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Abstract

Introduction: The purpose of this study is to examine the associations between built
environments and life expectancy across a gradient of urbanicity in the U.S.

Methods: Census tract-level estimates of life expectancy between 2010 and 2015, except for
Maine and Wisconsin, from the U.S. Small-Area Life Expectancy Estimates Project were analyzed
in 2022. Tract-level measures of the built environment included: food, alcohol, and tobacco
outlets; walkability; park and green space; housing characteristics; and air pollution. Multilevel
linear models for each of the 4 urbanicity types were fitted to evaluate the associations, adjusting
for population and social characteristics.

Results: Old housing (built before 1979) and air pollution were important built environment
predictors of life expectancy disparities across all gradients of urbanicity. Convenience stores
were negatively associated with life expectancy in all urbanicity types. Healthy food options
were a positive predictor of life expectancy only in high-density urban areas. Park accessibility
was associated with increased life expectancy in all areas, except rural areas. Green space in
neighborhoods was positively associated with life expectancy in urban areas but showed an
opposite association in rural areas.

Conclusions: After adjusting for key social characteristics, several built environment
characteristics were salient risk factors for decreased life expectancy in the U.S., with some
measures showing differential effects by urbanicity. Planning and policy efforts should be tailored
to local contexts.
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INTRODUCTION

Disparities in life expectancy (LE) in the U.S. are well documented.! Between 2001 and
2014, LE for men and women in the top 5% of the income distribution increased by

2.34 and 2.91 years, respectively, but increased by only 0.32 and 0.04 years, respectively,
for the bottom 5%.2 Between 2010 and 2017, persons with a high-school degree or less
experienced decreased LE up to 1.1 years, whereas college-educated persons gained up

to 1.7 years.3 In addition to income and education, race/ethnicity have been identified as
important drivers of this inequality. The gains from income and education are not uniformly
seen across all race/ethnicity groups, and the differences in LE persist between race/ethnic
groups at high-income and high-education levels.# The gaps are even more striking among
intersectional low-income, low-education, and racial/ethnic minority populations.2> Singh
and Siahpush® have shown striking geographic inequalities in LE gaps between urban and
rural communities, suggesting that social and physical characteristics of communities, in
addition to individual-level factors, may play salient roles in aggravating LE inequalities.”-8
Indeed, a wide range of neighborhood-level social and built environment characteristics have
been linked to individual-level health outcomes and health behaviors,? which may in turn
increase mortality in a neighborhood and contribute to geographic LE inequalities.10

Although most studies on geographic LE disparities have utilized large administrative
geographies (e.g., state and county),”:8:11.12 recent statistical modeling efforts have yielded
smaller-area LE measures that have found geographic LE disparities to be localized
phenomena.1314 One recent paper showed that >70% of the variation in LE was attributable
to census tract—level conditions, whereas only 19% and 10% of variation was explained by
the state and county levels, respectively.14 Recent studies suggest that LE at the local level is
associated with a number of neighborhood social disadvantage features.1>16 However, only
a few studies have investigated the associations of built environment with LE. One study
found that an index score of neighborhood characteristics, including social characteristics
(e.g., race/ethnicity, employment, health insurance) and built environment features (e.g.,
food environments, physical activity venues, tree canopy, etc.), was associated with tract-
level LE in Texas, yet the effect of each index component was not evaluated.1’

Finally, despite widening LE gaps by sociodemographic status across the U.S., differences
in LE and their associations with neighborhood characteristics may vary by the level

of urbanization.” Neighborhood-level social and built environments across an urbanicity
spectrum have distinct characteristics in multiple domains such as poverty, education, racial/
ethnic composition, occupation, housing, infrastructure, and amenities, 18 in which the health
outcomes and behaviors of individuals in communities substantially differ. As such, the

goal of this analysis is to examine the associations between built environment attributes

and neighborhood-level LE across diverse U.S. communities, using appropriate multilevel
modeling approaches.
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Study Sample

Measures

Census tract—level LE estimates from 2010 to 2015 were obtained from U.S. Small-Area
Life Expectancy Estimates Project (USA-LEEP), provided by National Center for Health
Statistics.1? Death records of all U.S. residents between 2010 and 2015 were geocoded by
National Center for Health Statistics (6-year period), and census tract abridged life tables as
well as age-specific death rates were calculated on the basis of the 2010 decennial Census
and 2011-2015 American Community Survey 5-year estimates. Maine and Wisconsin were
excluded from USALEEP because the 2 states had only 5 years of geocoded death records
(2011-2015), not 6 (2010-2015). To address the problem of small populations and missing
death records, statistical modeling strategies were developed by USALEEP on the basis

of selected census tracts with >5,000 residents over the 6-year period (2010-2015) and

