of B
cell survival and IgE class switching [47–50].

Seven kindreds were reported as sporadic, and
three kindreds followed an autosomal dominant
pattern of inheritance. Clinical features of wider
immune dysregulation included recurrent nonfatal
skin, respiratory, and viral infections identified in
half of the cohort. Similar to characteristics of DN
STAT3 LOF, short stature, pathologic fractures and
r Health, Inc. www.co-allergy.com 485



Primary immune deficiency disease
generalised hypermobility were described. One
patient died due to anaphylaxis at aged 20 and
the other aged 35 secondary to a cerebral aneurysm,
demonstrating the severity of the multisystem dis-
ease in this cohort [2

&&

]. It is notable that somatic
activating mutations in STAT6 have been associated
with B cell lymphoma [51–53]. The oldest patient in
the cohort, experienced recurrent B cell lymphoma
with follicular lymphoma aged 49 with subsequent
relapse with a transformed follicular lymphoma
(diffuse large B cell lymphoma) aged 60 [2

&&

].
Decreased T cell repertoire diversity

This mechanism manifests as Omenn syndrome, a
type of leaky SCID, associated with multiple genetic
defects including recombination activating gene
(RAG)1, RAG2 and adenosine deaminase (ADA).
Hypomorphic mutations in the responsible genes
result in a limited number of T cells which undergo
oligoclonal expansion. These T cells preferentially
differentiate into the Th2 lineage, causing the clas-
sical presenting symptoms of hepatosplenomegaly,
lymphadenopathy, erythroderma, eosinophilia and
high IgE [4

&

,5,6
&

].
Two hypotheses exist to explain how a reduced

diversity of T cells can result in atopy. The first
suggests that reduced T cell diversity causes a lack
of Tregs and loss of regulation of Th2 with subse-
quent atopy. The second hypothesis suggests low
strength TCR signalling leading to skewing of Th2
differentiation. Due to reduced thymopoiesis, there
is a lack of T cells with high affinity receptors which
leads to a preferential expansion of T cells with low
affinity receptors that differentiate into Th2 cells,
thus promoting atopy [5].
Altered balance of conventional T cells and
regulatory T cells

Reduced numbers of Tregs leads to a failure of tol-
erance and presents as autoimmunity and features
of immune dysregulation such as atopy [5,6

&

].
FOXP3 is the master transcription factor for

Tregs, and its deficiency is responsible for immuno-
dysregulation polyendocrinopathy enteropathy
X-linked (IPEX) syndrome. IPEX presents as auto-
immunity with severe atopic dermatitis, food
allergy, asthma, eosinophilia and high IgE [4

&

,5,6
&

].
IL2RA loss of function mutations lead to atopic

features such as dermatitis, elevated IgE with auto-
immunity and immunodeficiency. Tregs express the
most IL2RA and fail to survive in its absence. IL-2
signalling through its receptor on Tregs promotes
production of IL-10, promoting tolerance. Deficien-
cies in IL2RA result in loss of survival signals for
486 www.co-allergy.com
Tregs and loss of suppressive function, favouring
atopy [5,6

&

].
IKAROS gain-of-function mutations

Germline heterozygous IKAROSGOFmutations pre-
sented with profound autoimmunity and immune
dysregulation (75%, 6/8) with an age of onset of
less than 1 to over 40 years. The regulation of IKZF1
is required for T helper cell, Treg and plasma cell
differentiation [1

&&

].
Patients developed autoimmune diseases

including type 1 diabetes mellitus, enteritis, auto-
immune hepatitis, Hashimoto thyroiditis, leukocy-
toclastic vasculitis, vitiligo and alopecia with
autoantibodies. GOF patients showed an absence
of effector Treg and increased T follicular cell pop-
ulation, suggesting T-cell differentiation is compro-
mised by abnormal IL-2 production. Autoimmune
manifestations may be due to abnormal IL-2 pro-
duction and effector Treg populations in these
patients, as with other IEI patients with impaired
Treg numbers and/or function IPEX syndrome and
cytotoxic T-lymphocyte antigen 4 (CTLA-4) hap-
loinsufficiency [54]. T cells expressing GOF muta-
tions showed increased IL-4 (Th2) production, and
decreased IL-2 and IFNg production (Th1) [1

&&

,55].
Features also included atopy, lymphoprolifera-

tion and generally nonsevere bacterial infections.
Whole-exome sequencing identified two patients
with apparent autosomal dominant inheritance,
as well as de novo occurrences. One patient harbour-
ing a GOF mutation did not present with any
clinical manifestations, demonstrating variable
immunological penetrance.

