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Abstract

Mine tailings contain multiple toxic metal(loid)s that pose a threat to human health via inhalation 

and ingestion. The goals of this research include understanding the speciation and molecular 

environment of these toxic metal(loid)s (arsenic and lead) as well as the impacts particle size 

and residence time have on their bioaccessibilty in simulated gastric and lung fluid. Additionally, 

future work will include smaller size fractions (PM10 and PM2.5) of surface mine tailings, with 

the goal of increasing our understanding of multi-metal release from contaminated geo-dusts in 

simulated bio-fluids. This research is important to environmental human health risk assessment as 

it increases the accuracy of exposure estimations to toxic metal(loid)s.
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Introduction

Arizona has approximately 60,000–100,000 abandoned or inactive mining sites. Mine tailing 

disposal sites in arid areas like Arizona are susceptible to wind erosion and become 

sources of airborne particulate matter or geo-dusts. These particles comprise contaminants 

like arsenic and lead, that are listed in the Agency for Toxic Substances and Disease 

Registry’s Priority List of Hazardous Substances and are detrimental to human health (1–4). 

Additionally, climate models predict that Southwestern US will become increasingly warmer 

and drier, thus potentially increasing the harmful effects of these airborne metal(loid) 

contaminants (5, 6).
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In the current study, we employed an in vitro bioaccessibility method for the simulated 

gastric fluid (SGF) based on a standard operating procedure developed by Solubility/

Bioavailability Research Consortium (SBRC) for arsenic and lead. The simulated lung 

fluid (SLF) method used a modified Gambles’ solution developed by Takayka (7–13). 

Bioaccessibility is determined based on metal release normalized to total metals determined 

from Aqua Regia extraction. Bioaccessibility studies provide valuable information regarding 

chemical reactions that occur between particles and bioassay fluids and can measure the 

solubility of metal(loid)s in SGF and SLF (14).

X-ray absorption fine structure spectroscopy (XAFS) is one of few methods that can 

provide structural and compositional information on most types of cations and anions sorbed 

at solid-solution interfaces. XAFS can provide information on the speciation of selected 

cations and anions in complex mixtures of phases, including sorbed species like metal(loid)-

contaminated soils (15). Sample solutions were isolated by allowing the suspensions to 

settle, and then filtering them at 0.45 μm. The residual solid was lyophilized and analyzed 

at the Stanford Synchrotron Radiation Light Source (SSRL) to determine changes in the 

oxidation states of As and Fe and determine their local bonding environment. Additionally, 

scanning electron microscopy (SEM) imaging was conducted to elucidate changes in 

particle size and shape in unreacted and post-extraction solid samples.

Materials and methods

This research utilized a homogenized surface mine tailings sample from Iron King Mine to 

achieve the following: i) identify the particle size impact on arsenic and lead bioaccessibility, 

ii) determine the relative bioaccessibility of arsenic in SLF and SGF, and iii) determine 

the molecular speciation via post-extraction analysis of the remaining sample solid using 

synchrotron-based XAFS and X-ray absorption near edge structure (XANES) as well 

as X-ray fluorescence (XRF). Bioaccessibility was determined based on the total metals 

determined from a lithium metaborate/tetraborate fusion with inductively coupled plasma 

mass spectrometry detection (ActLab, Ontario, Canada). Several NIST quality control 

samples were analyzed to confirm precision.

Mine tailing surface samples were collected and sieved to obtain size fractions relevant 

to ingestion (150 μm) and then eventually includes inhalation relevant mine tailing size 

fractions (≤10 μm, PM10 and PM2.5). The 150 μm mine tailings were separated via metal 

sieving and then treated with SGF and SLF to determine the bioaccessibility of arsenic 

and lead. The bulk mine tailings surface sample (top 25 cm) were sieved to 150 μm and 

homogenized for the University of Arizona Superfund Research Program (SRP).

Samples were prepared in triplicate, covered to minimize light exposure, agitated at 60 rpm, 

and incubated at 37°C to simulate particle residence in the human gastric or lung system. 

Kinetic studies of the SRP group sample included ten resident times ranging from short (30 

s time steps) to long (7 day) exposure time steps. These residence times were selected to 

a) develop the times relevant to particle resident times in the gastric (1 h) and lung (7 day) 

systems and b) gain an understanding of the release rates of metal(loid)s in these systems.
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We hypothesized that (i) the smaller the particle size (i.e., the greater the surface area) the 

more accelerated the kinetics of arsenic and lead release would be, that (ii) bioaccessibility 

is a predictable function of the local contaminant-bonding environment as revealed from 

spectroscopy, and that (iii) an increase in pH and the composition of the SLF (i.e., the 

presence of phosphorus in SLF) can reduce the amount of arsenic present in the solution.

