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Abstract

Background

obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with

increased risk factors for cardiovascular diseases (CVDs). Oxidative stress, insulin resis-

tance, inflammation, and endothelial dysfunction are increased in OSA patients and micro-

RNAs (miRs) are regulatory elements that influence these pathological mechanisms.

miR125a, miR126, and miR146a-5p play a role in these pathological mechanisms and have

not been evaluated in patients with OSA.

Method

This case-control study was performed on 90 OSA patients and 34 controls. Circulating lev-

els of miR125a, miR126, and miR146a-5 were determined using real-time PCR, and serum

levels of hsCRP, ICAM-1, and VCAM-1 were evaluated using ELISA kits.

Results

miR125a and miR146a were elevated in patients with OSA compared to controls while

miR126 decreased significantly. All three miRs indicated a remarkable difference between

the mild-OSA group compared to the severe-OSA group. Furthermore, patients with OSA

showed elevated levels of hsCRP, ICAM-1, and VCAM-1. Multiple linear regression indi-

cated an independent association of miR125a with ICAM-1 and hsCRP, miR126 associated

with VCAM-1 and total cholesterol, and miR146a-5p represented an association with

apnea-hypopnea index and ICAM-1. Furthermore, miR146a-5p illustrated a good diagnostic

ability to differentiate between OSA and controls.
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Conclusions

Circulating miR125a, miR126, and miR146a-5p fluctuations in patients with OSA and their

relations with markers of endothelial dysfunction provide in vivo evidence and suggest a

potential role for these miRs with endothelial dysfunction in patients with OSA.

Introduction

Obstructive sleep apnea (OSA) is one of the most prevalent sleep disorders which not only has

an adverse impact on quality of life but also imposes several cardiovascular risk factors on the

affected people [1]. Studies have reported a range of OSA prevalence from 9% to 38% and its

prevalence increased with age, obesity, and being male [1, 2]. While the relationship of OSA

with cardiovascular disease (CVD) is established the mechanism underlying this relationship

is not fully understood. Several mechanisms have been proposed and investigated such as

hypertension, endothelial dysfunction, insulin resistance, and dyslipidemia.

OSA is caused by recurrent partial or complete obstruction of the upper airway resulting in

absence of inspiratory airflow [1]. This condition causes intermittent hypoxia which induces a

situation like ischemia-reperfusion (I/R) results in increased ROS and oxidative stress [3]. Oxi-

dative stress along with inflammation and sympathetic activation is considered the main driver

of OSA consequences like insulin resistance, dyslipidemia, endothelial dysfunction, and ath-

erosclerosis [1]. Exposing mice to intermittent hypoxia showed elevation of mitochondrial

ROS that contributes to the development of type 2 diabetes mellitus [4]. In addition, intermit-

tent hypoxia in rats leads to a decline in endothelial integrity and the number of endothelial

cell progenitors [5]. Indeed, excessive ROS formation results in damage to biomolecules like

DNA, proteins, and lipids in the body and in turn promotes an inflammatory cascade through

transcription factor activation which causes upregulation of adhesion molecules and pro-

inflammatory cytokines [6, 7]. Clinical studies have proven elevated inflammatory cytokines

and adhesion molecules, which lead to endothelial dysfunction in OSA patients [8]. Moreover,

the bioavailability of nitric oxide (NO) is reduced in intermittent hypoxia and in OSA patients

which in turn promotes endothelial dysfunction [9].

Several mechanisms in the body regulate endothelial functions at transcription, post-tran-

scription, and post-translation levels. MicroRNAs (miRs) are small, single-stranded, non-cod-

ing RNAs of 18 to 25 nucleotides that play a substantial role in the physiological and

pathological process of the cells at the post-transcriptional level [10]. miRs can bind to 3’UTR

of the target genes to induce their degradation and inhibit translation [10]. miRs were consid-

ered as a marker for response to therapy in OSA patients and a cluster of CVD-associated

miRs called the HIPARCO-Score, comprising miR-378a-3p, miR-100-5p, and miR-486-5p

showed a good ability to predict desirable response to CPAP treatment [11]. While there are

studies that tested the ability of miRs to predict response to treatment, most studies evaluated

the diagnostic potential of miRs. One of the first studies showed that miR-574-5p was upregu-

lated, while 199-3p, miR-107, and miR-485-5p were suppressed, in patients with OSA in com-

parison to controls [12]. Moreover, miR-181a, miR-133a, miR-340, miR-199b, miR-486-3p,

and miR-345 were found to be lower in the plasma of male OSA patients compared to controls

