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Abstract

Gut microbes provide essential services to their host and shifts in their composition can impact host fitness. However, despite ad-
vances in our understanding of how microbes are assembled in the gut, we understand little about the stability of these communities
within individuals, nor what factors influence its composition over the life of an animal. For this reason, we conducted a longitudinal
survey of the gut microbial communities of individual free-ranging woodrats (Neotoma spp.) across a hybrid zone in the Mojave Desert,
USA, using amplicon sequencing approaches to characterize gut microbial profiles and diet. We found that gut microbial communities
were individualized and experienced compositional restructuring as a result of seasonal transitions and changes in diet. Turnover of
gut microbiota was highest amongst bacterial subspecies and was much lower at the rank of Family, suggesting there may be selection
for conservation of core microbial functions in the woodrat gut. Lastly, we identified an abundant core gut bacterial community that
may aid woodrats in metabolizing a diet of plants and their specialized metabolites. These results demonstrate that the gut micro-
bial communities of woodrats are highly dynamic and experience seasonal restructuring which may facilitate adaptive plasticity in

response to changes in diet.
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Introduction

Mammals harbor a complex community of microorganisms along
the gastrointestinal tract that provide essential services such as
aiding in the breakdown of complex polysaccharides (Flint et al.
2008), synthesizing essential vitamins (LeBlanc et al. 2013), in-
hibiting colonization by pathogens (Abt and Pamer 2014), mod-
ulating host immune responses (Round and Mazmanian 2009),
and facilitating tolerance to dietary toxins (Kohl et al. 2014b). The
study of gut microbial communities has received exceptional at-
tention over the last decade, largely due to the advances in DNA
sequencing technologies that have enabled inventorying the com-
munity of microorganisms in the gut. Much of this research ef-
fort has employed captive experiments with model animal sys-
tems such as laboratory-reared mice (Nguyen et al. 2015, Clavel
et al. 2016), or has focused on humans (Thursby and Juge 2017).
Such studies provide valuable insights into the factors that influ-
ence the composition, structure, and function of the gut micro-
biome. However, captive experiments are limited to testing only
a handful of factors at any one time and are unable to repli-
cate the complexity of interacting factors that shape gut mi-
crobial communities of animals in nature. In addition, the gut
microbiome of captive animals is often less diverse (Kohl et al.
2014, Schmidt et al. 2019) and has altered composition com-
pared to wild counterparts (McKenzie et al. 2017, Gibson et al.
2019), which limits the generalizability of the results of captive
studies to natural populations. For these reasons, there has been
a recent call for greater attention to studying the microbiomes
of animals under natural conditions (Hird 2017, Cusick et al.
2021).

Over the last decade there has been numerous studies on the
gut microbial communities of free-ranging animals that have
identified strong predictors of the assemblage of gut microbiota
such as diet (Hicks et al. 2018, Murillo et al. 2022), geography
(Gomez et al. 2015), and host genetics (Kohl et al. 2018, Weinstein
et al. 2021, Nielsen et al. 2022). Additionally, seasonal dynamics
may be common in gut microbial communities (Ren et al. 2017,
Hicks et al. 2018, Orkin et al. 2018) and these seasonal changes
can be highly individualized (Marsh et al. 2022). Despite the grow-
ing body of literature on the gut microbiome of free-ranging an-
imals, relatively few have characterized microbial communities
within individuals over their natural lifespan, likely due to the dif-
ficulties of resampling free-ranging animals. For this reason, we
understand little about the temporal dynamics of gut microbial
communities within individuals, or how variation in community
composition may influence aspects such as host fitness. There-
fore, longitudinal surveys of individuals and their gut microbiota
are warranted to advance our understanding of the temporal dy-
namics of such communities at both population and individual
scales, and to determine whether shifts in community composi-
tion are largely stochastic or are repeatable across timescales.

Here, we report the results of a longitudinal survey of two
species of woodrats, the Bryant's woodrat (Neotoma bryanti), the
desert woodrat (N. lepida) and their hybrids from a sympatric pop-
ulation in a desert shrubland in southern, CA, USA. Woodrats are
ideal for studying the factors that shape gut microbial communi-
ties as they are abundant across most habitats in North America
(Goldman 1910), can be resampled with relative ease for longitu-
dinal surveys (Shurtliff et al. 2014) and are amenable to captiv-
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ity (Egoscue 1957). In particular, studies on woodrats have iden-
tified important factors that influence gut microbial community
structure including host genetics (Weinstein et al. 2021, Nielsen
et al. 2022), diet (Kohl and Dearing 2012, Martinez-Mota et al.
2020, Stapleton et al. 2022), and intestinal parasites (Doolin et al.
2022). Here, we present a survey of individual woodrats in nature
to characterize the composition, structure and temporal dynam-
ics of these rodents’ gut microbial communities. From feces, we
generated both 16S rRNA gene sequences to profile gut micro-
bial communities and chloroplast trnL (UAA) intron sequences to
quantify diet for each individual across multiple captures. Addi-
tionally, in our analyses we included available genome-wide an-
cestry estimates for each individual that were generated as part
of a previous survey of this woodrat population (Klure et al. 2023).
We leveraged this combination of sequencing approaches to char-
acterize the influence of factors such as identity, ancestry, diet,
and season in structuring gut microbial community composition.
Using this woodrat system, we aimed to: (i) characterize the sta-
bility of gut microbial communities within individuals in nature,
(ii) identify factors that drive shifts in microbial community com-
position, and (iii) determine whether a stable core community of
microbiota exists in the gut.