no missing age-specific death counts. Sociodemographic variables in the modeling process
included the median household income, population density, proportions of non-Hispanic
Black, proportions of Hispanic, and residents with a 4-year college degree or higher. The
negative binomial model based on selected census tracts predicted missing death records to
complete age-specific death rates.29 Because several sociodemographic characteristics were
already utilized to predict LE, these variables were included as covariates. The covariates are
potential confounders for tracts without missingness, and adjusting for imputation covariates
in regression models does not bias the results.21 All census tracts were classified into 1

of 4 urbanicity types on the basis of a previously derived typology.22 This classification
modified the original 2010 Rural-Urban Commuting Area (RUCA) Codes defined by the
U.S. Department of Agriculture, which had 3 categories: metropolitan core, micropolitan
core, and small town core. The modified RUCA further divided the metropolitan core into
2 subcategories (high- and low-density urban) on the basis of the distribution of the land
area and collapsed micropolitan/small town cores into 1 group (i.e., suburban/small town).
The rest of the areas were defined as rural. The modified RUCA classification provides
clearer geographic delineations of community types within urban areas than within other
methodologies.?2

Census tract—level built environment measures of interest were based on previous literature
(Table 1).10 The proportions of the population living more than half a mile (urban areas), 1
mile (suburban or small-town areas), or 10 miles (rural areas) from the nearest supermarket
or large grocery store were classified as having limited access to healthy food.23-25 The data
were accessed from the U.S. Department of Agriculture Economic Research Service Food
Access Research Atlas.26

The number of alcohol outlets (off-premise, e.g., liquor stores), tobacco outlets, and
convenience stores with sales >$0 were normalized to 1,000 population. Convenience stores
have been identified as a major channel for sales of cigarettes, alcohol, and unhealthy

food, such as sugar-sweetened beverages and energy-dense snacks.2’ The businesses were
identified from the North American Industry Classification System Code accessed from the
National Neighborhood Data Archive.28
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The number of fast-food restaurants and drinking establishments defined by the North
American Industry Classification System with sales >$0 were normalized to 1,000
population. The data were processed and accessed from the National Neighborhood Data
Avrchive.29

Two constructs of walkability were employed in this analysis: pedestrian intersection
density that facilitates walking and transit stop coverage that can promote transit ridership
and walking.30:31 The density intersections were calculated on the basis of the 2011
NAVSTREETS Street Data. The proportion of census tract area within half mile of a fixed-
guideway transit stop, referred to as transit stop coverage, was calculated on the basis of the
2011 Transit Oriented Development a Database. These variables were accessed through the
Smart Location Database, Version 2.0.32

The number of open parks was assessed per census tract using 2018 ParkServe data. The
database, which includes parks in 14,000 communities across the U.S., was consolidated
with the U. S. Geological Survey Protected Areas Database, Version 2.1.

The proportion (%) of green space in each census tract was assessed on the basis of the U.S.
Geological Survey National Land Cover Database 2011 satellite imagery. Land covers of
contiguous U.S. classified as deciduous forest, evergreen forest, mixed forest, shrub/scrub,
and herbaceous were summed and divided by the area of census tract.33:34

Annual average estimates of outdoor concentrations at tract level for 6 pollutants throughout
the contiguous U.S. (ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide [NO>],
particulate matter smaller than 10 zm, and particulate matter smaller than 2.5 gm). The
concentration estimates were developed by the Center for Air, Climate and Energy Solutions
using v1 empirical models as described by Kim and colleagues,3® which were based

on multiple sources of data, including U.S. Environmental Protection Agency regulatory
monitors, United States National Aeronautics and Space Administration air pollution
estimates from satellite image, and land use information for empirical land use regression
models. Alaska and Hawaii were excluded from the data set.

Housing characteristics by census tract were assessed through the 2015 American
Community Survey 5-year estimates. Housing built before 1979 was identified as a risk
factor for multiple potential housing-related health hazards, including lead exposure3® and
dilapidated housing conditions (measured as before 1979) such as problems with kitchen
and plumbing systems.3” Crowding was defined as >1 person per room.38 Excessive housing
cost was the percentage of households spending =30% of their income on housing costs.
Each measure was calculated as proportions per all households in each census tract.

Statistical Analysis

All data sets were linked using the 2010 Federal Information Processing Standards code,
and a total of 65,232 tracts, except in Wisconsin, Maine, Alaska, and Hawaii, were included
in the analysis. Other census tract-level sociodemographic characteristic distributions were
included, such as age group (ages under 18, 18-34, 35-64, =65 years), unemployment rate,
the proportion of foreign-born residents, and the proportions of households with children

Am J Prev Med. Author manuscript; available in PMC 2024 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kim et al.