[13]. In addition to the diagnostic ability of miRs in sleep apnea, it has been shown that miRs

can affect pathophysiological pathways and mechanisms related to OSA. Circulating exosomes

containing miRs from subjects who were exposed to intermittent hypoxia considerably upre-

gulated ICAM-1 and downregulated endothelial nitric oxide synthase (eNOS) [14]. There are
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miRs that have close relationships with endothelial dysfunction, inflammation, and cardiovas-

cular diseases which have not been evaluated in patients with OSA.

There is considerable literature that reported the relation of miR125a with underlying

mechanisms of CVD [15], and lower levels of this miR have been reported in subjects suffering

from insufficient sleep [16]. miR125a has been reported to have protective effects against I/R

injuries in rats’ myocardium [17], moreover, miR125a has a protective role in the inflamma-

tory process through the PYD domains-containing protein 3 (NLRP3) [18]. miR126 plays a

role in endothelial proliferation and in developmental angiogenesis [19, 20], and reports indi-

cate that miR126 is released by endothelial cells [21]. miR126 was found to be downregulated

in senescent endothelial cells and inhibition of miR126 resulted in a decrease in HIF-1α pro-

tein levels, that disrupt the wound healing process [22]. Additionally, miR126 showed an

inverse relationship with the VCAM-1 and was found to be downregulated in senescent

human aortic endothelial cells [23]. Furthermore, miR126 was decreased in OSA patients with

hypertension compared to OSA patients with normal blood pressure [24]; chronic intermittent

hypoxia in rats results in a decrease of miR126a-3p and an increase in HIF-1α in the rat [25].

miR146a-5p is a key regulator of several cancers, including prostate, breast, and gastric cancer

[26–28], in addition, the levels of miR146a-5p have been found to be higher in animal and cell

models of I/R [29]. Furthermore, miR146a-5p exacerbates injury induced by IH in H9c2 cells

by reducing cell viability and by increasing apoptosis through the X-linked inhibitor of apo-

ptosis protein (XIAP) [30]. Furthermore, miR146a-5p suppressed endothelial activation and

pro-inflammatory signaling in endothelial cells [31].

While there are shreds of evidence for the relation between these three miRs and endothe-

lial dysfunction, there is no study on the association of these miRs with OSA. Therefore, the

present study sought to measure circulating levels of miR125a, miR126, and miR146a-5p in

patients with OSA to determine if they were related to markers of endothelial dysfunction and

inflammation.

Method

Study population and diagnosis of OSA

This case-control study was performed on 124 subjects (90 OSA and 34 control) who under-

went polysomnography (PSG) in the sleep clinic of Farabi Hospital in Kermanshah, Iran, from

March 2020 until March 2022. The diagnosis was based on the results of PSG [32, 33], subjects

with an apnea-hypopnea index (AHI)� 5 were categorized as OSA patients. Controls were

subjects with AHI < 5 and did not have any sleep disorders. Briefly, continuous PSG was per-

formed overnight (7hrs) for all subjects via SOMNOscreen™ plus (SOMNOmedics GmbH,

Randersacker, Germany). American Academy of Sleep Medicine (AASM 2012) guidelines

were used to define hypopnea and apnea. Hypopnea is defined as reduced airflow by�30%

along with reduced oxygen desaturation index by�3% or arousal and apnea are classified as a

whole cessation of airflow for�10 seconds. The mean number of hypopneas plus apneas is

considered AHI. The severity of the disease was defined according to the AHI value: 1) Mild:

5�AHI<15 (n = 30), 2) Moderate: 15�AHI<30 (n = 29), and 3) Severe: AHI�30 (n = 30).