Materials and methods

Sample collection and ancestry determination

Woodrats were repeatedly live-trapped across eight sampling
events from January 2019 to November 2020 at a site known as
“Whitewater” located in the San Gorgonio Pass, Riverside County,
CA, USA within creosote bush (Larrea tridentata) shrublands (lati-
tude/longitude: 33° 55’ N; 116° 38'). This site was selected for this
study due to the relative ease of resampling individuals overtime,
its high degree of seasonality, and due to the ongoing interspe-
cific hybridization, which allows for the testing of genotypic ef-
fects on gut microbial assemblage. Woodrats are a primary prey
species and as such have low annual survival rates as compared
to larger mammal species and thus, to produce a multiyear co-
hort of 35 individuals analyzed in this study, it was necessary to
sample more than 200 individuals captured more than 400 times
(Klure et al. 2023). Sherman traps were baited with oats, set at
dusk, and checked at dawn. Woodrats were weighed, sexed and
both fresh fecal pellets and a tissue sample from the ear were col-
lected from each individual. Fecal and tissue samples were stored
in a liquid nitrogen dewar while in the field and stored at -80°C
in the lab prior to processing. Each woodrat received an ear tag
with a unique identifier and was released at their site of capture
so that individuals could be resampled over time. Trap collected
feces were selected for this work as they represent a noninva-
sive metric for characterizing the gut microbiota of individuals
overtime, contain little environmental contamination of microbes
(Kohl et al. 2015), and provide census of the microbiota most sim-
ilar to the community present in the lower gastrointestinal tract,
but also to that of the foregut (Kohl et al. 2014a). Due to the ongo-
inginterspecific hybridization present at Whitewater, the ancestry
of each individual was previously determined as part of Klure et
al. (2023) using a genome-wide single nucleotide polymorphism
dataset generated from a reduced representation sequencing ap-
proach (Parchman et al. 2012).

Amplicon library preparation and sequencing

We extracted DNA from feces in batches as samples became avail-
able once three sampling trips were completed using the Qiagen

PowerFecal DNA Isolation Kit (#12830) following the manufactur-
ers protocol. We prioritized individuals for sequencing if they had
a high recapture rate (i.e. captured at least three times); how-
ever, as parental and backcross N. lepida have low survival rates at
Whitewater (Klure et al. 2023), we also included individuals with
low recapture rates (i.e. captured only once or twice) to maintain
a balanced ancestry representation. In total, we extracted DNA
from 129 fecal samples from 35 individuals (~3.7 samples per
individual on average) for the 2019-2020 sampling period repre-
senting the following ancestry classes: parental N. bryanti (n = 10),
backcross N. bryanti (n = 11), F1/F, hybrids (n = 5), backcross N. lep-
ida (n = 6), and parental N. lepida (n = 3). We included negative con-
trols for each extraction batch (n = 12) and extracted three preps
of a Zymo Microbial Mock Community Standard (ZymoBIOMICS
Microbial Community Standard D6300) to assess for any poten-
tial environmental or reagent contamination. Library preparation
and sequencing of DNA extracts were conducted by the Univer-
sity of Chicago at Urbana-Champaign DNA Sequencing Facility.
Individual libraries were prepared using a two-stage PCR proto-
col as described in Nagib et al. (2018). For each DNA sample, we
generated both 16S rRNA gene (V4 subunit) amplicon libraries to
estimate microbial composition using the unmodified 515F/806R
primer pair (Caporaso et al. 2011, Parada et al. 2016) and chloro-
plast trmL (UAA) intron amplicon libraries to estimate diet using
the unmodified g/h primer pair (Taberlet et al. 2007). Libraries
were combined into three separate library pools that each con-
tained ~50 samples of each library type. These library pools were
then sequenced individually across a single lane of an Illumina
Miniseq to generate 2 x 150 bp paired-end reads, requiring a total
of three sequencing lanes. To test for any potential lane effects,
we included controls consisting of the repeated sequencing of a
single 16S rRNA library generated from woodrat feces and a 16S
TRNA library generated from an artificial microbial mock commu-
nity (ZymoBIOMICS Microbial Community Standard D6300).

