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Abstract

The interpretation of psychometric test results is usually based on norm scores. We
compared semiparametric continuous norming (SPCN) with conventional norming
methods by simulating results for test scales with different item numbers and difficul-
ties via an item response theory approach. Subsequently, we modeled the norm
scores based on random samples with varying sizes either with a conventional rank-
ing procedure or SPCN. The norms were then cross-validated by using an entirely
representative sample of N = 840,000 for which different measures of norming error
were computed. This process was repeated 90,000 times. Both approaches bene-
fitted from an increase in sample size, with SPCN reaching optimal results with much
smaller samples. Conventional norming performed worse on data fit, age-related
errors, and number of missings in the norm tables. The data fit in conventional norm-
ing of fixed subsample sizes varied with the granularity of the age brackets, calling
into question general recommendations for sample sizes in test norming. We recom-
mend that test norms should be based on statistical models of the raw score distri-
butions instead of simply compiling norm tables via conventional ranking procedures.
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The Significance of Norm Scores in Applied Psychometrics

Critical life decisions in education, medicine, and even the judicial system, are often

based on the results of psychometric tests. Individual test results are usually inter-

preted in comparison to a reference population, that is, a subset of the target popula-

tion that serves as a standard (cf. American Psychological Association, n.d.). This

standard is predominantly reported in the form of norm scores. One of the most dras-

tic applications of norm scores is, for example, the preclusion of people with mental

retardation (i.e., with an IQ score \70) from the death penalty in the United States

(Duvall & Morris, 2006). Less dramatic but yet very important decisions based on

test norms are, for example, school placement or advanced placement (American

Educational Research Association, American Psychological Association, National

Council on Measurement in Education, 2014), granting of rehabilitative measures

(e.g., diagnosis of learning disorders based on a performance of less than the 7th per-

centile; American Psychiatric Association, 2013), job recruitment (Arthur, 2012),

access to elite universities (Duncan & Stevens, 2011) and many more. In all these

examples, the comparison between an individuals’ test result and the distribution of

test results in the reference population is the basis of the decision. Given that this dis-

tribution is usually unknown, it must be inferred from the test results of a normative

sample, that is, a subsample of the reference population which is much smaller than

the reference population but as representative for it as possible. The statistical proce-

dures used for this inference significantly affect the test outcome and therefore play a

vital role in applied psychometrics and applied psychology (cf. Lenhard et al., 2016).

The Origins of Norm Scores in Psychometry

The establishment of norm scores in psychometry is tightly linked to intelligence

assessment (e.g., Wasserman, 2018). The first attempts of William Stern (1912) and

Lewis Terman (1916) to measure intelligence in such a way that the test results could

be compared across different psychometric tests and different age groups drew on the

definition of an intelligence quotient (IQ) as mental age divided by chronological age

multiplied with 100, thus trying to take into account the growth of cognitive abilities

during childhood. This definition had multiple drawbacks, most notably the missing

linearity of mental growth across age.

It was the distribution-based approach of David Wechsler (1939) in the Bellevue

Intelligence Scale that paved the way for a more statistically sound approach.

Wechsler suggested to z-standardize the subtest raw scores drawing on the age-

specific distribution parameters M and SD in the reference sample. The resulting z-

scores were subsequently transformed into the well-known Wechsler subtest scores

(with M = 10 and SD = 3), summed up and transformed into IQ scores (with M =

100 and SD = 15).

Wechsler’s approach was not only driven by the motivation to make test results

comparable across different tests and age groups but also to determine the relative

location of a test person among the reference group with which this person was
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compared. In his seminal work ‘‘The measurement of adult intelligence’’ (Wechsler,

1939, p. 34) he even stated that ‘‘the important fact about it is this relative standing

and not the numerical rating which we may happen to assign to it.’’ In fact, deter-

mining the relative location of a persons’ latent trait (e.g., in the form of percentiles)

is still the core aspect of psychometric assessment today, as already described in the

introductory section, since the diagnosis of mental disorders and the granting of sub-

sequent treatment is often based on defined cut-points based on percentiles.

Requirements and Limitations of Conventional Norming Procedures

Measurement is generally defined as the assignment of numbers to features in such a

way that the numbers reflect the relationships between the features to be measured

(e.g., Brosius et al., 2008). Since psychometric tests usually aim at measuring per-

sonality traits or abilities, the numeric test scores must therefore reflect these traits.

For example, the raw scores obtained in an intelligence test must convey the ranking

information with regard to the different intellectual levels of the test persons as pre-

cisely as possible. To put it in more technical terms, tests have to be constructed in

such a way that the raw scores are a homomorphous function of the latent traits or

abilities. To achieve this goal, test constructors put major efforts in item construction,

analysis, and selection to establish high test quality in terms of reliability, validity,

unidimensionality, homogeneity, and so on (e.g., Eid & Schmidt, 2014; Kline, 2015;

McDonald, 1999). Unfortunately, the calculation of norm scores is often viewed

more as a routine task. There are, however, a number of challenges which must be

mastered in the norming process.

First of all, the normative sample has to be as representative as possible of the ref-

erence population. To establish this representativeness, some test authors rely on ran-

dom sampling (cf. Bracken, 1988; Gregory, 1996). In case of unbalanced data sets,

the sample should additionally be stratified according to covariates that influence the

test results most significantly, such as sex, region, or ethnical background.

Stratification is especially necessary in the case of small sample sizes, since they are

more prone to imbalances.

If, however, the confounding variable in question does not only affect the raw

score but also defines the reference population, stratification will not even suffice to

get to the desired result. For example, in the case of IQ assessment, the location of a

test person is determined with respect to a reference population of the same age only.

(In the following, we will generally refer to such variables as explanatory variables.)

Therefore, the normative samples must usually be partitioned into smaller subsam-

ples (e.g., age brackets). For conventional norming procedures, subsample sizes of n

= 250 to n = 500 are recommended to generate norms with sufficiently high preci-

sion (depending on the intended diagnostic purpose and the scale properties; Eid &

Schmidt, 2014; Oosterhuis et al., 2016).

An important question in this context is how the width of the age brackets affects

the accuracy of the norm scores. In the case of intelligence assessment or

Lenhard and Lenhard 231



developmental tests, the raw scores change rather quickly with age. If, in such cases,

the age brackets are chosen too large, significant jumps between the norm tables of

the subsamples will occur (Lenhard et al., 2016; Bracken, 1988; Voncken et al.,

2019a; Zachary & Gorsuch, 1985). These jumps lead to errors because the age of a

test person might deviate considerably from the average age of the respective age

bracket. For example, children at the lower boundary of an age bracket are mainly

compared with older children, and vice versa. Consequently, the performance of chil-

dren at the lower boundary of the age bracket is underestimated, while the perfor-

mance of children at the upper boundary is overestimated. This age-related norm

score bias, which increases with the width of the age brackets and the gradient of the

measured ability across age, is depicted in Figure 1. The data are taken from an

unstratified data pool of a vocabulary test for children (Lenhard et al., 2015). The

sample was split up into age brackets of 1 year each to illustrate the effect. The solid

lines represent the assumed continuous development of the raw scores across age.

The smileys represent two children, the first one (light gray) being 5 years and 1

month old with a raw score of 52, the second one (dark gray) being 6 years and 11

months old with a raw score of 79. According to the solid lines, both children should

be assigned a percentile of 2.5. However, in the age bracket of the 5-year-olds, chil-

dren at percentile 2.5 have expected raw scores spanning from 50 to 70 with an aver-

age raw score of approximately 60. Therefore, Child 1 will be assigned a percentile

below 2.5. In contrast, the opposite effect occurs with the second child (cf. Bracken,

1988). It might seem that the age bracket of 1 year is chosen deliberately large in this

example to depict the effect overly dramatic. Yet some intelligence tests in fact

deliver such coarse-grained norms (e.g., Kubinger & Holocher-Ertl, 2014).