Subjects with evidence or history of cardiovascular diseases, autoimmune diseases, cancer, and

diabetes (according to the criteria of American diabetes association) were excluded from the

study.

Anthropometric and laboratory parameters

Fasting venous blood sample (5 mL) was obtained from participants, and serum was separated

immediately by centrifugation and stored at—70˚ C. Systolic blood pressure (SBP) and
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diastolic blood pressure (DBP) were measured in a was seated position using a standard sphyg-

momanometer. Body mass index (BMI) calculated using standard formula: weight (kg)/height

(m2). Levels of fasting blood glucose (FBG) and lipid profile, including triglyceride (TG), total

cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein choles-

terol (HDL-C) were determined using a spectrophotometric assay with commercially available

kits (ParsAzmon, Tehran, Iran), and an auto-analyzer. Fasting insulin levels were measured

using an enzyme-linked immunosorbent assay (ELISA) kit (Monobind, USA) according to the

manufacturer’s instructions.

Serum levels of adhesion molecules

ELISA kits (Quantikine, R&D Systems; USA) were used to measure serum levels of ICAM-1

and VCAM-1. Intra-assay and inter-assay coefficients of variation (CV) for ICAM-1 and

VCAM-1 were<6.5% and <7% respectively. Moreover, the minimum detectable range for

ICAM-1 and VCAM-1 were 0.096 ng/mL and 0.6 ng/mL, respectively.

Determining miRs circulating levels

The miRNA was extracted from serum samples using the QIAzol reagent (Qiagen, USA)

according to the manufacturer’s protocol. The concentration and purity of RNA were tested

by a NanoDrop (Thermo Fisher Scientific, USA). The miR complementary DNA (cDNA) was

synthesized using TaqMan Advanced miRNA cDNA Synthesis Kit (Applied Biosystems,

USA). The levels of circulating miRs were measured using TaqMan Advanced miRNA Assays

(Thermo Scientific, USA) based on the manufacturer’s protocol. miR-361-5p was used as the

internal control and specific primers and probes were applied for each of the miRNAs. Relative

quantification of miRs was determined by the 2- ΔCt method [34].

Statistical analysis

Statistical Package for the Social Sciences (SPSS) version 25 was used for statistical analysis.

The chi-square test was used to compare categorical data between the groups and results are

represented by frequency and percentage. The mean between two groups was compared using

either Student’s t-test or Mann-Whitney U test, depending on the normality test results. One-

Way ANOVA or Kruskal Wallis test were used to compare continuous variables between

more than two groups according to normality results. Analysis of Covariance (ANCOVA) was

performed to adjust for the possible impact of covariates on miRNA levels. Data that were not

normally distributed were transformed logarithmically before including in correlation tests or

regression analyses. The Pearson correlation test was used to test the correlation between miRs

and other variables. The correlation for PLMS was tested using the Spearman test because

there was a zero in PLMS. To identify the independent association between miRs and continu-

ous variables, all variables that were found to be correlated were included in a linear regression

analysis. Binary logistic regression was used to test the relation of miRs with the risk of OSA.

The receiver operating characteristic (ROC) curve was plotted to test the diagnostic ability of

circulating miRs. The sample size was calculated for a case-control study comparing the levels

of three circulating miRs (miR146a, 126, and 125) between the OSA group and the control

group separately. The calculation was performed with a power of 80% and a significance level

(alpha) of 0.05, and the highest sample size required was determined. A p-value of less than

0.05 was considered statistical significance.
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Results

The basic characteristic of the study population

Table 1 represents the detailed characteristic of the studied population. Age and BMI indicated

no considerable difference between the groups. While patients with OSA had a bigger neck cir-

cumference (p = 0.019), waist circumference didn’t reach the significant threshold (p = 0.078).

SBP and DBP were remarkably higher in the OSA group compared with controls (p<0.01 for

both). As expected, both AHI and RDI were considerably higher in OSA patients compared to

controls (p<0.001 for both). Moreover, total sleep time and sleep efficiency indicated no con-

siderable difference between the groups while periodic limb movements in patients with OSA

was higher compared to controls. While average SpO2 indicated no remarkable difference

between the groups (p = 0.121), minimal SpO2 declined in patients compared to controls

(p<0.001). FBG illustrated no considerable difference between the groups but, insulin and

HOMA-IR showed a considerable elevation in the OSA group compared to the control group.