Read processing and generation of final datasets

Paired-end reads were processed in R. v. 4.2.1 (R Core Team 2022)
following the dada2 v.1.24.0 (Callahan et al. 2016) workflow. Reads
were processed independently based on their respective library
type and sequencing lane. First, we removed primer sequences
using cutadapt v.3.5 (Martin 2011) and then filtered out reads if
they contained ambiguous nucleotides, sites with base-site qual-
ity scores less than 10, more than two expected errors as calcu-
lated from the nominal definition of the quality score as follows,
EE = sum(lOVTg) ), and if they corresponded to the PhiX loading
control. For the 16S rRNA gene reads, we removed 2 bp from the
end of the forward and reverse reads due to quality drops at these
positions and removed any resulting reads less than 100 bp in
length. For the trnL reads, we filtered out any reads less than 14 bp
in length, but did not perform length trimming as trnL amplicons
vary considerably in length. Sequencing errors were inferred on
a per lane basis using 100 000 000 bp from each lane using ran-
domly selected samples as input. Dereplicated reads and their cor-
responding inferred error rates were then used to identify mem-
bers of each sequence community as amplicon sequence variants
(ASV) at 100% sequence identity (Callahan et al. 2017). We then
merged paired-end reads requiring a minimum overlap of 10 bp
with no mismatches allowed in the overlap region. We removed
chimeric sequences from the resulting sequence tables and then
merged each table from each sequencing lane to generate a sin-
gle data frame containing sequences from all samples for each
library type.



Microbial taxonomy was assigned to the 16S rRNA gene
ASVs using the naive Bayesian classifier method (Wang et
al. 2007) in dada2 with default parameters except that we
increased the minimum bootstrap confidence to assign a tax-
onomic rank from 50% to 70%. Taxonomy assignments were
based on the current version at the time of analyses (v.138.1)
of the Silva 16S rRNA gene small-subunit reference database
(https://www.arb-silva.de/download/arb-files/). We were unable
to assign plant taxonomy using dada2 to the tmL ASVs as many
of the resulting read lengths were too short for this method (<
50 bp). Instead, we created a custom trnL reference database as
described in Weinstein et al. (2021), and aligned the sequences
from each sample against this database using BLASTN v.2.9.0+
(https://doi.org/10.1186/1471-2105-10-421). ASVs were assigned
taxonomy based on the reference sequence with the lowest E-
value, highest % identity, and the closest length to the ASV. We did
not assign taxonomy if there was no reference sequence with an
E-value < 1, % identity > 90, and length within 10% of that of the
ASV sequence. If multiple best hits were identified for an ASV se-
quence, taxonomy was assigned at each rank if at least 70% of the
best hits shared that rank. The script used for the taxonomic clas-
sification of the trnL ASVs (classify_sequences.py) and associated
documentation is available at https://github.com/
robertgreenhalgh/stand/.

We created a phylogenetic tree of the resulting 16S rRNA gene
sequences for use in downstream analyses. To do this, we gener-
ated a matrix of multiple sequence alignments from the ASV se-
quences using DECIPHER v.2.24.0 (Wright 2016) with a kmer size
of 8. We exported the multiple sequence alignment data in FASTA
format using ShortRead v.1.54.0 (Morgan et al. 2009) and generated
a maximum-likelihood tree of the 16S rRNA gene sequences us-
ing FastTree2 v.2.1.10 (Price et al. 2010) employing the nucleotide
and generalized time-reversible model parameters. We then com-
bined the ASV table, taxonomy table, sample metadata and phy-
logenetic tree stored in Newick format into a single S4 class data
frame using phyloseq v.1.40.0 (McMurdie and Holmes 2013).

We performed additional filtering of ASVs in phyloseq for each li-
brary type and subsequently rarified the resulting amplicon com-
munities to limit the effects variation in read depth across sam-
ples. For the 16S rRNA gene amplicon dataset, we removed sin-
gletons, ASVs with taxonomic assignments to Mitochondria or
Chloroplast, ASVs with exceptionally low prevalence by removing
ASVs not found in at least two individuals, and ASVs that lacked
taxonomic assignments at the rank of Family or above. Although
the process of rarefying amplicon count data has been a matter
of debate due to the perceived loss of data and power for sta-
tistical inference (McMurdie and Holmes 2014), we opted to rar-
efy our libraries as there is strong evidence that that rarefying
leads to a reduction in the frequency of type-1 errors with com-
mon microbiome analyses (McKnight et al. 2019, Yang and Chen
2022). We generated rarefaction curves with vegan v.2.6-2 (Dixon
2003) and opted to rarefy the 16S rRNA gene libraries to 14687
reads, as this was the lowest read depth achieved by a sample that
was still sufficient to capture the diversity of ASVs present in our
dataset (Figure S1, Supporting Information). For the trnL dataset,
we removed singletons/doubletons and removed ASVs that corre-
sponded to oats (Genus Avena), the bait that was used during trap-
ping. We then removed ASVs that accounted for less than 1% of
the relative read abundance in each sample, as these ASVs likely
represented environmental contamination or low-frequency di-
etary items. The resulting trnL libraries were then rarefied to a
depth of 4190 reads, the lowest read depth of a sample present in
the dataset.
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Community diversity and composition analyses

