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Introduction: As the most distressing complication of sickle cell disease (SCD), pain is marked by
considerable heterogenicity. In this study we explored the potential association of alcohol dehydrogenase
7 gene (ADH7) polymorphism rs971074 with sickle cell pain. Methods: We analyzed clinical phenotypes
and the rs971074 single-nucleotide polymorphism in ADH7 by MassARRAY-iPlex analysis in a cohort of SCD
patients. Results: The synonymous rs971074 was significantly associated with both acute and chronic pain
in SCD. Patients with the minor T allele(s) recorded significantly more crisis episodes and severe chronic
pain symptoms. Conclusion: Our study has identified the rs971074 minor T allele as a genetic biomarker
potentially influencing acute and chronic pain. These findings may ultimately help inform strategies to
develop precision pain therapies in SCD.
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As one of the most prevalent monogenic disorders, sickle cell disease (SCD) arises from a SNP harbored in the
first exon of the β-globin gene (Hbb). SCD can lead to a wide range of complications that can vary in severity and
frequency between individuals, including hemolytic anemia, infections, stroke, sickle retinopathy and acute chest
syndrome [1]. Even within the same SCD genotype (sickle cell disease-homozygous hemoglobin S [SS], sickle cell
disease-sickle β◦ thalassemia [Sβothal], sickle cell disease-sickle hemoglobin C [SC]), pain, the hallmark feature of
SCD, exhibits substantial phenotype variations relating to intensity, duration and frequency, as well as the location
and type of pain [2]. The highly individualized pain experience in SCD indicates the potential influences of gene
polymorphisms on the pathophysiology of pain in SCD [3,4].

ADH7, which is located on chromosome 4q23, encodes class IV alcohol dehydrogenase 7 μ or σ subunit
(ADH7), which participates in the first-pass metabolism of alcohol [5]. Different from the other members of ADH
gene cluster, ADH7 is mainly expressed in the epithelial tissues of the upper gastrointestinal tract, but not found
in the liver [6]. With less efficiency in ethanol oxidation, ADH7 is more active as a retinol dehydrogenase, which
potently oxidizes retinol to retinal [7]. ADH7 initiates the biosynthesis of retinoic acid, and thus functions as a
crucial component in retinoid signaling [8]. Indeed, retinoic acid signaling has been implicated in gating neuropathic
pain by spinal disinhibition [9]. It is plausible that ADH7 may also contribute to the development of chronic pain
in SCD through the retinoic acid pathway. Notably, suboptimal plasma retinol concentrations are reported to be
associated with poor clinical outcomes in SCD [10]. Serum retinol levels are inversely correlated with the degree
of anemia, percentage of sickling and hospitalizations among patients with SCD [11]. Therefore, we hypothesize
that ADH7 plays a key role in hemolysis, vessel occlusion and the development of the acute painful crisis.

Genome-wide studies have also identified significant associations between SNPs in ADH7 and alcoholism, cancer,
as well as substance dependence [12–14]. The rs971074 in particular has been reported to be significantly linked to
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Table 1. Demographic characteristics (n = 131).
Variable Category/statistics Value

Sex, n (%) Female 86 (66%)

Male 45 (34%)

Age Mean (SD), range 34.2 ± 11.7, 15–70

Ethnicity African–American 131

Sickle cell type SCD-SS 102 (78%)

SCD-SC 15 (11%)

SCD-S�+ 7 (5%)

SCD-S�◦ 7 (5%)

Composite Pain Index Mean (SD), range 40.5 ± 13.1, 14.7–86.5

Acute care utilization Mean (SD), range 4.4 ± 5.3, 0–38

Utilization groups Zero (0) 19 (15%)

Low (1–3) 57 (44%)

High (�4) 55 (42%)

SCD: Sickle cell disease; SCD-S�◦: Sickle cell disease-sickle �◦ thalassemia; SCD-S�+: Sickle cell disease-sickle �+ thalassemia; SCD-SC: Sickle cell disease-sickle hemoglobin C; SCD-SS:
Sickle cell disease-homozygous hemoglobin S; SD: Standard deviation.

substance dependence [15] and strongly associated with upper aerodigestive tract cancers [16]. Based on these unique
connections between ADH7 and SCD pain, the present study investigated the potential association of the ADH7
polymorphism rs971074 with sickle cell pain. We examined the genotype frequencies of the rs971074 SNP and
its association with acute and chronic pain in patients with SCD.

Methods
Study design
The study took place at the University of Illinois Hospital and Health Sciences System (UIHHS; IL, USA). The
study was approved by the Institutional Review Board of the University of Illinois Chicago and all the participants
were given a detailed explanation of the study and signed an informed consent form. Parental consent as well as
child assent were obtained for participants under the age of 18 years.