TC and LDL-C were not significantly different between the groups. HDL-C was reduced in

the OSA group compared to controls (p = 0.037) while TG was elevated in the patients com-

pared to controls (p = 0.043).

Circulating hsCRP and soluble adhesion molecules

Serum levels of hsCRP, as an inflammatory marker, were elevated in patients with OSA

(5.86 ± 2.2) compared with controls (2.5 ± 0.92 mg/L, p<0.001). According to the comparison

Table 1. The basic characteristic of the studied population.

Variables Control (n = 34) OSA (n = 90) P Value

Age (year) 44.56 ± 9.34 45.28 ± 12.85 0.733

Sex (male /female) 18 (52.1%)/16(47.9%) 63 (0%)7/27(30%) 0.06

BMI (kg/m2) 26.53 ± 3.25 26.93 ± 2.61 0.477

Neck circumference (cm) 37 (33, 39) 39 (37, 41) 0.019

Waist circumference (cm) 93.38 ± 9.37 96.86 ± 9.86 0.078

SBP (mmHg) 110 (110, 120) 120 (115, 125) 0.003

DBP (mmHg) 70 (70, 80) 80 (70, 80) 0.004

AHI (event/h) 2.2 (1.25, 2.9) 18.9 (9.25, 37) <0.001

RDI (event/h) 4.82 ± 3.92 28.42 ± 20.53 <0.001

AverageSpO2 (%) 92.15 ± 4.57 89.79 ± 8.34 0.121

MinimalSpO2 (%) 89.26 ± 5.65 84.22 ± 9.33 <0.001

TST (h) 6.5 (6.29, 7.27) 6.54 (5.53, 7.33) 0.831

SE (%) 86.6 (81.1, 93.3) 86.45 (74.6, 93.7) 0.827

PLMS 0.9 (0, 3.2) 3.35 (0.7, 8.5) 0.001

Insulin (μU/ml) 3.2 (2.5, 4.4) 4.5 (2.45, 7.16) 0.009

HOMA-IR 0.73 (0.57, 1.09) 1.08 (0.57, 1.59) 0.010

FBS (mg/dL) 94.63 ± 11.428 95.84 ± 10.68 0.583

TC (mg/dL) 164.31 ± 34.37 167.03 ± 45.96 0.755

LDL-C (mg/dL) 94.82 ± 23.72 99.44 ± 31.69 0.383

TG (mg/dL) 121 (94, 157) 147 (109.5, 183) 0.043

HDL-C (mg/dL) 44.1 (41.5, 51.75) 42 (37, 48) 0.037

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; AHI, apnea-hypopnea index; RDI, respiratory disturbance index; averageSpO2,

average saturation of peripheral oxygen; MinimalSpO2, minimal saturation of peripheral oxygen; TST, total sleep time; SE, Sleep efficiency; PLMS, Periodic limb

movements in sleep; HOMA-IR, homeostatic model assessment for insulin resistance; FBS, fasting blood sugar; TC, total cholesterol; LDL-C, low-density lipoprotein

cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol

https://doi.org/10.1371/journal.pone.0287594.t001
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between OSA categories, severe OSA (7.78 ± 1.68 mg/L) had higher hsCRP levels than mild

(4.62 ± 1.61 mg/L) or moderate OSA (5.27 ± 1.82 mg/L) (p<0.001 for both), but mild and

moderate OSA did not differ significantly from each other (Fig 1A). ICAM-1 concentration

was higher in OSA patients (200.23 ± 45.99 mg/dL) compared to controls (292.27 ± 78.12 mg/

dL, p<0.001), furthermore, severe-OSA group indicated a higher concentration of ICAM-1

compared to mild-OSA (260.8 ± 66.30 mg/dL) (p = 0.048), and there was no considerable dif-

ference between moderate-OSA (304.9 ± 81.7 mg/dL) with mild-OSA and severe-OSA

(312.9 ± 78.83 mg/dL) (Fig 1B). Similarly, VCAM-1 (480 (399, 599) vs. 322 (258.5, 387))

increased in patients with OSA compared to controls (p<0.001 for both), but there was no

remarkable difference between mild-OSA (444 (364.5, 538)), moderate-OSA (521 (408.5, 692))

and severe-OSA (480.5 (404, 639.3)) groups (Fig 1C).