We used vegan to estimate alpha and beta diversity indices for
the 16S rRNA and chloroplast trmL libraries. For the tmL libraries,
ASVs were binned at the rank of family to avoid overestimat-
ing diet richness (i.e. several plant species were represented by
multiple ASVs). For estimates of alpha diversity, we estimated ob-
served richness (i.e. observed plant families for the trmL libraries
and observed ASVs for the 16S rRNA libraries) and the Shannon-
Wiener index (Shannon 1948) as a measurement of both commu-
nity richness and evenness. We determined significant differences
between mean alpha diversity measurements using nonparamet-
ric rank sum tests for either population comparisons with the
Kruskal-Wallis test (Kruskal and Wallis 1952) or pairwise compar-
isons of individuals with the Wilcoxon test (Wilcoxon 1945).

For beta diversity comparisons of diet, we created a matrix of
pairwise Bray-Curtis distances (Bray and Curtis 1957) and sub-
sequently performed principal coordinate analysis (PCoA) on the
resulting trnL distance matrix. We stored the resulting principal
coordinate axes in a separate data frame for use in subsequent
modeling efforts. For beta diversity analyses of gut microbial com-
munities, we created pairwise distance matrices based on Jaccard
(Jaccard 1912), Bray-Curtis, and UniFrac distances (Lozupone and
Knight 2005). We then performed PCoA based on the ordination
of the above distance matrices. Using the R package vegan, we
tested for homogeneity of group dispersions using a multivari-
ate analogue of the Levene’s test (PERMDISP) using the betadis-
per() function and tested for the significance of our measured fac-
tors on structuring microbial community composition using per-
mutational multivariate analysis of variance (PERMANOVA) us-
ing the adonis2() function. We included the following variables in
the model for each distance metric: ancestry, identity, diet (con-
sisting of the first principal coordinate from the Bray—Curtis diet
ordination), season, sex, and reproductive status. We did not in-
clude age as a variable in these models as all individuals were
adults at the time of their first capture based on body weight (>
100 g). We characterized the precipitative seasonality of White-
water using climate data from an atmospheric monitoring sta-
tion located at the Palm Springs International Airport (~15 km
from the site). A total of 140 mm of precipitation occurred be-
tween December 2018 and April 2019 and 127 mm between De-
cember 2019 and April 2020, accounting for ~75% and ~95% of
the total precipitation over the following 12-month period, respec-
tively. Thus, we classified these periods as the “wet” season at
Whitewater.

Variance partitioning of a 16S rRNA Bray-Curtis distance ma-
trix was performed with vegan using redundancy analysis ordi-
nation (RDA) with the following explanatory matrices: identity,
diet (consisting of the first four principal components from the
diet PCoA analysis as described above), sampling trip, within site
capture location (latitude and longitude based on GPS coordi-
nates taken at the site of capture), ancestry (q), and sex. Sig-
nificance of each of the explanatory matrices was assessed us-
ing permutation tests with the anova.cca()function in vegan. The
eulerr v.6.1.1 package (https://github.com/jolars/eulerr) was used
to plot area-proportional Venn-diagrams of the individual vari-
ance and covariance explained by each significant explanatory
matrix.

Quantifying microbiome dissimilarity

The R package Microbiome v.1.18 (https://microbiome.github.io/)
was used to model microbiome dissimilarity over time within in-
dividuals. We used the plasticity() function in an iterative man-
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ner to calculate pairwise dissimilarity values at the ASV-level
based on Jaccard, Bray-Curtis, unweighted UniFrac, and weighted
UniFrac distances for samples from the same individual for
all possible comparisons. We repeated this process with Jac-
card and Bray-Curtis distances with ASVs binned at the rank
of Family. We compared differences in mean dissimilarity val-
ues using a pairwise Wilcoxon rank sum test and adjusted re-
sulting P-values for multiple comparisons using the Bonferroni
Correction method (Bonferroni 1936). We assessed for a rela-
tionship between time (distance in days between samples) on
dissimilarity scores using a generalized linear model (GLM) for
both Bray—Curtis and weighted UniFrac distances. Lastly, we ex-
plored the effects of the % sequence similarity cutoff used to
assign sequences to ASV bins on influencing dissimilarity es-
timates. We used the DECIPHER package to align and cluster
the sequences from the original 100% identity ASV sequence ta-
ble using the following sequence similarity cutoffs for ASV bin-
ning: 90% , 92%, 94%, 96%, and 98%. We then recalculated pair-
wise Bray-Curtis distances between samples from the same in-
dividual as described previously and modeled the effect of se-
quence similarity cutoff on Bray-Curtis distances using linear
regression.