Patient recruitment & clinical evaluation
Subjects with SCD who received their care from the UIHHS, the Sickle Cell Clinic and the surrounding community
were recruited for the study [3,17]. SCD diagnosis included the different forms of sickle hemoglobinopathies, HbSS,
HbSC and HbS beta-thalassemia. The inclusion criteria were 1) they had been diagnosed with SCD and attended
UIHHS adult or pediatric Sickle Cell Clinic; 2) had sickle cell related moderate to severe pain levels (≥3 on a 0–10
scale) within 12 months before study enrollment; 3) reported at least one emergency visit or hospitalization within
2 years prior to enrollment; and 4) could speak and read English. The exclusion criteria for the study were: legally
blind and individuals physically unable to complete study questionnaires.

A total of 131 African–American subjects with SCD were included in this analysis where both clinical data and
genetic samples were available. The mean age of the participants was 34.2 ± 11.7 years, with 66% being female. A
detailed description of demographics can be found in Table 1.

Pain assessment
Discernable pain events
The number of emergency department visits, acute care center admissions or hospitalizations over a period of
12 months after being enrolled into the study was evaluated and utilized as a marker for acute pain in SCD [17].
The events were termed as ‘utilization’ events and were recorded via monitoring the electronic medical record of
UIHHS. The individuals were also contacted through phone every 2 weeks to document any acute visits that may
have occurred at other facilities. Based on previous SCD studies, utilization groups were categorized based on the
number of events as zero (0 events), low (1–3 events) or high (4–38 events) [17,18]. Figure 1 displays the distribution
of subjects based on the sickle cell type and utilization groups.
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Figure 1. Distribution of subjects based on sickle cell type and utilization groups. The data are plotted as bars, with
each bar representing different sickle cell disease types grouped into SS and Sβ◦ thal as one group and SC and Sβ+ as
other. The color represents the different utilization groups, and the y-axis represents the number of subjects per
group.
Sβ◦: Sickle cell disease-sickle β◦ thalassemia; Sβ+: Sickle cell disease-sickle β+ thalassemia; SC: Sickle cell disease-sickle
hemoglobin C; SS: Sickle cell disease-homozygous hemoglobin S.

Self-reported pain
An electronic version of the McGill Pain Questionnaire (MPQ) was used by the subjects to report the pain location,
intensity, pattern and quality at a routine outpatient clinic visit [17,19,20]. The Composite Pain Index (CPI) was
utilized as way of conceptualizing and scoring the MPQ as a patient-reported outcome [20]. A CPI score was
calculated for each subject in the study based on the average pain intensity, pain pattern, pain sites and Pain Rating
Index Total scores as a measure of chronic pain.

Sample acquisition & handling
The sample collection occurred at the UIHHS, which included blood and/or buccal swab samples. The samples
were maintained under a cold chain (on ice) until they were to be processed for DNA extraction.

DNA extraction & genotyping
The QuickGene DNA whole-blood extraction method (AutoGen, MA, USA) was utilized for genomic DNA
extraction from blood samples using QuickGene-mini80 isolation device with a modified salting out procedure [21].
The quality and quantity of extracted DNA were evaluated with a NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, France). The DNA extraction from the buccal samples was done using a modified
phenol/chloroform procedure [22]. The SNPs were genotyped using the MassARRAY iPLEX Platform (Sequenom,
CA, USA) [23]. The success rate observed for genotyping was >90%.
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Table 2. Alcohol dehydrogenase 7 polymorphism genotype and allele frequencies.
dbSNP ID Location Allele Current study

n (%)
Literature frequencies†

n (%)
Genotype Current study

n (%)
Literature frequencies†

n (%)

AFR ASW AFR ASW

rs971074 GRCh38.p12
chr4:99420704

C 216 (82%) 1134 (86%) 102 (84%) CC 87 (66%) 486 (74%) 41 (67%)

T 46 (18%) 188 (14%) 20 (16%) CT 42 (32%) 162 (25%) 20 (33%)

TT 2 (2%) 13 (2%)

†The 1000 Genomes population frequencies were obtained from the Ensembl Genome Browser [30]; phase III is used for comparison.
AFR: African population; ASW: African ancestry in southwest USA.
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Figure 2. Distribution of subjects based on their individual utilization score and ADH7 genotype. Each point also
depicts the age of the subject. The data are plotted as boxplots and represent highest, lowest quartile and median.

Statistical analysis
The association analysis of the SNP and utilization events was done using the dominant negative binomial regression
model [24,25]. The regression model was adjusted for age, sex and sickle cell type. The association analysis of SNP
with the CPI scores was done using the dominant multiple linear regression model [26,27] adjusted for age, sex and
sickle cell type. In addition, for subjects with sickle cell genotypes SS and Sβothal, a separate association analysis of
the SNP with utilization and CPI scores was performed. The additive and recessive models for the SNP were not
applicable due to very low minor allele frequency; therefore, only the dominant model was used. Analysis was done
using Statistical Package for the Social Sciences (SPSS) and R (version 3.4.0) [28,29].