Circulating MicroRNAs

The levels of circulating miR125a were higher in OSA patients than in controls (p<0.001).

Moreover, patients with mild OSA had higher levels of miR125a than those in the moderate

and severe OSA groups (Fig 2A). Conversely, the levels of miR126 were lower in patients with

OSA than in controls (p<0.001), and miR126 was also decreased in the severe OSA group

compared to the mild OSA group (Fig 2B). In addition, miR146a-5p levels were higher in OSA

patients than in controls (p<0.001), but miR146a-5p was found to be lower in the mild OSA

group compared to the moderate and severe OSA groups (Fig 2C). All the results remained

consistent even after adjusting for age, sex, and BMI.

Association of miRs with other variables

Correlation analysis was performed in each group separately and the results are shown in

Table 2. In the patients with OSA, miR125a indicated a positive association with miR146a-5p,

AHI, RDI, FBS, hsCRP, ICAM-1, and VCAM-1, and an inverse correlation with minimal

SpO2. Furthermore, miR126 indicated an inverse correlation with AHI, insulin, HOMA-IR,

TC, ICAM-1, and VCAM-1. miR146a-5p represented a positive correlation with AHI, RDI,

neck circumference, FBS, insulin, HOMA-IR, ICAM-1, and VCAM-1, and an inverse correla-

tion with minimal SpO2 and HDL-C. Multiple stepwise linear regressions were performed to

Fig 1. Serum levels of hsCRP, ICAM-1, and VCAM-1. a) Serum levels of hsCRP were elevated in OSA patients

compared to controls, and the severe-OSA group represents a higher concentration of hsCRP compared with mild-

OSA and moderate-OSA groups. b) Serum concentration of ICAM-1 was higher in the OSA group compared to

controls, and the severe-OSA group indicated higher ICAM-1 compared to the mild-OSA group. c) Patients with OSA

were found to have a higher concentration of VCAM-1 compared to controls. ns, not significant; * p<0.05, ** p<0.01,

*** p<0.001 and **** p<0.0001.

https://doi.org/10.1371/journal.pone.0287594.g001

PLOS ONE miR125a, miR126, and miR146a-5p in patients with obstructive sleep apnea

PLOS ONE | https://doi.org/10.1371/journal.pone.0287594 November 2, 2023 6 / 14

https://doi.org/10.1371/journal.pone.0287594.g001
https://doi.org/10.1371/journal.pone.0287594


find independent associations of miRs with correlated variables. miR125a was found to inde-

pendently associated ICAM-1 [B (95% CI) = 0.002 (0.001, 0.004), p = 0.003] with hsCRP [B

(95% CI) = 0.099 (0.047, 0.151), p<0.001] and miR126 showed an independent association

with VCAM-1 [B (95% CI) = -0.651 (-1.050, 0.252), p = 0.002] and TC [B (95% CI) = -0.001

(-0.002, 0.000), p = 0.027]. Furthermore, miR146a-5p demonstrated an independent associa-

tion with the AHI [B (95% CI) = 0.141 (0.067, 0.216), p<0.001] and ICAM-1 [B (95% CI) =

0.001 (0.000, .001), p = 0.007]. The relation of miRs with sex was tested and there was no con-

siderable difference between men and women in terms of miR125a and miR126, however,

miR146a-5p indicated a higher level in men compared to women.

Association of miRs with OSA

The association of circulating miRs with the risk of OSA was tested using binary logistic

regression. The results showed that levels of miR are associated with the risk of OSA and the

relation remained significant after adjusting for age, sex, and BMI (Table 3).