The age brackets should therefore under no circumstances be chosen too wide. On

the other hand, splitting up into narrow age brackets quickly leads to enormously

large sizes of the total sample. Imagine, for example, an intelligence test spanning 10

years. If the age brackets were chosen with a width of 3 months and a subsample size

of n = 500 each, the total size of the normative sample would have to be N = 20,000-

a figure that in most cases probably lies far beyond feasibility. Therefore, the trade-

off between total sample size and width of the age brackets must be balanced

carefully.

Once the subsamples have been established, the next crucial step is to convert the

raw scores into norm scores. As already described above, the numeric test scores

assigned to the test persons must reflect the latent traits and abilities to be measured.

This requirement applies not only to the raw scores but also to the norm scores.

What is even more, the transformation of raw scores into norm scores must not only

maintain the ranking order between any two individuals. In addition, the norm scores

must exactly indicate, how many people in the reference population have a lower or

the same level of the latent trait, that is, they are supposed to indicate the location of

the test person with respect to the reference population. Technically speaking, norm

scores must represent a specific bijective function of the latent trait. From the well-

known law of large numbers, it can be derived that latent traits or abilities must be
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normally distributed, because they are usually shaped by a large number of variables

(cf. Andersen & Madsen, 1977). This is especially true for abilities such as intelli-

gence. If the raw scores were perfectly normally distributed, too, then the norming

procedure suggested by Wechsler would actually return norm scores that could be

transformed into percentiles by simply using the cumulative normal distribution. But

perfect normal distribution of the raw scores is rarely given. Instead, raw score distri-

butions are almost always more or less skewed, at least in some age groups. What

remains constant, though, is the ranking information. Therefore, many test construc-

tors apply inverse normal transformation (INT), that is, they start by determining the

cumulative distribution function (CDF) of the raw scores and subsequently use the

inverse normal CDF to assign norm scores to the observed percentiles, thereby

Figure 1. Sources of error with conventional norming. A first source of error originates
from age brackets of finite width. As a consequence, test persons are compared with a
reference group that may be younger or older on average. The second source of error is due
to random sampling.
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mapping the raw score distribution onto a normal distribution. We will refer to this

method as conventional norming in the following. It is important to note that the

resulting norm scores do not indicate how many standard deviations the raw score of

an individual is below or above the average raw score of the reference population.

Instead, they are supposed to indicate how many standard deviations the hypothe-

sized latent trait of an individual is below or above the average latent trait.

Many test constructors consider the norming process to be finished at this point.

For example, we know of only one school achievement test in Germany using

advanced modelling techniques instead of the conventional norming. (It happens to

be our own test, Lenhard et al., 2017). Although it has occasionally been discussed,

whether INT should be applied in the case of large deviations from the normal distri-

bution (Soloman & Sawilowsky, 2009), other severe drawbacks of this data-driven

norming procedure have received less attention.

A first drawback is that errors resulting from random sampling are either com-

pletely included in the norm tables or they are at best poorly corrected by hand. The

sampling errors are usually of varying magnitude in the different subsamples, which

may be even exacerbated by the fact that sometimes not all subsamples can be strati-

fied accurately. As a consequence, the sequence of raw scores assigned to a certain

percentile across age usually is not smooth but rather jagged. This effect is also

depicted in Figure 1. The dots in this figure represent the CDFs calculated per age

bracket. In some cases, they deviate considerably from the solid lines, which repre-

sent the expected smooth developmental curve. For example, the dot representing the

2.5th percentile in the age bracket of 5-year-olds corresponds to a raw score of 77

whereas the according dot in the age bracket of 6-year-olds corresponds to a raw

score of only 51. A 5-year-old would therefore need a higher raw score than a 6-year-

old to attain the same percentile. Obviously, the numbers in this case do not reliably

reflect the relationships between the latent traits to be measured. Note that the term

reliability, as defined in classical test theory, is supposed to specify the proportion of

error variance contained in test scores. Interestingly, though, the standard methods

used to determine reliability indices exclusively draw on raw scores. Yet the confi-

dence intervals—which are based on these indices—are specified for the norm scores,

not for the raw scores. As a consequence, the error variance contained in norm scores

is not fully covered by conventional confidence intervals, that is, they do not reflect

the error variance resulting from the norming procedure. Unfortunately, this short-

coming has seldom been the subject of scientific debate (Voncken et al., 2019b).

Therefore, we designed our study in such a way that we could determine the error

variance caused by the test items and the error variance caused by the norming

method separately. We will later on analyze the proportion of error variance, the

norming procedure adds to the test scores. Furthermore, we will define a reliability

index to evaluate the different norming procedures. This index is an equivalent to the

classical reliability index for test scales. It specifies the proportion of error variance

introduced to test scores by a specific norming procedure and could theoretically be

used to calculate more realistic confidence intervals. Furthermore, it can be used to
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compare the error variance the norming process alone contributes to the test scores

with the error variance produced by the items. To the best of our knowledge, this has

never been done numerically before. It is particularly important, though, because

some test constructors are of the opinion that norming is far from being as important

as is generally assumed, specifically if the impact of norming is compared with the

impact of item selection (e.g., Lienert & Raatz, 1998).

A final problem of conventional norming we want to mention here is that the norm

tables can be plagued with gaps because of missing raw scores in some subsamples

(cf. Bracken, 1988). For example, in the data set depicted in Figure 1, the lowest raw

score was 55 in the age bracket of 5-year-olds, but 24 in the age bracket of 6-year-

olds. The higher the number of items and the lower the subsample size, the higher is,

of course, the number of missings. Moreover, some achievement tests contain norm

tables that apply to specific points in time only, for example, to the midterm and/or

the end of a school year (e.g., Stock et al., 2017). This means that sometimes, there

are not only missings within norm tables but also large gaps between norm tables.

These gaps are particularly problematic because in diagnostic practice the existing

norm tables are often applied whenever an achievement test is needed, that is, they

are used beyond the specified time slots.

Semiparametric Continuous Norming

To overcome some of the problems of conventional norming, different continuous

norming methods have been developed modelling norm scores as functions of the

explanatory variable. Again, the development of these advanced methods was mainly

inspired by intelligence assessment, starting with the WAIS-R (Gorsuch, 1983,

quoted from Zachary & Gorsuch, 1985) in the United States and the SON-R 51
2

–17

(Snijders et al., 1989) in the Netherlands. As far as we know, the application of these

methods is still rather restricted to the field of intelligence assessment (e.g., WISC-V,

Wechsler, 2014; KABC-2, Kaufman & Kaufman, 2004; SON-R 6-40, Tellegen &

Laros, 2012; IDS-2, Grob & Hagman-von Arx, 2018). Clearly, intellectual assess-

ment strongly profits from continuous norming, since intellectual performance heav-

ily depends on age (e.g., Horn & Cattell, 1967). Yet this does not mean that advanced

norming methods can only be applied to intelligence tests. After all, there are many

other abilities and personality traits that develop with age. In addition, quite different

continuous covariates are conceivable, which could be important at least for some

diagnostic purposes, such as duration of schooling, socioeconomic level, weight, and

so on. For example, we ourselves have used continuous norming to successfully

model not only vocabulary acquisition (Lenhard et al., 2015), reading fluency and

reading comprehension (Lenhard et al., 2017) or competence levels in foreign lan-

guage acquisition (Lenhard et al., in press) but also body mass index and reaction

times (Lenhard al., 2018). Other examples for the application of advanced norming

procedures have been demonstrated with regard to clinical questionnaires (van

Breukelen & Vlaeyen, 2005) and attention deficits (Stemmler et al., 2017).
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Although the different continuous norming methods vary in their assumptions

about the raw score distributions and modeling procedures, they do share the com-

mon feature of a statistical model being established based on the normative data.