RESULTS

Page 5

and without vehicles as potential confounders, on the basis of previous literature,1>-17
Collinearity analyses were performed among the variables and did not find a significant
correlation, except between carbon monoxide and NO, measures. Descriptive analyses were
performed by 4 urbanicity types, and binary Pearson correlation tests were conducted for
each variable. Hierarchical multilevel linear regression models were fitted on LE, with

all built environment characteristics for each of the 4 urbanicity types. The hierarchical
geographic boundaries included county, state, census division, and region, allowing random
intercepts for each geographic unit. By including random intercepts for county, state,
division, and region, the hierarchical multilevel model relaxes the independent assumption
for tract-level LE and allows the associations to vary across different geographies.
Conditional intraclass correlation coefficients (ICCs) and marginal /2 for linear mixed-
effects models were calculated, indicating the proportions of variance explained by random
effects and by fixed effects, respectively.3 The sum of conditional ICCs and the marginal
RZ known as the conditional /72, was also provided. All exposure variables were normalized
as z-scores to facilitate comparison within each model, and 95% Cls were calculated.
Statistical analyses were conducted using R software, Version 4.1.3, and package Ime4. IRB
approval was not required because all data sets are publicly available for use in secondary
analysis.

Table 2 displays the descriptive statistics by urbanicity types. Average LE was similar
across the 4 urbanicity types: high-density urban (15,120 census tracts), low-density urban
(23,480), suburban/small town (10,680), and rural areas (15,592). Conditional /2, the
proportion of variance explained by fixed and random effects, ranged from 0.49 to 0.67.
The conditional ICC of each model increased from high-density urban areas to rural areas,
suggesting increasing homogeneity of neighborhood characteristics by urbanicity within a
county, state, census division, and region. Marginal /2, variance explained by fixed effects
only, ranged from 0.30 to 0.60, with the lowest values in rural areas. Table 3 (high- and
low-density urban areas) and Table 4 (suburban/small town and rural areas) display binary
Pearson correlation tests and multilevel regression modeling results.

The percentage of renters was one of the strongest predictors of LE across urbanicity types
(Tables 3 and 4, multivariable columns). In high-density urban areas, a 1 SD increase in the
proportion of renters (23%) was negatively associated with LE at birth by 0.43 years (95%
Cl=-0.51, -0.34). The proportion of housing built before 1979 was strongly associated
with lower LE in low-density urban and suburban/small town areas (—0.33 years, 95% Cl=
-0.37, -0.28 and —0.40 years, 95% Cl=-0.48, —0.32, respectively) but had relatively small
associations in high-density urban and rural areas (—0.08 years, 95% Cl= -0.14, —0.03 and
-0.11 years, 95% CIl= -0.18, —0.05, respectively). Excessive housing cost was a risk factor
for low LE in all urbanicity types (-0.12 to —0.22 years), except in high-density urban areas.
Housing overcrowding was associated with LE only in high-density urban areas: a 1 SD
increase in the percentage of housing crowding (8%) was associated with 0.16 years lower
LE (95% Cl=-0.24, -0.08).
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A 1 SD increase in the population proportion who had limited access to healthy food in a
neighborhood (0.37%) was associated with —0.06 years in LE, whereas an association was
not detected in low-density urban and suburban/small town areas. The number of fast-food
restaurants was a risk factor for LE in suburban/small towns and rural areas (-0.06 and
-0.09 years, respectively). A 1 SD increase in convenience stores was associated with
decreased LE in all urbanicity types (-0.10 to —0.18 years).

A 1 SD increase in pedestrian intersection density was negatively associated with LE by
0.15-0.2 years across all urbanicity types except in high-density urban areas. In high-density
urban areas, sulfur dioxide was the strongest predictor of decreased LE (-0.32 years, 95%
Cl=-0.43, —0.22), whereas particulate matter smaller than 2.5 zm showed the strongest
association with LE in rural areas (-0.35 years, 95% Cl= —-0.48, —-0.22).

DISCUSSION

This findings suggest that many environmental characteristics, particularly neighborhood-
level housing characteristics, are associated with LE across urbanicity types, whereas
associations with some other factors, such as access to healthy foods and park/green space
access, were only salient in specific settings. This finding suggests that built environment
characteristics may influence health outcomes and health behaviors through different
mechanisms, contingent on the level of urbanization. Findings confirm a previous study
examining differential impacts of environmental factors by urban and rural areas.!’