Results
Genotypic analysis of the DNA samples collected from 131 subjects, for ADH7 SNP rs971074, demonstrated
87 patients (66%) with the CC genotype, 42 patients (32%) with the CT genotype and two patients (2%) with
the TT genotype. The major and minor allele relationship for the ADH7 polymorphisms as well as the genotypic
frequencies from the current study and the expected frequencies from the 1000 Genomes Project [30] are shown in
Table 2.

The mean utilization events were 3.6 ± 3.7 for participants with the CC genotype, 6.5 ± 7.3 for those
with the CT genotype and none (0) for the TT genotype (Figure 2). ADH7 rs971074 genotypes demonstrated
statistically significant association with utilization events (acute pain) in the dominant regression model as observed
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Table 3. Association analyses of utilization events and CPI scores with ADH7 polymorphism.
Single-nucleotide polymorphism Model Incidence risk ratio (95% CI) p-value

Utilization Dominant (CC vs CT +TT) 1.78 (1.25–2.56) 0.001

Utilization†

(SS and S�othal)
Dominant (CC vs CT +TT) 1.50 (1.02–2.24) 0.03

Model B (95% CI) p-value

CPI scores Dominant (CC vs CT +TT) 6.07 (1.19–10.96) 0.015

CPI scores†

(SS and S�othal)
Dominant (CC vs CT +TT) 5.22 (-0.17–10.62) 0.05

Regression models are adjusted for covariates (age, sex and sickle cell type). p-values �0.05.
†SS and S�othal: Sickle cell disease types (SS: Homozygous hemoglobin S, S�othal: sickle �◦ thalassemia), regression models adjusted for covariates (age and sex).
B: Unstandardized regression coefficient; CPI: Composite Pain Index; SS: Homozygous hemoglobin S; S�othal: sickle �◦ thalassemia.
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Figure 3. Distribution of subjects based on their individual Composite Pain Index score and genotype. Each point
also depicts the age of the subject. The data are plotted as boxplots and represent highest, lowest quartile and
median.

using negative binomial regression analysis (Table 3). The T allele was associated with a higher utilization in the
dominant model (incident rate ratio [IRR] = 1.78; 95% CI: 1.25–2.56; p = 0.001; Table 3). Among subjects with
for SS and Sβothal only, mean utilization events were 3.83 ± 3.8 for CC cohort, 5.7 ± 7.1 for CT cohort and
none (0) for TT cohort. The association of T allele with higher utilization was statistically significant (IRR = 1.50;
CI: 1.02 - 2.24; p = 0.03; Table 3).

In addition, we found age to be a significant predictor of utilizations (p = 0.002 for all subjects and p = 0.01 for
SS and Sβothal only), with a decrease in the utilization events as the age increases.

The mean CPI score for the participants with the CC genotype was 38.6 ± 13.3, for the CT genotype it was
44.8 ± 13.2 and it was 36.8 ± 4.9 for participants with the TT genotype (Figure 3). The association between
ADH7 SNP rs971074 and CPI scores was also statistically significant in the dominant model (unstandardized
regression coefficient [B] = 6.07; CI: 1.19–10.96; p = 0.015; Table 3). Among subjects with SS and Sβothal only,
mean CPI scores were 38.7 ± 13.7 for participants with CC genotype, 43.4 ± 14.0 for the participants with CT
genotype and 36.8 ± 3.4 for TT genotype. The association of ADH7 SNP rs971074 with CPI was not statistically
significant (unstandardized regression coefficient = 5.22; CI: -0.17–10.62; p = 0.05; Table 3) in this subset.
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Discussion
SCD is a serious and lifelong autosomal recessive disorder. Patients with SCD exhibit divergent incidences of
unpredictable acute painful crisis, as well as varying severities of persistent ongoing pain. The present study
aimed to evaluate the genetic contribution of ADH7 to pain heterogenicity among patients with SCD. The study
included 131 self-reported African–Americans and demonstrated that the subjects with ADH7 rs971074 minor
T allele (heterozygous C/T genotype and homozygous T/T genotype) reported higher acute pain episodes and
higher scores for persistent chronic pain compared with the subjects with the homozygous C/C genotype. There
is an overlap in the range of utilization events, but every hospital readmission puts SCD patients at higher risks for
mental health disorders, economic burden and poor quality of life [31–33].