These models are subsequently used to interpolate between the age brackets (hori-

zontal interpolation), close the missings between the achieved raw scores (vertical

interpolation), and smooth the norm score distributions horizontally and vertically.

They can as well be used to extrapolate to ability or age levels beyond the ones con-

tained in the normative data, though extrapolation should be applied cautiously, of

course. The norming methods do not only reduce the required total sample size (e.g.,

Zhu & Chen, 2011), but they can also decrease the error variance introduced into the

test scores through the norming procedure (Lenhard et al., 2016; Oosterhuis et al.,

2016).

In this article, we focus on a semiparametric continuous norming approach

(SPCN; Lenhard et al., 2016, 2018, 2019). The essential steps of the method are illu-

strated in Figure 2.

The approach draws on the assumption that the expected raw score r of an individ-

ual is a function f of his or her person location with respect to a latent ability u and

one or several explanatory variables a. In the following, we will concentrate on the

explanatory variable that probably plays the most important role in norming, namely

age. In this specific simulation, we will use it together with a one-parameter logistic

(1-PL) measurement model. SPCN starts the modeling process by using INT to com-

pute conventional norm scores per age bracket, which are used as preliminary esti-

mates l of the age-specific person locations (Figure 2, Step 1). The aforementioned

function f can subsequently be modeled via the following polynomial (Lenhard et al.,

2016, 2019):

Figure 2. Steps in modeling three-dimensional norming functions with semiparametric
continuous norming (SPCN). The raw scores are modeled as a function of person location
and age via multiple regression, thus, fitting a hyperplane to the data that reduce noise and
interpolate missings.
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r =
Xk

s, t = 0

cstl
sat: ð1Þ

In this equation, k denotes a smoothing parameter which can be chosen as needed

with higher values leading to higher explanation of variance and lower values lead-

ing to smoother curves (Figure 2, Step 2). Based on our experience, a value of 4 will

in most cases lead to smooth curves while at the same time fitting the model with a

multiple R2 . .99 (Lenhard et al., 2016, 2019). The polynomial described in

Equation (1) contains a total of 2k + k2 variable terms plus the intercept, which are

used to predict the raw scores. The mathematical background of this approach has

been described in more detail elsewhere (Lenhard et al., 2016, 2019). Therefore, in

the present article we would like to summarize these descriptions by pointing out that

the principal polynomial approach can be used to model virtually any function with

sufficiently high accuracy as long as the function is smooth and continuous. To meet

these requirements, the discrete raw scores must be underlaid with a continuum. The

assumption of an underlying continuum has, however, been proven to be generally

valid for modeling purposes (cf. Hansen, 2004) and applies to all forms of continu-

ous norming (e.g., Oosterhuis et al., 2016; Voncken et al., 2019a).

In order to avoid overfit, it is advisable not to include the full number of 2k + k2

terms in the regression function, but to select a minimum number of terms with the

highest relevance. This selection problem can be solved via different approaches as,

for example, stepwise regression, ridge, lasso and elastic net regularization (e.g.,

‘‘glmnet’’ package, Friedman et al., 2010) and other methods. In the current version

of our approach, we use best subset regression (Miller, 2002; R package ‘‘leaps’’;

Lumley, 2017) to select the respective coefficients cst (Figure 2, Step 2; Lenhard

et al., 2019). The subset regression approach tests all possible combinations of pre-

dictors and returns the models with the highest R2
adjusted for any specified number of

terms. R2
adjusted increases with the number of terms included in the regression equa-

tion. As a consequence, the number of terms is a second, more fine-tuned smoothing

parameter, with low numbers again leading to smooth curves and high numbers lead-

ing to a more detailed mapping of the empirical raw data. In most practical cases, a

very small number of terms in the regression function (e.g., four) is sufficient to

model the norming data with a data fit of R2
adjusted . .99 (Lenhard et al., 2019), that

is, the regression leads to very efficient models while minimizing noise and error var-

iance. Graphically speaking, the procedure approximates the observed data through

fitting a hyperplane to the empirical data (Figure 2, Step 3). In order to reduce the

danger of overfit, it is advisable to keep the number of terms as low as possible and

to cross-validate the retrieved models.

Rationale and Goals of the Present Study

The conditions, under which a new method performs better or worse than other

methods, have to be assessed carefully. For example, we have already compared

Lenhard and Lenhard 237



SPCN with another continuous norming approach, namely, parametric continuous

norming. SPCN in general performed very well and its application was particularly

favorable when applied on skewed raw score distributions and when using subsample

sizes less than n = 250 (Lenhard et al., 2019). In the study reported here, we will

compare its performance with regard to conventional norming under different sample

sizes. To this end, we drew normative samples of different sizes from a simulated

population with known population parameters. These normative samples were sub-

jected to fictitious item response theory (IRT)–based test scales with varying item

difficulties and item numbers, thereby simulating test results with different skewness

of the raw score distributions. We subsequently generated norm scores with SPCN

and conventional norming. In a previous study, we showed that SPCN is largely

invariant to the width of the age brackets (Lenhard et al., 2016). The same does not

hold true for conventional norming. We expected that the age bias of the conven-

tional norms would increase with the width of the age brackets, since the age var-

iance within each bracket increases. If, on the other hand, the total sample size is

fixed, the subsample size increases with the width of the age brackets, which simul-

taneously reduces the sampling error. Therefore, we additionally varied the width of

the age brackets in four levels (1 month, 3 months, 6 months, 12 months) when using

conventional norming, in order not to disadvantage this method by selecting a partic-

ular unfavorable condition. The real-world analogy would be a normative data set

with a continuous age distribution where the test constructor has to decide, how fine-

grained the age brackets should be, taking into account the trade-off between age

bias and subsample size.

The quality of the norming methods was determined by use of a very large and

representative cross-validation sample. On the basis of the ‘‘ideal norms’’ determined

in the cross-validation sample, we calculated different measures of norm score qual-

ity. Furthermore, we compared the proportion of error variance the different norming

procedures add to the test scores. In line with the existing continuous norming litera-

ture (e.g., Lenhard et al., 2016; Oosterhuis et al., 2016; Zhu & Chen, 2011), we

assumed that conventional norming would lead to a higher proportion of error var-

iance than SPCN, particularly when used together with small sample sizes, because

the regression draws on the complete normative sample instead of the subsamples

only. In addition, we also expected to find the obvious advantages of continuous

norming procedures, namely, a reduction of missings in the norm tables.

Specifically, we assessed the following hypotheses:

Hypothesis 1: The overall norming error will be lower when SPCN is used as compared

with conventional norming.

Hypothesis 2: The size of the normative sample will have a lower impact on the overall

norming error when SPCN is used as compared with conventional norming.

Hypothesis 3: Conventional norming will lead to a considerably larger number of miss-

ings in the norm tables compared with SPCN. The number of missings will increase as

the subsample size decreases and as the number of items increases.
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Method

Procedure

To simulate normative data, we repeatedly drew random samples from a predefined

population and subsequently generated test results for test scales with three different

difficulties (syntax, data, a complete simulation cycle, descriptives of the raw data

distributions, and aggregated results are available via https://osf.io/ntydc/). We

delineate only the most important features below, because this simulation procedure

was described in detail in Lenhard et al. (2019).

The simulation process included the following central steps: (a) simulation of nor-

mative samples on the basis of the population model, (b) simulation of test scales

with n items of varying average item difficulty, (c) using the test scales to generate

raw score distributions for the normative samples and a representative cross-

validation sample by means of a 1-PL measurement model, (d) retrieving norm

scores based on the normative samples by using INT per age group (conventional

norming) or SPCN, (e) cross-validation of the different approaches by computing

conventional norm scores for the large cross-validation sample and comparing them

with the norm scores that would have been assigned to each person based on the

much smaller normative samples.