Patients had mostly normal B-cell numbers,
with normal to elevated immunoglobulin and IgE
levels. Presentations of atopic disease included
asthma, rhinitis, dermatitis, food allergy and eosi-
nophilic oesophagitis. These are postulated to be
due to increased Th2 differentiation with increased
eosinophils, and production of IL-4 [56]. Increased
IL-4 may result in Th2 and T follicular helper
cell (TFH)2 skewing through negative regulation
by IL-2 and/or hyper-IgE likely contributes to the
development of allergic manifestations. Plasma cell
hyper-proliferationwas reported. Three patients had
IgG4-related diseases demonstrated by an increased
infiltration of the IgG4-positive plasma cells in the
lymph nodes, intestine or bile duct [1

&&

].
Skin barrier defects

Multiple genes are associated with disrupted skin
barrier function and infection, summarized in
Table 2.
Volume 23 � Number 6 � December 2023



Atopic manifestations of inborn errors of immunity Sams et al.
The ‘atopicmarch’ is characterized by early onset
eczema predisposing to developing allergic rhinitis,
then subsequently asthmaand food allergies [6

&

]. It is
suggested that increased skin permeability from
eczema, leads to cutaneous antigen-presenting cells
(APCs) being exposed to increased amounts of usu-
ally innocuous environmental antigens. This leads
to sensitisation, and production of Th2 associated
pro-inflammatory cytokines, consequently initiating
the allergic response [5,6

&

]. Skin barrier disruption
alongside downregulation of protective antimicro-
bial peptides, increases infection risk [6

&

].
Pro-inflammatory type 2 cytokines also down-

regulate filaggrin, an important protein for skin
barrier integrity [57], due to its role in producing
natural moisturising factor, essential for hydration,
during normal skin desquamation [58]. Therefore,
disturbances in filaggrin production result in dry,
flaky skin, increasing skin permeability, allowing
increased exposure to antigens, and so the cycle
continues [5]. This is observed in ichthyosis vulgaris,
due to a homozygous LOF mutation in filaggrin,
resulting in early onset (first months of life) severe
atopy with elevated IgE [5,6

&

].
Selective IgA deficiency

Selective IgA deficiency (sIgAD) has similarly been
postulated to result in impairedmucosal barrier func-
tionresulting ingreater sensitisationandpropagation
of allergy. Up to 40% of sIgAD patients have allergy
as a presenting or only symptom [37,38], with up to
84% of patients having some form of allergic mani-
festation, asthma being the commonest [35], others
include allergic rhinitis, eczema and food allergy [35].
Ectodermal dysplasia and NF-kB essential
modulator

Atopic features have been described in ectodermal
dysplasia, including scalp dermatitis, atopic derma-
titis and elevated IgE with positive skin prick
tests [59].

Children with ectodermal dysplasia syndromes
experience atopic symptoms more frequently com-
pared to the general paediatric population, including
asthma, food allergies, allergic rhinitis and eczema
[40] due to skin barrier disruption [60] and hypohid-
rosis or anhidrosis, fuelling their atopic march [61].

NEMO deficiency is associated with eczema and
erythroderma [62].
Thymic development disorders

Atopy in chromosome 22q11.2 deletion syndrome
(22q11.2del) is proposed to be related to T-cell
1528-4050 Copyright © 2023 The Author(s). Published by Wolters Kluwe
lymphopenia and homeostatic pressure driving
Th2 polarization [63]. Atopy has been associated
with low T-cell receptor excision circles, with low
T cells conferring nearly a three-fold increased risk of
allergy [64,65], with patients presenting with
asthma, rhinitis/conjunctivitis, food allergy and
atopic dermatitis. Other IEI in this category are
PAX1, EXTL3 and FOXN1.
Metabolic disorders

Mutations in MAN2B2 and PGM3 are congenital
disorders of glycosylation (CDGs) [22,66].

Biallelic mutations in MAN2B2 have been
shown to result in a CID, characterised by recurrent
pneumonia, thrush, chronic diarrhoea and ele-
vated IgE. Extra-immunological manifestations
included small vessel vasculitis and thrombotic
stroke [4

&

,22].
PGM3 deficiency is regarded as a HIES [4

&

].
Patients suffer from recurrent bacterial and viral
infections, commonly affecting the skin and res-
piratory tract, low T cells and reduced memory B
cells. Autoimmunity, along with severe atopy,
including severe atopic dermatitis, food allergies
and asthma have been reported, accompanied by
marked eosinophilia and high IgE. Extra-immuno-
logical manifestations include neurological impair-
ment, such as sensorineural hearing loss, low IQ,
developmental delay and facial dysmorphism
[4

&

,66].
TREATMENT UPDATES – FOCUS ON
PRECISION THERAPIES

Improvements in genetic analysis have facilitated
early diagnosis and options for precision therapy to
modulate these defects. An expanding range of bio-
logics and small molecule drug inhibitors are avail-
able for asthma or eczema, such as Mepolizumab
(anti-IL5),Dupilumab (anti-IL4Ra) andTezepelumab
(antithymic stromal lymphopoietin) with potential
for translational repurposing to rare diseases.