The diagnostic ability of the miRs was assessed using ROC analysis and the results showed

that miR125a had a relatively good ability to distinguish between OSA and control [area under

the curve (AUC) and 95% CI: 0.787 (0.702, 0.873), p<0.001] (Fig 3A). Similarly, miR126 repre-

sented a relatively good potential diagnosis of OSA [AUC and 95% CI: 0.745 (0.66, 0.83),

p<0.001] (Fig 3B). Moreover, miR146a-5p had a high potential for OSA diagnosis with an

AUC and 95% CI: 0.933 (0.890, 0.976), p<0.001 (Fig 3C).

Discussion

The present study established a substantial difference in circulating levels of three miRs which

are involved in vascular inflammation and endothelial cell dysfunction [35–37]. miR125a indi-

cated a higher concentration in OSA patients and showed a positive association with disease

severity. This is the first study of miR125a in patients with OSA while there are studies that

have reported perturbation in circulating levels of miR125a in diseases conditions such as can-

cer and cardiovascular diseases [15, 38]. It has been established that the lack of this miR can

Fig 2. Circulating levels of miRs. a) miR125a levels increased in patients with OSA compared to controls, and in the severe-OSA

group compared to the mild-OSA group. b) miR126 concentration was lower in OSA compared to controls and in the severe-OSA

group compared to the mild-OSA group. c) circulating mi146a were found to be higher in OSA patients in comparison to controls,

and mild-OSA had a lower concentration of miR146a-5p compared with moderate-OSA and severe-OSA groups. ns, not

significant; * p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001.

https://doi.org/10.1371/journal.pone.0287594.g002
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lead to defects in the development of the cardiovascular system. In contrast with the present

study, a decline in levels of miR125a was detected in systemic lupus erythematosus and juve-

nile-onset lupus patients [39]. Additionally, Hijmans et al, indicated a lower concentration of

this miR125a in a subject suffering from insufficient sleep. It is worth to noting that there is no

consensus on the circulating level of miR125a in different diseases, so it seems likely that

miR125a has a complex regulation mechanism and disease setting can have a huge impact on

circulating levels of miR125a. Interestingly, there was a significant positive correlation between

miR125a and two important OSA-related parameters (i.e. AHI and RDI), with an inverse cor-

relation with minimal SpO2. Repetitive hypoxia/reoxygenation is an important aspect of OSA

Table 2. Pearson correlation of miR125a, miR126, and miR146a-5p with other variables.

Variables Groups

Control OSA

miR125a miR126# miR146a-5p# miR125a miR126# miR146a-5p#

miR125a 1 -0.135 -0.183 1 -0.106 0.325**
miR126# 0.089 1 -0.059 -0.111 1 0.007

miR146a-5p# -0.107 -0.059 1 0.333** 0.007 1

Age -0.006 -0.122 0.297 0.091 0.055 0.152

BMI 0.078 -0.311 0.123 0.099 -0.133 0.154

AHI# -0.263 -0.069 0.219 0.356** -0.259* 0.428**
RDI 0.061 -0.242 0.164 0.352** -0.176 0.435**
AverageSpO2 -0.044 0.004 -0.249 -0.026 0.100 -0.019

MinimalSpO2 -0.305 0.152 -0.091 -0.228* 0.000 -0.234*
TST# 0.257 -0.107 0.093 0.019 0.029 -0.063

SE# 0.260 -0.098 0.056 0.011 0.023 -0.060

PLMS$ 0.116 -0.073 0.297 -0.147 -0.028 -0.041

Neck circumference -0.057 -0.249 0.207 0.024 -0.110 0.216*
Waist circumference 0.110 -0.250 0.264 -0.028 -0.159 0.164

SBP# 0.167 -0.266 0.219 0.151 -0.045 0.038

DBP# 0.181 -0.336 0.142 -0.038 -0.129 -0.152

FBS 0.210 -0.118 0.185 0.220* -0.076 0.219*
Insulin# 0.206 0.202 0.125 0.134 -0.267* 0.242*
HOMAIR# 0.238 0.168 0.158 0.162 -0.267* 0.265*
TC -0.207 0.037 0.242 0.089 -0.291** 0.145