Identification of microbes with differential and
stable abundances over time

We used the R package NBZIMM v.1.0 (Zhang and Yi 2020) to per-
form a negative binomial mixed model with zero inflation to iden-
tify microbial ASVs with differential abundance based on the vari-
ables of time (days since previous sampling) and diet (first princi-
pal component from the diet PCoA of Bray—Curtis distances). This
type of model is particularly appropriate for modeling longitudi-
nal microbiome data as it can account for within-subject correla-
tion structures and is robust to data sparsity (Zhang and Yi 2020).
In our model, we tested for differential abundance of ASVs that
had nonzero proportions greater than 0.20 using rarefied counts.
We included time and diet as fixed effects, individual as a ran-
dom effect and fitted the logistic regression with the logarithmic
transformation of the initial library size of each sample. We con-
trolled for false discovery rate using the Benjamini-Hochberg pro-
cedure and considered ASVs with an adjusted P-value < .001 as
taxa with differential abundance (Benjamini and Hochberg 1995).
The R package microbiome was used to identify the core taxonomic
members of the gut microbiome of wild woodrats. We classified
an ASV as belonging to the “core community” if it occurred in ev-
ery sampling period, was present in > 80% of samples collected at
that time, and had a relative abundance of > 0.0001. We assessed
whether the structure of the core microbial community was in-
fluenced by ancestry, identity, diet, season, sex, and reproductive
status using PERMANOVA in the same manner as previously de-
scribed.

Identifying microbes associated with creosote
bush feeding

We investigated the abundance of creosote bush (the most abun-
dant diet item with little seasonality) in the diet of woodrats and
its relationship to the abundance of bacterial families present in
woodrat feces. We ran a GLM with the base stats package in R for
each bacterial family with an offset term consisting of a loga-
rithmic transformation of initial library sizes and used a Quasi-
Poisson regression to account for overdispersion. We performed a
square root transformation of the relative abundances of bacte-
rial families and creosote bush to improve the fit of the residuals.

Field cafeteria experiment

We conducted a limited free-choice feeding experiment with adult
woodrats (n = 7) in March 2019 at Whitewater to assess whether
the dietary shifts found in the wet season reflect individual forag-
ing preference or are simply an artifact of plant resource availabil-
ity. Woodrats were temporarily housed in solid-bottom shoebox
cages (48 cm x 27 cm x 20 cm) with pine shavings and a plastic
tube for shelter. Each woodrat was provided 10 g each of freshly
clipped leaves from creosote bush (L. tridentata), Sahara mustard
(Brassica tournefortii) and desert dandelion (Malacothrix glubrata).
The leaf bundles were presented at three separate corners of the
cage and secured with wire. The two forb species were selected as
they were the most abundant ephemeral plants at Whitewater at
the time of the experiment and were commonly found cached on
middens during trapping. Woodrats were provided water ad libi-
tum and were released at their site of capture after 24 h. After the
release of the woodrats, the remaining plant material in each cage
was collected, separated by species, and weighed. We calculated
foliar intake as follows: foliage consumed (g)/body mass (kg)/day.
We compared differences in mean intake using ANOVA with post
hoc analysis following the Tukey’s procedure.