Dupilumab has been shown to be well tolerated
and effective in a number of atopic diseases, espe-
cially refractory eczema. The IL-4a receptor antag-
onist inhibits the IL-13/ IL-4/ STAT 6 axis, disrupting
IL-4 signalling and the allergic type 2 cytokine sig-
nature [67].

Dupilumab was highly effective in the three
patients with STAT6 GOF variants, demonstrating
clinical and immunological biomarker and cutane-
ous improvement with increased growth velocity
and weaning or discontinued oral corticosteroids.
Preclinical data have suggested that Janus kinase
(JAK) inhibitors such as Tofacitinib and Ruxolitinib
r Health, Inc. www.co-allergy.com 487
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may be beneficial [2
&&

]. Phase II studies are ongoing
with Bruton’s tyrosine kinase inhibitors (BTKi) in
atopic dermatitis [68].

Dupilumab used in autosomal dominant AD
STAT3 LOF showed improved atopic dermatitis, eosi-
nophilic folliculitis and recurrent cutaneous infec-
tions [69]. Improvements to other manifestations
such as asthma and allergic bronchopulmonary
aspergillosis have been reported [70,71]. Dupilumab
has also been used to successfully treat severe atopic
dermatitis in a patient with CARD11-associated
atopy with dominant interference of NF-kB signal-
ling (CADINS) [72].

There are case and single-centre reports for the
use of Omalizumab in IEI, such as in AD STAT3 LOF
with concomitant respiratory manifestations;
however, its role is still to be defined. Glutamine
supplementation for dominant negative CARD11
variants has not yet translated to clinical therapy.
Oral dietary supplementation is a research avenue
for phosphoglucomutase 3 (PGM3) deficiency, with
evidence suggesting in-vitro supplementation with
the nondiabetogenic amino-sugar N-acetylglucos-
amine (GlcNAc) led to normalised intracellular
UDP-GlcNAc, surface CTLA-4 expression and alter-
ations in cellular glycosylation and immune path-
ways [66,73]. The use of lenalidomide has been
shown to lead to degradation of IKZF1 and prevent
some of the abnormal IKZF1 GOF using in vitro
assays [1

&&

].
Role and effectiveness of allergen
immunotherapy

Primary immunodeficiencies are described as a rel-
ative contraindication to commencing AIT; how-
ever, no controlled studies have investigated the
effectiveness or associated risks. AIT is likely to have
been performed inmany cases of undiagnosed selec-
tive IgA deficiency [74,75].

The current European Academy of Allergy &
Clinical Immunology (EAACI) guidelines state that
careful consideration, on a case-by-case basis, with
discussion between patient and the treating physi-
cian is required before deciding whether or not to
commence AIT [76]. The British Society for Allergy
& Clinical Immunology (BSACI) guidelines for
venom immunotherapy (VIT) also state the effects
of VIT in patients with disorders of the immune
system such as immunodeficiency are not known
and therefore the decision to offer treatment
should be based on an individual ‘risk-benefit’
analysis [77]. We support individual consideration
of patients with IEI for AIT, accepting that the
efficacy remains unclear.
488 www.co-allergy.com
Haematopoietic stem cell transplantation

HSCT is curative for certain IEI and may lead to
resolution of atopy, however the durability remains
unknown. IgE levels substantially decreased post-
HSCT in the majority of patients who underwent
transplantation for DN STAT3 LOF and DOCK 8
deficiency [78–80] alongside resolution of eczema
post-HSCT [78,79].Allergen-specific IgEalsodeclined
post-HSCT in all patients tested with DOCK 8 defi-
ciency. Al-Herz et al. [80] reported, in 10 patients
(91%) with DOCK 8 deficiency who presented with
food allergy and food allergen-specific IgE levels, that
food allergies clinically resolved post-HSCT in eight
out of 10 patients confirmed by oral challenges,
although not all studies confirmed this [81].
CONCLUSION

Presentations of atopy should be considered as part
of an underlying IEI and would warrant investiga-
tion particularly if early onset, refractive to treat-
ment and with concurrent signs of autoimmunity,
lymphoproliferation and recurrent infections.
Patients who remain undiagnosed have a higher
risk of morbidity and mortality. An initial immuno-
logical assessment proceeding to genetic testing aids
early identification of specific genetic abnormalities
enabling precision treatments improving outcomes
for atopic disease in IEI.
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