Results

Total bioaccessible metals are greater in the SGF than in SLF; moreover, release is 

maximized at 100 h in the SGF and at 15 min in the SLF (Figure 1). SEM images show an 

unreacted bulk mine tailing sample as well as a sample reacted in SGF at 1 h and in SLF 

at 48 h. The SGF reacted image illustrates aggressive dissolution of particles at 10 μm. The 

SLF image, also at 10 μm, illustrates small crystal particles that have likely reprecipitated 

from solution into the analyzed solid (Figure 2). The XRF microprobe analysis shows 

the physiochemical change from the unreacted tailings to the SGF reacted tailings, where 

As(V) is initially mostly associated with ferrihydrite, a hydrous ferric oxyhydroxide (as an 

adsorbed species determined by XAS, data not shown), and after reaction in SGF As(V) 

is associated with jarosite, a hydrous iron sulfate acting either as a surface complex or a 

stoichiometric component (Figure 3).

Discussion

The larger release of arsenic and lead ions into the SGF solution is consistent with the 

much more acidic pH (1.5) of the SGF, relative to SLF, condition. The SLF (pH 7.4) allows 

for a lower fraction of metal(loids) to be released. The release of metal(loid)s in the SGF 

peaks at 100 h, which is much later than the 1 h extraction time recommended in the EPA 

Standard Operation Procedure for an In Vitro Bioaccessibility Assay for Lead in Soil. The 

residence or extraction times for an SLF bioaccessibility assay have yet to be recommended 

by the EPA because particle sizes greatly influence residence time in the lung (16, 17). The 

current study found that the metal(loids) maximized well before a 1 h extraction time at 

15 min (SLF) and well after at 100 h (SGF). Therefore, if a standard EPA bioaccessibility 

methodology is utilized for either an SGF or SLF bioassay, a 1-h residence time would 

grossly underestimate the amount of bioaccessible arsenic or lead one would be exposed to 

(16).

Conclusions

ICP-MS data indicate that resident extraction times, pH, and bioassay mineral composition 

are all important indicators of bioaccessibility. In addition, iron, arsenic, and lead 

concentrations in the SGF bioassay display greater concentrations than those in the SLF 

bioassay, which is likely due to the decreased pH (3, 5, 18). It is generally agreed that iron 

oxides are the dominant soil constituents responsible for arsenic sorption (31). However, 

arsenic sorption has also been shown to be correlated to aluminum oxides and soil or clay 

content. In this regard, further study is needed to understand the lack of As-Fe correlation 

in the kinetic release data (3, 19, 20). The SLF bioassay that contains salts and phosphates 

illustrates an interesting kinetic release curve with an initial metal(loid) release (15 min), a 
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re-precipitation or sorption phase, and another smaller release (post 48 h) (Figure 1). This 

may be due to the formation of new phases that precipitate iron or aluminum hydroxyl 

sulfates, or the arsenic desorption that may have been driven by phosphates present in 

the solution (3, 21). XAFS data indicated that no change in oxidation state of As(V), the 

predominant form in soil, occurred. This is important because As(V) is the less toxic form 

of environment from soil to human health.. arsenic, given that As(III) is more soluble 

and, therefore, bioavailable (3, 18–20, 22–26, 30). The XRF data also indicated that iron 

is undergoing a change from ferrihydrite to jarosite in the gastric bioassay. Additionally, 

arsenate has been known to substitute for sulfate in jarosite and could be the reason there is a 

similar loss of arsenic and iron in the SGF after 100 h (29).

Tailings in arid and semi-arid climates may present a greater human health risk associated 

with direct particulate exposure from fugitive dusts. It has been observed that the 

bioavailability of metals in tailings is controlled by metal speciation, not total mass 

concentration. The bioaccessibility of these dusts varies with temporary and simulated 

target organ exposure. Finally, secondary mineral precipitation, observed with SEM (and 

XRD, not shown), may play an important role in the availability of surface sites for re-

adsorption of released contaminants. Additionally, given that particle size is a driving factor 

in bioaccessibility inhalation, relevant mine tailing particulate matter (PM10 and PM2.5) are 

currently being conducted and will be published at a later date (17, 27, 28).
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Figure 1. 
Bulk tailings homogenized SRP sample: metal concentration in SGF.Bulk tailings 

homogenized SRP sample: metal concentration in SLF.
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Figure 2. 
SEM imaging of unreacted mine tailings sample, SLF for 48 h (top right), SGF for 1 h 

(bottom left), and corresponding EDS data.
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Figure 3. 
Fe XRF images of unreacted mine tailings (left), SGF 24-h extracted samples (a phase shift 

from from ferrihydrite to jarosite occurred after 24 h).
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