Simulation of Normative Samples Based on the Population Model. Each person in the

simulated population was assigned an age variable a and a fictitious latent ability

uPop. The uniformly distributed age variable comprised 7 years, starting with 0.5 and

ending with 7.5. It is important to note that uPop was normally distributed at each sin-

gle age level, but not across the whole age range. Instead, it increased curvilinearly

across age with a slight scissor effect (see Figure 3). This means, the development

across age was not linear, but slowed down with increasing age, while the standard

deviation slightly increased. This type of development is common for many ability

domains in childhood and adolescence and can be found in our own psychometric

tests on vocabulary (Lenhard et al., 2015) and reading comprehension (Lenhard et al.,

2017), too. The precise numeric description of the population model is available in

Lenhard et al. (2019). uPop was z-standardized across the whole age range, in order to

be able to apply it together with the 1-PL model to produce test scores. In addition,

we z-standardized uPop per age level, which led to a second latent trait score uAge.

This second latent trait score was used to determine the ‘‘true’’ location of the person

with respect to other persons of the same age. Consequently, each person was charac-

terized by three variables: (a) age (uniformly distributed across the whole age range),

(b) the latent ability uPop, which indicated the person location with respect to the

whole population, and (c) uAge, which referred to the same latent ability, however,

this time with regard to persons of the same age only.

The normative samples consisted of N = 700, 1,400, 2,800, 5,600, 11,200, or

22,400 in total, and thus covered the complete range of rather small normative sam-

ples (100 cases per year with N = 700) up to very large samples, which would

Lenhard and Lenhard 239



probably only be available through large-scale assessments. The samples were ran-

domly drawn from the population, that is, the normative samples were afflicted with

the regular but unsystematic sampling error.

For the cross-validation sample, we generated a completely representative sample

of n = 10,000 cases per month, amounting to a total of N = 840,000 cases per simula-

tion cycle. To avoid age bias (as described in the introduction) in the cross-valida-

tion, we set the age of each person in this cross-validation sample exactly to the

center of the respective months. The person locations in the cross-validation sample

followed the same population model as in the normative samples but were not ran-

domly drawn either. Instead, uAge was perfectly normally distributed within each age

bracket, with equidistant percentiles ranging from 0:5
n

to n�0:5
n

. These properties of age

and latent ability uAge in the cross-validation sample remained constant in all

Figure 3. Population model: The normally distributed uAge specifies the person location
determined with respect to persons of the same age only. By contrast, uPop corresponds to
the person location with respect to the total population (cf. Lenhard et al., 2019).
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simulation cycles. The raw scores of the cross-validation sample were, however, gen-

erated anew in each cycle based on the simulated test scales (see the ‘‘Simulation of

Test Scales’’ and ‘‘Generating Raw Scores for the Normative and Cross-Validation

Sample’’ subsections).

Simulation of Test Scales. We simulated test scales with 10, 20, 30, 40, or 50 items. We

used these item numbers to cover a broad range of possible test scenarios, with 10 items

representing a rather small and unreliable test scale, and 50 items representing a medium

to large test scale. For instance, most test scales of the WISC-V (Wechsler, 2014) and

the KABC-2 (Kaufman & Kaufman, 2004) range between a maximum raw score of 20

and 50. We refrained from including larger item numbers, since the computational effort

for the entire simulation was already enormously high and we did not expect qualita-

tively different results with higher item numbers. In each simulation cycle, the item dif-

ficulties di were drawn randomly from normal distributions with mean item difficulties

of Measy = 21, Mmedium = 0 or Mdifficult = 1 and a standard deviation of SD = 1 for all

scales. Thus, the range of item difficulties was not restricted, but the scales exhibited dif-

ferences in the mean scale difficulty. The medium test scale mimicked a test scenario,

where most of the ability levels are covered well across all age levels. The accumulation

of item difficulties in the medium difficulty range for this scale corresponds to real test

construction, as items with extreme difficulties are sorted out more often than items with

medium difficulty due to their lower discriminative power. In contrast to the medium

test scale, the easy and difficult scales were designed such that they differentiated best in

the lower or upper age ranges, respectively. The easy scale resulted in mild to medium

ceiling effects at older age levels, and the difficult test scale resulted in medium to large

bottom effects at the younger age levels. Again, our aim was to cover all kinds of test

scenarios as realistically as possible. For example, even a widespread intelligence test

like the KABC-2 (Kaufman & Kaufman, 2004) displays considerable skewness of the

raw score distributions at extreme age levels in more than half of all subtest scales.

Generating Raw Scores for the Normative and Cross-Validation Sample. For each person

of the normative and the cross-validation sample, we simulated the item responses in

accordance with a 1-PL IRT model. We chose this model for three major reasons.

First, the item response theory is one of the most important theoretical models to

explain how a latent ability interacts with items and scale parameters and finally

results in a raw score distribution. It therefore offers a rather simple but plausible

way to generate raw score distributions corresponding to real-world data. More pre-

cisely, we do not need to make specific assumptions about the raw score distributions

themselves, apart from the assumption that they result from an interaction between

the latent trait of a certain individual and the test items. Second, both the normative

data and the representative cross-validation data could be generated in the exact same

way. Third, since we started by assigning a ‘‘true’’ latent ability to each person, it

was not only possible to compare the raw score distributions in the normative sample

with the raw score distributions in the cross-validation sample. Additionally, and

Lenhard and Lenhard 241



even more importantly, we could determine how well the raw scores and the resulting

norm scores cover the latent ability.

To generate the response of person i to item j of a test scale, we computed the

probability of success of that person on each item via the 1-PL logistic function (De

Ayala, 2009; Embretson & Reise, 2000; Rasch, 1980; Wright & Stone, 1979; source

code available as the ‘‘simRasch’’ function in cNORM, Lenhard et al., 2018):

p xj = 1juPop i, dj

� �
=

euPop i�dj

1 + euPop i�dj
: ð2Þ

p(xj = 1| uPop i, dj) specifies the probability that a person i with the latent ability

uPop i succeeds on an item j with the given difficulty dj. For each item j and person i,

we drew a uniformly distributed random number ranging from 0 to 1 and compared

this number with the person’s probability to succeed. In case p(xj) was equal or

higher than the random number, the person scored one point, otherwise zero points.

Eventually, the item responses were summed up to a total score, which served as the

raw score this person received in the test scale.

On average, the simulated raw score distributions showed a negative skew of

gm = 20.506 for the easy, a small positive skew of gm = 0.145 for the medium, and

a highly positive skew of gm = 0.859 for the difficult scales. Detailed descriptive data

on the raw score distributions per half year age bracket are available for the norma-

tive and cross-validation sample in the OSF repository. The repository also includes

the data of one complete simulation cycle with item difficulties, raw data, and cross-

validation data per condition.

Statistical Modeling of the Raw Score Distributions and Compilation of Norm Score
Tables. To establish norming models according to the SPCN approach, we used the

cNORM package (Lenhard et al., 2018) available for the R platform. The ranking

function needed for the estimation of the location l was set to ‘‘rankByGroup’’ with

a width of 6 months, which means that the percentiles for each person were esti-

mated for each half-year bracket of the norm sample before applying the statistical

modeling. The results of the procedure are, however, relatively invariant against the

bracket width with 6 and 12 months returning almost identical models (Lenhard

et al., 2016). The multiple regression was performed with the default setting of k = 4

as the maximum degree of the polynomial, resulting in a polynomial with 24 terms

at most. We started with four as the default number of terms and only searched for

different solutions when the resulting model showed violations against monotonicity,

that is, when the relation between raw scores and norm scores at a given age was not

monotonically increasing throughout the whole data set. The monotonicity check

was based both on determining the polynomial roots of the first-order derivative of

the regression function and on numeric search (method ‘‘checkConsistency’’ of the

cNORM package). In case of violations, we repeated the modeling beginning with

three terms and subsequently increased the number of terms in the regression
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function until a model without such inconsistencies was found. In 70% of all simula-

tion cycles, this procedure resulted in a norming model with only six terms or less.