ADH7 is a unique member of the alcohol dehydrogenase (ADH) family, which is inefficient in metabolizing
ethanol while mainly catalyzes the metabolism of the longer chain aliphatic alcohols (such as retinol). The gene
encoding ADH7 is at the 5′ end of the ADH gene cluster of seven ADHs. There have been several studies
investigating the functional polymorphisms of ADH7. A synonymous SNP located in exon 6 of ADH7, rs971074,
is found to be associated with substance dependence [14,15]. This was further corroborated by another association
study conducted for heroin addiction in African–American subjects, with a finding of association between rs971074
and substance use disorder [12]. Prior to our study, no ADH7 polymorphism has been studied for its association
with pain phenotype.

Synonymous SNPs can affect translation efficiency changing protein abundance [34], mRNA stability affecting
the amount of mRNA available for translation, pre-mRNA splicing resulting in alternative splicing and different
protein isoforms with altered function or expression patters, RNA secondary structure including mRNA folding,
and stability ultimately affecting translation efficiency and protein folding [35].

ADH7 converts retinol (the major vitamin A precursor) to retinal; retinal is then synthesized to retinoic acid (the
active form of vitamin A). Vitamin A deficiency (serum retinol <20 μg/dl) has been reported to be higher in cases
with SCD compared with either sickle cell trait or healthy groups [11]. As a key clinical concern for SCD patients,
the status of oxidative stress due to sickling and hemolysis inversely correlated with serum retinol levels. High-dose
vitamin A supplementation improved hematological parameters in a randomized, double-blind pilot study in
children with SCD [10]. Retinoic acid is known to play a crucial role in the maintenance of immune homeostasis
during inflammatory responses and alterations in serum retinoic acid levels have been shown to be indicators of
homeostatic disequilibrium [36,37]. Overall, polymorphisms in ADH7 might alter the enzymatic activity, ultimately
affecting the retinoic acid levels. Lower levels of retinoic acid might result in higher oxidative stress and imbalance
in immune homeostasis, ultimately affecting pain levels.

Moreover, retinoic acid bound to its receptors regulates the expression of dopamine D2 receptors, which is
a key neuromodulator [38]. As a consequence, ADH7 indirectly regulates the development and maintenance of
dopaminergic system [39]. Polymorphisms of ADH7 thus might cause dopamine system dysfunction, which has
been attributed as one of the possible mechanisms behind the association of ADH7 rs971074 with substance
dependence [15]. The dopaminergic system has been implicated for its role in nociceptive processing [40–43]. This
is reinforced not only by the anatomical overlap of the regions in the brain associated with pain processing and
the dopamine system, but also with considerable overlap between the cognitive and affective factors that influence
the subjective experience of pain [44]. Specifically, the retinoic acid receptor, RARα, has been identified as a crucial
molecular effector for neuropathic pain. Deletion of RARα in spinal cord neurons or application of an RARα

antagonist in the spinal cord prevented the development of mechanical hypersensitivity in mice with spared nerve
injury. Since SCD contains a neuropathic pain component, it will be interesting to investigate the linkage between
the ADH7 polymorphism and central RARα signaling in future studies.

Besides metabolism of alcohol and synthesis of retinoic acid, ADH enzymes are also involved in detoxification
of reactive substances such as 4-hydroxynonenal (HNE) [45–47]. Genetic variability in the ADH sequence might
affect its enzymatic function, with consequent effects on the levels of such reactive substances in the body [15]. HNE
specifically has been shown to induce significant erythrocyte adhesion to endothelial cells in vascular diseases [48]

and induce inflammatory pain via activation of TRPA1 receptors [49]. However, the exact involvement of ADH7
with metabolism of reactive substances warrants further investigation.

The relatively small sample size of the study and patient recruitment is a limitation. These findings need to
be validated in a large prospectively designed study, along with inclusion of additional data regarding retinoic
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acid/retinol levels and hematocrit levels in the patients. We also did not consider medications for the disease or
pain problems that can potentially influence pain scores.

Conclusion
This is the first study reporting the association of ADH7 SNP rs971074 with pain in SCD. We found that patients
homozygous or heterozygous for the minor T allele had more recurrent episodes of pain crisis, indicating increased
risk of vaso-occlusion events compared with the ones homozygous for the major C allele. In addition, rs971074 CT
and TT genotypes were more frequent in patients who experience more severe chronic pain syndrome associated
with SCD. These results identified a novel genetic polymorphism determinant to phenotypic variation of pain in
SCD and need to be further reproduced in a larger study to develop precision pain management and personalized
therapies for patients with SCD.

Summary points

• ADH7 polymorphism rs971074 minor T allele significantly associates with higher incidence of acute pain episodes.
• The rs971074 heterozygous C/T and homozygous T/T genotypes significantly associate with more severe chronic

pain.
• This is the first evidence of association of the ADH7 polymorphism with acute crisis pain in sickle cell disease.
• This is the first evidence of association of the ADH7 polymorphism with any chronic pain.
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