In the present analyses, housing measures emerged as important built environment predictors
of LE disparities. First, LE levels were lowest in neighborhoods with high proportions

of rental housing, even after adjusting for income, excessive housing cost, and other

social and built environment covariates. Although this may reflect some combination of
greater residential instability and lower social capital or social cohesion, it may also

reflect direct built environment influences of worse housing conditions in rental units

than in owned homes.#! Housing affordability, another salient risk factor in all urbanicity
types except high-density urban areas, may directly and indirectly affect health because

it suggests reduced resources for health care and amenities and increased psychological
stress.2 The strength of association with housing tenure increased in denser urbanicity
categories, whereas associations with housing affordability were larger in less dense settings.
Old housing, measured as the percentage of housing built before 1979, was also a risk

factor across urbanicity types, confirming previous literature.43 The associations were larger
in low-dense urban and suburban areas. Although living in older housing may expose
individuals to various conditions that may impact health, one clear plausible mechanism

is poor ventilation and poor indoor air quality. U.S. Environmental Protection Agency
identified indoor air pollution as one of the country’s top 4 environmental health risks,444°
which may contribute to respiratory and cardiovascular inequities.*® Taken together, these
findings stress the importance of sharpening the understanding of the influence of housing
conditions on health.

Park access was protective in all urbanicity categories except in the rural category, and the
association was more salient in denser urban settings in which available park space may be
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limited. Similarly, the positive associations of green space with LE diminished in less urban
settings, and in rural areas, it was associated with lower LE. This finding is consistent with
previous literature, which finds that the positive effect of green space is primarily limited to
urban settings.4” This may reflect a context in which census tracts with higher green space
in rural areas may be isolated from health-promoting resources, resulting in the observed
negative association.

Some of the findings were contrary to existing literature. Outdoor concentrations of NO,

in high-density urban areas were associated with higher LE.*8 Unmeasured confounders,
such as indoor air quality and temperature, may potentially bias these estimates.*® The
observed negative association between pedestrian intersection density and LE likewise may
reflect other unmeasured neighborhood characteristics linked with intersection density, such
as noise and light pollution.®? In rural areas, limited healthy food was associated with
increased LE. Grocery stores and supermarkets are typically located near major highways

in rural areas, and unmeasured adverse characteristics near highways, such as increased
injuries and crime, as well as environmental and noise/light pollution31-53 may pose residual
confounding.

This study is a cross-sectional ecologic analysis, which cannot distinguish causal
relationships at the individual level. The unmeasured confounders correlated with examined
neighborhood characteristics remain a limitation. Most of the data sets except the ParkServe
data aligned with USALEEP estimate years, yet the sequential temporal consistency
between the exposures and outcome is unclear. Some measures, such as tobacco and

alcohol outlets, may vary substantially over short periods. It is unknown the extent to

which populations within neighborhoods were residentially stable enough to be influenced
by built environments, and the analysis ignores individuals’ exposures across daily activities
outside of residential areas. Although limited access to healthy food employed certain buffer
areas from grocery stores, other business measures were simple counts within census tracts,
which may increase susceptibility to spatial misclassification. In addition, aggregated data
at any given geographic level are susceptible to modifiable areal unit problems. In other
words, the same analyses with different spatial units or point-based measures may produce
different results (i.e., the zonal effect), and spatial resolution problems from using large
aggregated data (e.g., county or state) can yield distinct results (i.e., the scale effect).
However, the census tract—level estimates of the exposures of interest were the most granular
data available, and small-area level estimates can address these issues to some degree. The
LE estimates for census tracts with missing death records were imputed using a set of
covariates. Despite the common practice of adjusting for the covariates used in imputation
processes,21 an additional analysis was run without the covariates (Appendix Tables 1

and 2, available online). The results showed marginally larger effect estimates than the

main results, showing that the presented results (Tables 3 and 4) were more conservative
estimates. The air pollution measures used in the analysis were predicted concentrations on
the basis of limited numbers of monitors, thus the estimates may not align with actual air
quality monitored from local locations. Four states were not able to be assessed owing

to limited data availability, and this analysis may not fully represent a national-scale
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phenomenon. Finally, the modeling approach assumed a linear relationship between each
predictor and the outcome and no interactions between predictors. Future work needs

to explore alternative assumptions and modeling approaches. Longitudinal studies with
accurate and granular environmental data sets are required to investigate causal mechanisms.

CONCLUSIONS

This study incorporated a comprehensive set of secondary data in this near-national-scale
analysis to examine the associations between multiple built environments and LE with
hierarchical geographies to address potential biases from the use of a single geographic
scale.>* Granular LE estimates were employed and found built environmental influences
on LE. The built environment measures cover various access and opportunities to health-
promoting resources and direct risk factors for health outcomes. Overall, this findings
suggest that tailored community planning and policies are required on the basis of
neighborhood spatial context: a risk factor in a metropolitan center may not have the
same effect in a suburban area and vice versa. Federal- or state-level policies can focus
on universal risk factors for LE, such as housing conditions and air pollution. Local
governments, particularly in urban areas where there are greater variations by geographic
contexts, can thereby identify community-specific determinants of health using local
surveillance and granular data analysis.
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