TG# -0.063 0.172 0.194 0.035 -0.150 0.119

LDL 0.007 0.271 0.261 0.118 -0.120 0.198

HDL# -0.226 0.080 -0.213 -0.164 -0.105 -0.213*
HsCRP 0.313 -0.132 0.288 0.384** -0.073 0.189

ICAM-1 0.044 -0.064 -0.173 0.322** -0.317** 0.357**
VCAM-1# 0.001 -0.100 -0.196 0.244* -0.368** 0.266*

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; AHI, apnea-hypopnea index; RDI, respiratory disturbance index; averageSpO2,

average saturation of peripheral oxygen; MinimalSpO2, minimal saturation of peripheral oxygen; TST, total sleep time; SE, Sleep efficiency; PLMS, Periodic limb

movements in sleep; HOMA-IR, homeostatic model assessment for insulin resistance; FBS, fasting blood sugar; TC, total cholesterol; LDL-C, low-density lipoprotein

cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol

* p<0.05

** p<0.01

# Logarithmically transformed

$ Spearman correlation test

https://doi.org/10.1371/journal.pone.0287594.t002
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pathogenesis, creating a condition similar to ischemia/reperfusion (I/R). There is evidence

suggesting a role for miR125a in I/R [40]. Furthermore, miR125a has been shown to protect

rat myocardium against I/R injuries through urocortin [40] and increased levels of miR125a

may represent a response to combat such injuries [17]. On the other hand, miR125a modulates

inflammation through the inhibition of tet methylcytosine dioxygenase 2 (TET2). This func-

tion of miR125a results in mitochondrial dysfunction, elevation of oxidative stress, activation

of nuclear factor-κB, and increased generation of pro-inflammatory cytokines [41]. The results

of the present study showed a positive relation between miR125a and hsCRP as a marker of

inflammation. On the other hand, overexpression of miR125a resulted in a decline in ICAM-1

and VCAM-1 expression in human brain microvessel endothelial cells [42], and our result

showed that miR125a positively correlated with markers of endothelial dysfunction (i.e.

ICAM-1 and VCAM-1). This controversy may be due to the fact that increased levels of

miR125a in vivo may not be as high as the levels achieved through in vitro overexpression,

which could impact the observed effects of miR125a. There is inconsistency in how miR125a is

related to inflammation, I/R, and markers on vascular function [43, 44]. While there is evi-

dence for the protective role of miR125a against I/R injuries, and its ability to improve vascular

function by reducing ICAM-1 and VCAM-1, it also has a negative impact on inflammation

and oxidative stress [17, 43, 44]. Moreover, miR-125a inhibits Hyaluronan Synthase 1 [45],

and clinical reports have shown that levels of hyaluronic acid reduced in patients with OSA,

Table 3. Odds ratio (OR) of the OSA presence according to circulating levels of miRs.

Model B S.E. Wald OR 95% C.I.for OR p

Lower Upper

miR125a Crude 2.874 0.713 16.245 17.705 4.377 71.616 <0.001

Adjusted* 2.872 0.721 15.875 2.872 4.302 72.537 <0.001

miR126# Crude -2.227 0.606 13.486 0.108 0.033 0.354 <0.001

Adjusted* -2.275 0.624 13.293 0.103 0.030 0.349 <0.001

miR146a-5p# Crude 7.324 1.556 22.166 1516 71.9 31990 <0.001

Adjusted* 8.769 1.949 20.249 6430 141.092 293042 <0.001

# Logarithmically transformed

*An adjustment was performed for age, sex, and BMI.

https://doi.org/10.1371/journal.pone.0287594.t003

Fig 3. ROC curve for the diagnostic ability of a) miR125a, b) miR126, and c) miR146a-5p.

https://doi.org/10.1371/journal.pone.0287594.g003
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which is associated with inflammation and endothelial dysfunction in these patients [46].