Results

Quality control and validation of 16S rRNA
libraries

In the initial unfiltered dataset containing both fecal and con-
trol samples there were a total of 9102 ASVs, and the 129 fecal
samples achieved an average read depth of 41395 + 12814 (stan-
dard deviation) reads. A total of 5899 ASVs were filtered from this
dataset due to the following exclusionary criteria: taxonomic clas-
sification to Chloroplast or Mitochondria (2409 ASVs), present as
a singleton (577 ASVs), did not meet sample prevalence thresh-
old (2765 ASVs), and lacked taxonomic assignment to at least the
rank of Family (124 ASVs). In the final filtered dataset, we re-
tained a total of 3227 ASVs and the fecal samples had an aver-
age read depth of 33524 + 14003 prior to rarefying. After rarefy-
ing, 127 fecal samples were retained after discarding two sam-
ples with read depths less than the rarefied count of 14687. Of
the 3227 ASVs retained in this final dataset, only 36.6% were as-
signed a taxonomic classification at the rank of Genus or be-
low and therefore we used the rank of Family or above for com-
positional analyses. The 16S rRNA libraries demonstrated con-
sistent results across different sequencing lanes based on the
woodrat and mock community control samples (Figure S2A and B,
Supporting Information). The negative controls consisting of ex-
traction blanks (n = 12) had an average of 596 + 890 (~1.4% of the
mean initial reads produced by the fecal samples) and 179 ASVs.
Of the 179 ASVs present in the extraction blanks, 68 also occurred
in the fecal samples. The read abundances of microbial taxa from
blank samples are shown in Figure S3 (Supporting Information)
at the rank of Family. The mock community control samples that
were extracted alongside the fecal samples and were present in
each library pool contained all eight of the expected genera with-
out any evidence of significant contamination (Figure S2A and B,
Supporting Information). We repeated a subset of the analyses
described in this study using a dataset where we removed the
shared ASVs between the negative control and fecal samples and
found that this did not influence the overall results of the study
(Figure S4, Supporting Information). Based on these results, we de-
termined the 16S rRNA libraries from feces to be of high quality
with minimal concerns for significant lane effects, environmental,
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cross-sample, or reagent contamination and thus, used the origi-
nal dataset containing all 3277 ASVs for all downstream analyses.

Factors influencing the structure of the gut
microbiome of woodrats in nature

Based on the results of the redundancy analysis, we found four
factors: identity, sampling period, diet, and capture location ex-
plain a significant portion of the variance in gut microbiome as-
semblage (Fig. 1A; Table S1, Supporting Information). In total,
these four factors together explained 30.9% of the overall vari-
ance in gut microbial community composition across all samples
(Fig. 1A). We also performed redundancy analysis independently
for samples from the wet and dry season that revealed identity
explained more variance in gut microbiome composition in the
dry season (14.03%) and was nonexplanatory in the wet season
(Table S1, Supporting Information). Additionally, in the wet season
RDA, capture location (1.09%) explained marginally more variance
in gut microbiome composition than either the combined or dry
season RDAs (Table S1, Supporting Information). We found that
season impacted the relative abundances of both dietary items
(Fig. 1B) and bacterial families in the gut of woodrats (Fig. 1C). Diet
diversity (Shannon's index) was significantly higher during the
wet season (January-April) of each year (Kruskal-Wallis test: x?
= 5.112, P = .024; Fig. 1D), and gut microbial diversity (Shannon’s
index) was significantly lower during the same period (Kruskal-
Wallis test: x? = 26.564, P < .001; Fig. 1E). Community richness was
also impacted by season in similar manner to diversity, where diet
richness was higher in the wet season (Kruskal-Wallis test: x? =
14.242, P < .001; Figure S5, Supporting Information) and microbial
richness was lower in the same period (Kruskal-Wallis test: x? =
23.077,P < .001; Figure S5, Supporting Information). Gut microbial
community structure was also impacted by season (PERMANOVA:
Sum of squares = 1.065, Pseudo-F = 5.054, R? = 0.030, P = .001)
but to a lesser extent than community richness and evenness
(Fig. 1F). Using PERMANOVA, we also found that ancestry (q) was
a significant factor in explaining variation in microbial composi-
tion across all distance metrics assessed; however, its explana-
tory power was small (R? < 0.02 for all distance metrics; Table S2,
Supporting Information).

Stability of individual gut microbial communities

The stability of individual gut microbial communities varied dra-
matically based on the measure of dissimilarity and the sampling
periods being compared. At the ASV-level, we found that non-
phylogenetically weighted distance metrics demonstrated sub-
stantial ASV turnover within individuals over time (Fig. 2A). In
contrast, distance metrics that incorporate phylogenetic related-
ness (UniFrac), especially when weighted for the abundance of
ASVs, demonstrated substantially less dissimilarity between sam-
pling periods spanning 2-4 months (Fig. 2A). When ASVs were
binned to the family-level, there was less dissimilarity within
an individual's gut microbiome over time indicating that the
turnover in microbial composition was largely at the level of
species and below (Fig. 2B). This same pattern was found when
we compared microbiome dissimilarity for each individual with
ASVs binned at artificial sequence similarity cutoffs stepwise
from 100% to 90% (Figure S6, Supporting Information). Specifi-
cally, mean gut microbiome dissimilarity was positively correlated
with the level of sequence similarity used to bin ASVs (linear re-
gression: Fy.475 = 131.5, R? = 0.214, P < .001), where gut microbial
communities represented by 90% ASV bins had lower dissimilar-
ity estimates compared to higher ASV sequence similarity bins
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(Figure S6, Supporting Information). We also found that individual
gut microbial communities were more dissimilar when compared
across seasons for both sampling years (2019: Kruskal-Wallis test:
x? = 8.08, P = .004; 2020: Kruskal-Wallis test: x2 = 8.00, P = .005;
Fig. 2C). Surprisingly, we found no relationship between gut micro-
biome dissimilarity and the time in days between samples based
on either Bray-Curtis (GLM; P > .05) or weighted UniFrac (GLM; P
> .05) distances (Fig. 2D).