In order to disentangle the effects of sample size and width of the age brackets,

we split up the normative samples in subsamples of the width of 1 month, 3 months,

6 months, and 12 months, respectively, when using conventional norming. Table 1

gives an overview over the average subsample sizes as a function of the total sample

size and the width of the age brackets.

We subsequently performed INT for each age bracket and automatically compiled

norm score tables for the transformation of raw scores into norm scores, which

included all raw scores that had occurred in the respective subsamples.

Since all norm scores will be expressed as T-scores (MT = 50 and SDT = 10) in the

following analyses, we will subsequently refer to norm scores produced with a certain

method as TMethod. The different conventional norming conditions will be abbreviated

to CN1, CN3, CN6, and CN12 for the respective age brackets of 1 month, 3 months,

6 months, and 12 months.

Cross-Validation. In the cross-validation sample, we also applied INT to the empirical

CDF of the raw scores in each subsample. Given that the total sample was perfectly

representative and included 840,000 cases with n = 10,000 per subsample, we assumed

that the resulting norm scores contained almost no norming error and therefore repre-

sented an upper boundary for the quality of any norming procedure. The fact that these

norm scores are nevertheless no perfect predictors of the latent abilities (R2 \ 1) can

therefore be completely traced back to limitations of the scales (distribution of item

difficulties; bottom and ceiling effects, limited number of items . . .), but not to the

norming procedure. We will refer to these norm scores as TIdeal in the analyses.

To be able to compare the different norming methods, we also assigned to each

person in the cross-validation sample the five different norm scores that had been

assigned to the raw score of this person on the basis of the much smaller normative

sample, namely, TSPCN, TCN1, TCN3, TCN6, and TCN12.

Assessment of Model Fit and Definition of the Dependent Measures

We used various measures to determine different aspects of the model fit.

Table 1. Subsample Sizes as a Function of Total Sample Size and Width of the Age Brackets.

Total sample size N

Age bracket N = 700 N = 1,400 N = 2,800 N = 5,600 N = 11,200 N = 22,400

1 Month 8.3 16.7 33.3 66.7 133.3 266.7
3 Months 25 50 100 200 400 800
6 Months 50 100 200 400 800 1,200
12 Months 100 200 400 800 1,600 3,200
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Root Mean Square Error (RMSE) and Mean Signed Difference (MSD). RMSE is the stan-

dard measure of model fit. In our simulation, it was defined as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

840,000
3
X840,000

i = 1
TMethod � TIdealð Þ2

r
: ð3Þ

The RMSE reflects an overall measure of the error introduced by the norming pro-

cedure, that is, it captures constant as well as variable errors of the norming

procedure.

The MSD, by contrast, only reflects constant dislocations of the norm scores

within each simulation cycle. It is defined as

MSD =
1

840,000
3
X840,000

i = 1
(TMethod � TIdeal): ð4Þ

Since the average sampling error is expected to be zero in this simulation, the

MSD should also be zero when averaged over multiple simulation cycles, regardless

of the total sample size. If it is not, this may be due to the fact that a certain method

produces constant dislocations of the norm scores in one specific direction under cer-

tain conditions (e.g., for certain scale difficulties). Therefore, the MSD is a measure

of how accurately the method can cover raw score distributions with specific proper-

ties as, for example, skewness.

Proportion of Error Variance. For the following comparisons, the latent variable uAge

was also transformed from a z-score to a T-score for each person in the cross-

validation sample so that the variances of the different scales could directly be

compared.

In classical test theory, the reliability of a test scale is usually expressed as the pro-

portion of variance in the true score that can be predicted from the raw scores. Under

the assumption that raw scores can be converted into norm scores without additional

error or loss of information (as is approximately the case for TIdeal), the coefficient of

determination R2 between uAge and TIdeal therefore equals the reliability RELRaw of

the respective scale:

RELIdeal = RELRaw =
Var uAge

� �
Var TIdealð Þ = R2 uAge; TIdeal

� �
: ð5Þ

The proportion of error variance (PEV) contained in the ideal norm scores respec-

tively in the raw scores can subsequently be calculated as follows:

PEVIdeal = PEVRaw = 1�
Var uAge

� �
Var TIdealð Þ = 1� R2 uAge; TIdeal

� �
: ð6Þ

Note that this proportion of error variance is not due to the norming procedure but

only due to the deficiencies of the test scale.
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Since the norm scores are, however, flawed with errors, the proportion of error

variance contained in TSPCN, TCN1, TCN3, TCN6, and TCN12 is higher than the propor-

tion of error variance contained in the ideal norm scores. We will refer to the propor-

tion of error variance contained in the norm scores as PEVTotal in the following,

because it contains measurement error on the level of the raw scores as well as addi-

tional error due to the norming procedure:

PEVTotal = 1�
Var uAge

� �
Var TMethodð Þ = 1� R2 uAge; TMethod

� �
: ð7Þ

The proportion of error variance caused exclusively by the norming procedure can

therefore be calculated by the following equation:

PEVNorm = PEVTotal � PEVIdeal = R2 uAge; TIdeal

� �
� R2 uAge; TMethod

� �
: ð8Þ

Definition of Reliability Index for Norming Procedures. We furthermore define the relia-

bility RELNorm of a specific norming procedure as the proportion of variance in the

latent ability the actual norm scores can predict, divided by the proportion of variance

ideal norm scores can predict:

RELNorm =
Var uAge

� �
Var TMethodð Þ :

Var uAge

� �
Var TIdealð Þ =

Var TIdealð Þ
Var TMethodð Þ =

R2 uAge; TMethod

� �
R2 uAge; TIdeal

� � : ð9Þ

Finally, RELTotal, which is the proportion of variance the norm scores share with

the true latent score, can be expressed as the product of RELRaw and RELNorm:

RELTotal = RELRaw :RELNorm = R2 uAge; TIdeal

� �
:
R2 uAge; TMethod

� �
R2 uAge; TIdeal

� � = R2 uAge; TMethod

� �
:

ð10Þ

RELNorm can be interpreted as a global measure of the precision of a certain norm-

ing procedure that is independent of the specific scale on which the procedure is

applied. Moreover, it can be multiplied with classical reliability indices to retrieve

the total reliability of a norm score, that is, the degree to which this norm score is

able to predict the latent ability. If, for example, the conventionally computed relia-

bility index of a test was RELRaw = .90 and the norming procedure had a reliability

of RELNorm = .95, the de facto reliability of the norm scores would only be RELTotal

= .90 * .95 = .86. RELNorm is easy to interpret, but it only accounts for the general

shape and course of the modeled distributions. It does not capture dislocations or con-

stant biases that affect all norm scores equally. Therefore, it is only applicable to

those norming methods with an MSD close to zero.
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Number of Missings. Finally, we also counted the missings. They were defined as per-

centage of persons in the cross-validation sample for whom no norm score could be deter-

mined because the corresponding raw score had not occurred in the normative sample.

Data

The simulation was repeated 1,000 times for each combination of parameters, result-

ing in a total number of 6 (size of the normative sample) 3 3 (scale difficulty) 3 5

(number of items) 3 1,000 repetitions = 90,000 cycles.

Statistical Analyses

We analyzed RMSE, MSD, and the number of missings in the norm tables with

repeated-measures analyses of variance (ANOVAs), with method (SPCN, CN1,

CN3, CN6, and CN12) serving as within factor and total sample size (N = 700,

1,400, 2,800, 5,600, 11,200, and 22,400), item number (10, 20, 30, 40, and 50) and

scale difficulty (easy, medium, and difficult) serving as the between factors. For spe-

cific hypotheses and post hoc analyses, we drew on one-way ANOVAs. Due to the

high number of repetitions for all combinations of the independent variables, the

ANOVA was very robust against violations of homoscedasticity and normality

requirements (cf. Eid et al., 2017). Furthermore, the significance level for all tests

was set to a = .001 to reduce Type I errors. A power analysis with GPower (Faul

et al., 2009) showed a b . .9999 for all analyses on main effects, interactions and

post hoc tests. This means that the ANOVA was robust yet extremely powerful

enough to detect even the smallest main effects and interactions.