Regarding these findings, our results suggest a compensatory increase in miR125a in response

to I/R and endothelial dysfunction, but there is no evidence of the effectiveness of elevated

miR125a to reduce levels of ICAM-1 and VCAM-1, and instead of miR-125a being a modula-

tor of inflammation, it might be that inflammation upregulates miR-125a. These results sug-

gest that the role of miR-125a in OSA patients and pathological conditions such as endothelial

dysfunction is complex and requires further investigation.

miR126 represented a lower concentration in OSA patients compared to controls. This

study presents the first report of miR126 in OSA patients. Our results showed a correlation

between miR126 with AHI, which is the main indicator of OSA and its severity. Hypoxia was

found to be a factor that downregulates miR126 in RF/6A cell line [47]. Previous studies have

reported a lower concentration of miR126 in patients with type 2 diabetes mellitus and predia-

betes [48]. Consistent with these findings, our results showed an inverse correlation between

reduced miR126 and HOMA-IR and insulin levels in OSA patients. Moreover, miR126 is

inversely correlated with markers of endothelial function in OSA patients (e. i. ICAM-1 and

VCAM-1). Several lines of evidence have shown the beneficial impact of miR126 on endothe-

lial function [49] which may explain the association between miR126 and ICAM-1 and

VCAM-1 in the present study. A study found that miR126 downregulation leads to an increase

in VCAM-1 expression in endothelial cells [49]. Another study reported that miR126 was

lower in patients with intracerebral hemorrhage and that using miR126 mimics to downregu-

late VCAM-1 in the rat model of intracerebral hemorrhage [50]. In addition, miR126 increases

endothelial cell viability and promotes activation of endothelial nitric oxide synthase (eNOS)

by suppressing phosphoinositide 3-kinase (PI3K)/AKT/eNOS [51]. Collectively, miR126

reduction in patients with OSA and its relation with vascular adhesion molecules provide in
vivo evidence for the association of this miR with the pathological aspects of OSA.

miR146a-5p was found to be present at higher levels in patients with OSA which demon-

strated good diagnostic ability. Studies have reported that miR146a can mediate several endo-

thelial pathophysiological mechanisms. miR146a was found to be upregulated under

intermittent hypoxia and mediates its effects in H9c2 cells [30]. Similarly, miR146a is upregu-

lated during I/R in rat myocardium [29]. In the current study, miR146a-5p represented a posi-

tive correlation with insulin resistance and levels of insulin and FBS. Transfection of

adipocytes with a miR146a inhibitor resulted in reduced insulin sensitivity [52] and another

study has shown that patients with diabetes mellitus have lower levels of miR146a in their

peripheral blood mononuclear cells compared to controls [53]. The relation of miR146a with

insulin and glucose metabolism indicators in the present study, suggests that it might be a

response to insulin resistance that is not effective in reducing insulin sensitivity. Furthermore,

we found a positive correlation between miR146a-5p with ICAM-1 and VCAM-1, and previ-

ous study has shown a relation of this miR with inflammation [54]. Treatment of endothelial

cells with LPS and pro-inflammatory cytokines upregulate miR146a and ICAM-1 and VCAM-

1 and the present study showed a positive relation between miR146a and these factors [31, 55].

While studies have shown that miR146a can downregulate ICAM-1 and VCAM-1 [31, 55] and

it suppresses inflammation by targeting TNF receptor-associated factor 6 (TRAF6) [56], our

results showed a positive correlation between miR146a and adhesion molecules. This finding

suggests that miR146a-5p levels in vivo might not be as high as levels of upregulated miR146a-

5p in vitro to suppress ICAM-1 and VCAM-1 and other mechanisms might be more effective

in regulating ICAM-1 and VCAM-1 expression, and elevation of miR146a-5p might result

from the inflammatory milieu in OSA patients or from a compensatory response. The exact

mechanism underlying this finding is unclear and further studies are needed to investigate it.
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In conclusion, the present study is the first report on the change of circulating miR125a,

miR126, and miR146a-5p in patients with OSA, and provides in vivo evidence for the relation-

ship of these miRs with pathological consequences of OSA like endothelial dysfunction, and

could be potential therapeutic targets for vascular dysfunction and inflammation in OSA

patients, although more studies are required in this regard.

The present study was conducted on subjects with PSG-confirmed OSA and without diabe-

tes and matched according to age, sex, and BMI. While there are some limitations, the sample

size and cross-sectional design limited us to conclude a causal relation, and direct measure-

ment of vascular functions was not taken.
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