Microbes with differential abundance

We found strong individual-specific patterns of gut microbiome
stability, where some individuals demonstrated higher stability
of their microbial communities than others (e.g. Fig. 3A; sum-
mary Figure S7, Supporting Information). We identified 50 ASVs
out of the 493 ASVs considered with nonzero proportions > 0.20
(Figure S8, Supporting Information) that had differential abun-
dance either over time (25 ASVs) or with changes in diet (25 ASVs;
Fig. 3B). The majority of ASVs (68%) with significant differen-
tial abundance over time belonged to three families, Muribacu-
laceae (10 ASVs), Lachnospiraceae (five ASVs), and Ruminococ-
caceae (two ASVs). These significant ASVs demonstrated tempo-
ral trends in their relative abundance that was consistent across
most individuals (Fig. 3C).

Stable core microbial community

We identified a stable core microbiome consisting of 26
ASVs belonging to six bacterial families: Muribaculaceae (20
ASVs), Lactobacillaceae (two ASVs), Ruminococcaceae (one ASV),
Erysipelotrichaceae (one ASV), Oscillospiraceae (one ASV), and Eg-
gerthellaceae (one ASV). These core ASVs varied little in relative
abundance and evenness over time (Fig. 4A) and accounted for
an average of 18.20 + 0.05% of the total read abundance across
all samples. Based on PERMANOVA using Bray-Curtis distances,
as compared to the gut microbial communities of woodrats with
all members present, the core microbial community did not dif-
fer in its structure by season (Sum of Squares = 0.174, Pseudo-F
= 1.472; R? = 0.010; P = .145), but did retain a significant signa-
ture of host identity (Sum of Squares = 5.978; Pseudo-F = 1.580; R?
= 0.338; P = .001) and diet (Sum of Squares = 0.483; Pseudo-F =
4.080; R? = 0.027; P = .003). Additionally, as expected, core ASVs
demonstrated significantly higher stability across all pairwise
comparisons of samples from the same individual (unweighted
UniFrac distances; Kruskal-Wallis test: x? = 105.37, P < .001;
Fig. 4B).

Bacterial families associated with creosote bush
feeding

Creosote bush was the most abundant diet item across seasons
(Fig. 1B), consistent with the fact that the majority of woodrats at
Whitewater construct their nest in this plant. We identified two
microbial families, Eggerthellaceae (GLM: t = 3.727, pseudo-R? =
0.123, P < .001) and Erysipelotrichaceae (GLM: t = 4.797, pseudo-
R? =0.188, P < .001) whose relative abundance was positively cor-
related with the abundance of creosote bush in diet (Figure S9,
Supporting Information).

Foraging preferences

The woodrats in the cafeteria trial weighed an average of 180 +
29 g (standard deviation) and consumed an average of 84 + 7%
of the freshly clipped plant material presented. We found that
woodrats had a higher foliar intake of the two ephemeral plant
species than creosote bush (ANOVA: Fy.15 = 16.24, P < .001; Fig. 5).
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Figure 1. Factors influencing the composition of gut microbiota and diet of woodrats at Whitewater. (A) Euler diagram displaying the significant
explanatory factors and their % variance on gut microbiome composition based on redundancy analysis for the entire dataset. (B) Relative abundance
of diet items at the family-level averaged by season. (C) Relative abundance of gut bacteria binned by Order by season. (D) Diet diversity by season.
Diet was more diverse in the wet season (Kruskal-Wallis test: x2 = 5.112, P = .024). (E) Gut microbiome diversity by season. Gut microbial communities
were more diverse in the dry season (Kruskal-Wallis test: x? = 26.564, P < .001). (F) Principal coordinates analysis of the gut microbiome based on
Bray—-Curtis distances. Season was a significant factor in structuring microbial communities (PERMANOVA: Sum of squares = 1.065, Pseudo-F = 5.054,
R? = 0.030, P = .001). Ellipses represent 95% confidence intervals. Significant differences are denoted by * (* = P < .05; ** P < .01, and *** P < .001).