Given that the statistical power was extremely high, we will additionally report

effect sizes in the form of partial h2 and interpret only effects with h2 . 3%, which

approximately corresponds to at least small effect sizes (Cohen, 1988).

Since PEVNorm and RELNorm are different measures of the proportion of error con-

tained in test scores, the inferential statistical analysis of these scores does not pro-

vide any other results than the evaluation of the RMSE with regard to the different

methods. What is different, however, is the fact that the two parameters are not abso-

lute but relative measures of error, that is, they are independent of the used scaling,

and therefore provide easy interpretation. Moreover, the impact of the norming pro-

cedure can be compared with the impact of the item selection. For this reason, we

will provide only descriptive data for the two parameters, but we will add a few ficti-

tious calculation examples using realistic test parameters in order to demonstrate the

importance of a balanced norming procedure.

Results

Precision and Accuracy of the Norm Scores in Terms of RMSE and MSD

The RMSE was analyzed as a function of method, total sample size and item number to

investigate the overall quality of the different norming procedures. With regard to
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Hypotheses 1 and 2, the analysis of the RMSE revealed a main effect of method, F(4,

359980) = 544560.527, p\ .001, h2
part = .858, with SPCN delivering on average a much

lower RMSE (RMSESPCN = .862) than the four conventional norming procedures

(RMSECN1 = 2.293, RMSECN3 = 1.445, RMSECN6 = 1.305, and RMSECN12 = 1.665). We

also found a main effect of total sample size (Hypothesis 2), F(5, 89970) = 397945.050,

p \ .001, h2
part = .957, which was qualified by a significant Method 3 Total Sample

Size interaction, F(20, 359880) = 65863.247, p \ .001, h2
part = .785. This interaction is

illustrated in Figure 4. The effect of total sample size was only h2 = .184 for SPCN, but

much higher for the conventional norming procedures (h2 = .978 for CN1; h2 = .957 for

CN3; h2 = .896 for CN6, and h2 = .600 for CN12). Even with the lowest total sample

size of N = 700 (i.e., 100 persons per year), the RMSE was only 1.25 T-scores for SPCN.

In contrast, the best conventional method required four times the total sample size to

approach such a low value. Moreover, for the SPCN approach, the change in RMSE

between the lowest and the highest total sample size was only DRMSESPCN = 0.613.

Although the impact of total sample size was similarly low in the CN12 condition

(DRMSECN12 = 0.572), it must be noted that CN12 showed a significantly higher RMSE

at any total sample size. For all other conventional procedures, the impact of the total

sample size was much larger (DRMSECN1 = 3.392; DRMSECN3 = 2.021, and DRMSECN6

= 1.198). Thus, conventional norming is much more dependent on the total sample size.

In general, an equally low RMSE requires four times the total sample size when conven-

tional norming is applied as compared with SPCN. Moreover, this result only holds true

if an optimal age bracket is selected. As can be seen from Figure 4, the same subsample

size yields a significant differences in RMSE between the conventional norming condi-

tions. In case no optimum age bracket is selected, the total sample sizes would have to

be even higher when conventional norming is applied.

The ANOVA also revealed a main effect of the item number, F(4, 89970) =

13777.134, p \ .001, h2
part = .380, with higher item numbers leading to higher RMSE.

This effect is illustrated in Figure 5.

Due to the huge test power, there were also significant interactions of the item

number with all other independent variables, but the respective effect sizes were too

small to be of any practical relevance (h2 \ .02 for all interactions).

As a next step, the MSD in the cross-validation was analyzed as a function of

method and scale difficulty to search for constant dislocations. The scale difficulty

was chosen as independent variable in this case, since high skewness of the raw score

distributions is most likely to cause a general dislocation in continuous norming in

general. The MSD for the different scales is depicted in Figure 6. There was in fact a

significant interaction between method and scale difficulty, F(8, 359864) = 2300.986,

p \ .001, h2
part = .049. The interaction was caused by the fact that SPCN showed a

slightly higher MSD than conventional norming at easy scales only. However, with

MSD = 0.054 T-scores, the absolute size of the dislocation was so tiny that it was irre-

levant compared with the other error sources. Moreover, the size of the dislocation is

far below the accuracy with which real test results are actually ever reported.
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Analysis of Missing Norm Scores

With regard to the analysis of the missings (Hypothesis 3), the reader should note

that SPCN in most cases allows to compute norm scores to all achievable raw scores,

which is the central advantage of this method, let alone closing gaps between norm

tables. However, on some rare occasions, SPCN cannot return a norm score because

of an incoherent model. The analysis of the missings as a function of method, total

sample size and item number confirmed these expectations. There was a very strong

main effect of method, F(4, 359880) = 3952101.067, p \ .001, h2
part = .978, with

SPCN delivering only 0.258% missings on average. Moreover, in 50% of all simula-

tion cycles, the number of missings was even below 0.031%. There was, in fact, a

small main effect of the total sample size in the SPCN condition, F(5, 89994) =

Figure 4. RMSE in the cross-validation as a function of method and sample size. The
numbers indicate the subsample sizes for the conventional norming conditions.
Note. All SEs \ 0.01. Dashed lines represent conventional norming, the solid line represents
semiparametric continuous norming (SPCN).
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716.923, p \ .001, h2
part = .038, with the smallest total sample size delivering more

missings (0.478%) than the largest one (0.137%). However, conventional norming

achieved similarly low numbers only when the total sample size was four to eight

times larger. Moreover, the different conventional norming procedures showed very

large main effects of total sample size and item number, which were qualified by

twofold and threefold interactions (all ps \ .001; all h2
part . .82). Under balanced

conditions (i.e., age bracket = 6 months, N = 5,600 and item number = 40) the num-

ber of missings was 0.713 %. The effects are depicted in Figures 7 and 8.

Descriptive Analysis of PEVNorm and RELNorm

Since the conditions in our study were numerous and covered a wide range of item

numbers and total sample sizes, some of the combinations of conditions would

Figure 5. RMSE in the cross-validation as a function of method and item number.
Note. All SEs \ 0.01. Dashed lines represent conventional norming, the solid line represents
semiparametric continuous norming (SPCN).
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certainly not occur in reality, for example, conventional norming with N = 700 and

an age bracket of 1 month. Therefore, we will not report PEVNorm and RELNorm for

all combinations of conditions in the following. Instead, we will focus on the conven-

tional norming procedure that performed best under a specific combination of condi-

tions (= Best CN). That is, we assume that a test constructor is able to divide the

total sample into age brackets with optimal width. Table 2 gives an overview over

PEVNorm and RELNorm under the different combinations of total sample size and

item number analyzed in this study.

First of all, the numbers indicate that the proportion of error variance added to the

test scores through the norming procedure decreases with growing total sample size,

but increases with the number of items, as was already reported with regard to RMSE.

Figure 6. MSD in the cross-validation as a function of method and scale difficulty (i.e.,
skewness of the raw score distribution).
Note. All SEs \ 0.01. Dashed lines represent conventional norming, the solid line represents
semiparametric continuous norming (SPCN).
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What we find interesting, though, is the possibility to interpret the error variance

independently of the scaling. For example, when SPCN was applied, the error var-

iance added to the test scores through the norming procedure, varied between 0.194%

and 1.594% (M = 0.70%). As a consequence, the proportion of true variance of the

latent trait contained in the norm scores, was slightly reduced by a factor ranging

between .980 and .997, with RELNorm = .990 on average. Imagine, for example, a

highly reliable test scale with an indicated reliability of rtt = .90, that is, a proportion

of error variance of about 10% in the raw scores. In the worst case, SPCN would

increase this variance to a total of 11.6%, that is, the ‘‘effective’’ reliability of the

norm scores would be RELTotal = .90 3 .98 = .88, which is still high. With conven-

tional norming, on the other hand, the introduced error variance varied between

Figure 7. Missings in the cross-validation as a function of method and sample size. The
numbers indicate the subsample sizes for the conventional norming conditions.
Note. All SEs \ 0.01. Dashed lines represent conventional norming, the solid line represents
semiparametric continuous norming (SPCN).
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0.328% and 7.673% (M = 2.53%), corresponding to a factor RELNorm between .994

and .901 (M = .966). As a consequence, the reliability of a fictitious test scale of rtt =

.90 would decrease to an effective reliability of RELTotal = .90 3 .90 = .81 in the

worst case. The error variance contributed by the norming procedure would be about

three quarters as high as the error variance contributed by the test items in this case.

Admittedly, the total sample size was only N = 700 with age brackets of 12 months in

this worst-case scenario, that is, the subsample size was below the generally recom-

mended one for conventional norming. Under more optimal conditions, that is, with

subsample sizes between n = 200 and n = 400, but an attainable total sample size of

up to N = 5,600, the error variance added to the test scores with conventional norming

ranged between 1% and 5%. Again, conventional norming required about four times

the total sample size to achieve the same quality as continuous norming.

Figure 8. Missings in the cross-validation as a function of method and item number.
Note. All SEs \ 0.01. Dashed lines represent conventional norming, the solid line represents
semiparametric continuous norming (SPCN).
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Discussion

This simulation study compared continuous with conventional norming, taking into

account that the quality of conventional norms often depends on whether continuous

explanatory variables (e.g., age) are considered in building sufficiently narrow nor-

mative subsamples. To investigate the effects of the different norming procedures

under multiple conditions, we additionally varied the number of items, the difficulty

of the used test scales (i.e., the skewness of the raw score distributions) and the total

sample size.

Regardless of the total sample size, the scale difficulty and the number of test

items, the specific continuous norming method we used in this study (SPCN)

Table 2. PEVNorm and RELNorm as Functions of Approach (Continuous vs. Conventional),
Total Sample Size, and Item Number.

Total Sample Size N

700 1,400 2,800 5,600 11,600 22,400 Total

10 Items PEVNorm SPCN 0.97% 0.53% 0.35% 0.37% 0.27% 0.19% 0.45%
Best CN 3.29% 2.07% 1.37% 0.78% 0.49% 0.33% 1.39%

RELNorm SPCN .982 .990 .994 .993 .995 .997 .992
Best CN .941 .963 .975 .986 .991 .994 .975

20 Items PEVNorm SPCN 1.27% 0.87% 0.49% 0.41% 0.37% 0.26% 0.61%
Best CN 5.24% 3.32% 2.17% 1.26% 0.82% 0.51% 2.22%

RELNorm SPCN .982 .988 .993 .994 .995 .996 .991
Best CN .925 .953 .969 .982 .988 .993 .968

30 Items PEVNorm SPCN 1.39% 1.00% 0.71% 0.47% 0.43% 0.33% 0.72%
Best CN 6.32% 4.09% 2.63% 1.55% 1.01% 0.64% 2.71%

RELNorm SPCN .982 .987 .991 .994 .994 .996 .991
Best CN .918 .947 .966 .980 .987 .992 .965

40 Items PEVNorm SPCN 1.59% 1.08% 0.75% 0.61% 0.52% 0.49% 0.84%
Best CN 7.12% 4.60% 2.96% 1.74% 1.15% 0.71% 3.05%

RELNorm SPCN .980 .987 .991 .992 .994 .994 .990
Best CN .913 .944 .964 .979 .986 .991 .963

50 Items PEVNorm SPCN 1.57% 1.16% 0.82% 0.74% 0.52% 0.49% 0.88%
Best CN 7.67% 5.02% 3.17% 1.90% 1.25% 0.77% 3.30%

RELNorm SPCN .981 .986 .990 .991 .994 .994 .989
Best CN .909 .941 .962 .978 .985 .991 .961

Total PEVNorm SPCN 1.36% 0.93% 0.62% 0.52% 0.42% 0.35% 0.70%
Best CN 5.93% 3.82% 2.46% 1.45% 0.94% 0.59% 2.53%

RELNorm SPCN .981 .987 .992 .993 .994 .995 .990
Best CN .921 .949 .967 .981 .988 .992 .966

Note. For the conventional norming procedure, we selected the best fitting model. SPCN = semiparametric

continuous norming.
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produced less error variance and therefore provided a more reliable estimation of the

person location than conventional norming. Even with an optimal balance between

the total sample size and the width of the age brackets, conventional norming

required about four times the total sample size to achieve the same data fit as continu-

ous norming. In reality, however, it is anything but certain that a test constructor

would always find this optimal balance between the width of the age brackets and the

size of the subsamples. Only with unrealistically high total sample sizes, the quality

of both approaches was similar. At the same time, as indicated in Figure 4, the gen-

eral recommendations for sample sizes per age bracket are not sufficient to guarantee

optimal results, since the bias resulting from finite width of the age brackets is

neglected.

Since the statistical test power was extremely high in our study, there is the addi-

tional question of whether the size of the effect plays a role for practical applications.

On the one hand, the mean absolute error was mostly within the range of 95%-confi-

dence intervals for both conventional and continuous norming—even for scales with

very high reliability. On the other hand, many diagnostic decisions are made on the

basis of clear cut-points where the confidence intervals do not play any role at all.

Therefore, one T-score more or less can definitely make the difference here. More

important, however, the norming errors are never evenly distributed across all levels

of the latent trait. Generally, they are U-shaped, with the slopes on both sides varying

with the average RMSE (cf. Lenhard et al., 2019). Therefore, the difference between

the methods might be irrelevantly small for average test results but significantly high

for test results strongly above or below average. Unfortunately, extreme test results

are precisely those results that are most relevant in diagnostic practice.

Furthermore, conventional norming also leads to a considerably higher number of

missings in the norm tables. Again, conventional norming required about four to

eight times the total sample size to approach the low number of missings of continu-

ous norming. Furthermore, the missings almost exclusively concern the extreme test

results, that is, the range of diagnostically relevant cases. Hence, the percentage of

test results affected by missings in diagnostic practice is probably much higher than

in our study. Continuous norming can improve the quality of the test norms because

it not only closes these gaps but also smooths the data along the ability dimension.

Finally, we directly compared the error variance contributed to test scores by the

different norming procedures with the error variance produced by the test items. For

continuous norming, the error variance added by the norming procedure was much

smaller than the one that is usually contributed by the test items. Hence, the norming

procedure only slightly impaired the explanatory power of the test results. By con-

trast, the proportion of error variance added with conventional norming considerably

increased the total error variance at least under some conditions. This finding sug-

gests that the selection and accurate implementation of an adequate norming proce-

dure can be almost as important for the explanatory power of test scores as all item

selection efforts (e.g., increasing the number of items, analyzing the item fit and

removing those that deteriorate homogeneity). In case, relevant covariates like age
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exist, continuous norming can help to represent a latent ability more precisely than

conventional norming. Our study thus adds support to the finding of Zhu and Chen

(2011) and Oosterhuis et al. (2016) that with continuous norming, substantially

smaller samples are sufficient to reach the same quality of norm scores or even sur-

pass conventional norming.

Limitations

The advantage of SPCN and other continuous norming procedures is to model the

effects of a covariate on the relation between raw scores and norm scores. This

advantage should increase with the proportion of variance in the raw scores that can

be explained by that covariate. If, on the other hand, a covariate like, for example,

age does not exert a relevant influence on the raw scores, there is no reason to con-

struct norm tables for distinct age brackets and consequently continuous norming

models are unnecessary as well (at least as far as this particular covariate is con-

cerned). The effects demonstrated in this norming study should therefore increase

with an increasing slope of the age trajectories of the measured trait and decrease

with a decreasing slope.

In this simulation study, SPCN returned very robust solutions for the predefined

population model we used, which mimicked the vocabulary development in child-

hood and adolescence. Yet it might fail with other application scenarios. In other con-

ceivable scenarios, for example, the mean raw scores could remain constant across

age, while only the variance might change. We have not modeled such scenarios yet

and it is therefore impossible to generalize the results of the present study to all con-

ceivable conditions. On the other hand, our own experiences with SPCN showed very

good results in many domains other than the originally intended psychometric use

cases. More precisely, we successfully modeled fetal length in dependence of gesta-

tion week, body mass index and body height growth in childhood and adolescence in

dependence of age, world-wide life expectancy at birth and mortality rates on country

level in the course of the last 50 years (Lenhard et al., 2018). The approach might

therefore be useful for other application scenarios from biometrics to macroeco-

nomics as well.

A second limitation concerns the number of covariates. So far, we have mainly

focused on taking only one covariate into account, namely age. For the application

scenarios we mainly target, such as intelligence tests or developmental tests, other

covariates (e.g., sex or ethnical background) are usually controlled via stratification

of the sample. Although from a theoretical point of view, SPCN is not necessarily

restricted to the inclusion of one covariate only, other approaches (e.g., Rigby &

Stasinopoulos, 2005; Van Breukelen & Vlaeyen, 2005) might be better suited for this

demand. Whether it is advisable to compute separate norm scores for covariates other

than age (e.g., sex-specific IQ scores), cannot be solved by statistical procedures,

though. It rather depends on the exact use case.
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Conversely, of course, it could also happen that no covariates have to be included

at all, but that the norm score is to be predicted as a function of the raw score only.

Equation (1) would thus be reduced to a simple polynomial regression. At the

moment we cannot precisely determine how significant the advantages of such a

regression would be compared with the conventional calculation of norm scores.

While the procedure certainly loses many of its advantages in that case, it nonethe-

less closes missings in the tables more precisely than a simple interpolation between

the available data points. Moreover, it smooths the transformation function between

raw scores and norm scores and thus might help to mitigate sampling errors in the

normative sample, though it is not possible to repair completely unrepresentative

normative data this way.

Another drawback of the present study might be the use of measures that cannot

be determined in real norming procedures. Since in applied diagnostics, the latent

ability is unknown, the factor RELNorm, specifying the relative amount of error var-

iance added by the norming procedure, can only be estimated in simulation studies

like the present one. Strictly speaking, the determined values therefore only apply to

the conditions established in this simulation. For SPCN, however, RELNorm remains

constant at around .99 even under simulation conditions other than those implemen-

ted in this study, whereas for other methods it obviously depends more on the actual

conditions. We therefore think it is important to keep in mind that in real life the

‘‘effective’’ reliability of norm scores (as defined by the explained variance of the

latent trait) is usually lower than the reliability of the raw scores, which is typically

specified in the handbooks.

Of course, a simulation study like the present one is always based on specific

assumptions. For example, we drew the samples from a perfectly representative pop-

ulation. In real-life scenarios, however, it is not always possible to perfectly stratify

each age bracket. As the regression-based approach in SPCN always draws on infor-

mation from the total sample to determine the mathematical models, such imbalances

can at least partially be compensated. The same does not hold true for conventional

norming, though. As a consequence, the differences between continuous and conven-

tional norming would even increase in real-life scenarios.

Furthermore, we assumed that the latent trait is normally distributed at each level

of the explanatory variable. We believe that this assumption is justified because of

the universality of the law of large numbers. Additionally, the 1-PL IRT measure-

ment model we used to produce test results makes specific assumptions about the

interaction between latent traits and test items (e.g., constant discriminative power

for all test items). We chose to draw on a 1-PL IRT model due to three main reasons.

First, the method is suitable to generate sample raw data that align with real-world

normative samples. Second, we constructed both the normative and the representative

cross-validation sample from the same population model and subjected them to the

same, randomly generated test scales in order to cross-validate different modelling

techniques. Third, the item response theory is one of the most important theoretical

models to explain how a latent ability interacts with items and scale parameters and

256 Educational and Psychological Measurement 81(2)



finally results in a raw score distribution. That way, we could determine how well the

raw scores and consequently the normed raw scores represent the latent ability. It is

important to note, though, that a specific measurement model is neither required for

the application of conventional norming nor for SPCN. The latter is based on the

mathematical principle that any function can be modelled with polynomials as long

as it is smooth and finite. Therefore, it can be applied to all kind of distributions like

biometric and sociometric data. As psychometry most often aims at measuring latent

variables, the application of an IRT model was the most plausible candidate for data

simulation purposes in our specific use case. Furthermore, SPCN is not restricted to

1-PL IRT models. For example, we successfully applied this method to normative

data of a test constructed on the basis of a complex measurement model including

power and speed components as well as discrimination parameters for both (2 3 2

PL model sensu; Fox et al., 2007; Lenhard et al., 2017). Moreover, it was also used

to model observed biometric data without any measurement model at all like, for

instance, the BMI growth curves in childhood and youth (sample dataset CDC of the

cNORM package). Therefore, we are convinced that the results can in fact be trans-

ferred to various other conditions. We even believe that the universality and simpli-

city of the SPCN approach is one of its great strengths.

Finally, we only compared one specific continuous norming method with conven-

tional norming, namely SPCN. As described above, this particular method makes no

specific assumptions about the raw score distributions and can therefore be used very

flexibly. However, there are other continuous norming methods that may lead to

somewhat different results (e.g., Cole & Green, 1992; Rigby & Stasinopoulos, 2005;

Zachary & Gorsuch, 1985, as demonstrated by Voncken et al., 2019a). When we

compared SPCN with parametric continuous norming methods, it mainly showed

superior performance when applied on scales with medium to high skewness of the

raw score distributions (Lenhard et al., 2019). When applied on test scales with very

low skewness, both methods performed equally well, with a slight advantage of

SPCN in smaller norming samples and a slightly better performance of parametric

models in larger samples. However, the latter result was only achieved under the

condition that an optimal modelling function was used in the parametric condition.

Hence, the search for such an optimal modelling function is of high importance when

applying parametric approaches. If the search is successful, then parametric and

semiparametric continuous norming deliver comparable results. Consequently, and

just like SPCN, parametric continuous norming will very likely outperform conven-

tional norming in most cases as well.

Conclusion

Our results have clearly shown that test scales contain less error variance and will

therefore be more reliable if continuous models are used to capture the effects of rel-

evant explanatory variables as such as age. We therefore recommend not only to

resort to simple ranking procedures but also to complete the analysis by modeling
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the continuous relation between raw scores, norm scores, and explanatory variables

when necessary. One way to perform this modeling is the regression-based continu-

ous norming method we have described in this study. The method not only provides

higher norming quality than conventional norming procedures but also outperforms

other continuous norming methods under various conditions (Lenhard et al., 2019).

Moreover, the software is available as an R package with a graphical user interface

(online demonstration, see https://cnorm.shinyapps.io/cNORM/) and online tutorials

(https://www.psychometrica.de/cNorm_en.html). It can be freely used even with lim-

ited prior knowledge in R. More experienced psychometricians can choose between

different norming methods, for example, semiparametric or parametric continuous

norming. The sample size, the impact of covariates and the properties of the raw

score distribution are important factors when it comes to the selection of the most

appropriate method.

In recent years, research and published work in the field of norming has increased.

We consider this development to be of paramount importance, because it has the

potential not only to improve the explanatory power of psychometric tests but also to

make them more cost-effective and therefore more widespread. We hope that we can

significantly contribute to this field with this simulation study.
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