The ancestry (q) of this woodrat cohort was unknown at the time
of the experiment, but later found to consist of a range of an-
cestry classes consisting of several parental N. bryanti (@ = 1.00,
0.97, 0.96), a backcross N. bryanti (q = 0.71), an early generation
hybrid (q = 0.53), and a backcross N. lepida (q = 0.38). This ances-
try composition is fairly representative of the ancestry distribu-
tion of the entire population (Klure et al. 2023). Despite a small
sample size and a lack of representation of parental N. lepida, we
found that woodrats with more N. lepida ancestry consumed a
greater amount of creosote bush during the cafeteria trial (LM:
Fi6 = 6.46,R? = 0.56, P < .05; Figure S10, Supporting Information),
consistent with known interspecific differences in their respec-
tive tolerance to creosote bush from this site (Dearing et al.
2022).

Discussion

We understand little about the temporal dynamics of the gut mi-
crobiome of animals in nature, and if present, whether tempo-
ral variation in gut microbial community composition is largely
stochastic or rather indicative of underlying ecological processes.
This gap in knowledge is largely due to the scarcity of studies that
survey the gut microbiomes of individuals repeatedly in nature.
Therefore, we investigated the stability of the gut microbiome of
individual woodrats at a seasonal shrubland in the Mojave Desert.
We found exceptionally high turnover of ASVs within the gut mi-

crobiome of individuals, but substantially less turnover at higher
taxonomic ranks. We also found a strong signal of individuality
in gut microbiome composition, but this signal was lost during
seasonal restructuring. Additionally, despite a high level of overall
turnover in the gut microbiome, we identified a highly stable and
abundant core community of microbes that likely aids woodrats
in feeding on plants. We discuss these findings and their implica-
tions in greater detail below.

Gut microbial community stability is low
amongst microbial ASVs and high at the rank of
family

At the deepest taxonomic resolution (ASV), we found high
turnover of microbial taxa within individuals over time, where
most individuals retained less than half of their ASVs across
sampling periods spanning as little as 2-4 months. These re-
sults are similar to levels of turnover in the gut microbiomes of
other small mammals in nature such as red squirrels (T. hud-
sonicus; Bobbie et al. 2017) and meerkats (S. suricatta; Risely et
al. 2022). Additionally, we found no relationship between micro-
bial turnover and time between sampling, which is compara-
ble to that reported from a 13-year longitudinal survey of ba-
boons (Ren et al. 2017). These findings indicate that the gut
microbiome is highly dynamic and shifts in taxonomic com-
position, especially at a species and strain resolution, may be
largely stochastic. Possible explanations for this phenomenon
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.001).

may be that ASVs with high turnover contribute little to essential
functions of the gut microbiome, or may they be merely “pass-
ing through” the gut and are not established residents of the
community.

In comparison, when assessed at a higher taxonomic resolu-
tion (family), we found substantially lower turnover in gut mi-
crobial communities with most turnover occurring in taxa with
low abundance. This difference may be the result of selection by
the host for the maintenance of core functions in the gut micro-
biome but not for subspecies diversity. The phylogenetic conser-
vation of function among bacteria is highly variable, dependent
on environmental conditions, and influenced by horizonal gene
transfer (Louca et al. 2018). Furthermore, the genic content of
closely related bacterial strains can vary considerably (Llado Fer-
nandez et al. 2018). However, deeper phylogenetic conservation is
known for microbial enzymes that metabolize carbohydrates, fats,
and proteins (Koren et al. 2013) and for glycoside hydrolases that
breakdown complex polysaccharides such as cellulose and chitin
(Berlemont and Martiny 2015). One of the many essential services
provided by gut bacteria to mammalian herbivores is the degra-
dation of complex polysaccharides derived from their plant-based
diet (Dearing and Kohl 2017). The higher stability of gut microbiota

(*=P < .05 P < 01, P<

in woodrats at higher taxonomic ranks may indicate selection
for the maintenance of essential bacterial functions for digesting
plant matter. The most abundant diet item of woodrats at White-
water is creosote bush, which is both high in fiber and toxic sec-
ondary metabolites, primarily phenolics (Meyer and Karasov 1989,
Hyder et al. 2002, Arteaga et al. 2005, Dearing et al. 2022). Thus,
the successful metabolism of creosote bush foliage likely requires
a high diversity of both host and microbial enzymes. Woodrats
rely on their gut microbiota to metabolize creosote bush resin
and avoid toxicity (Kohl et al. 2014b), further indicating that se-
lection to maintain core functions may be essential in woodrats to
meet their nutritional demands. This woodrat-creosote bush sys-
tem presents a valuable opportunity for additional experimental
validation of the functions of core gut microbes as woodrats are
amenable to experimental manipulations (Stapleton et al. 2022)
and retain a majority of their wild microbiota from nature when
in captivity (Martinez-Mota et al. 2020).

Gut microbial communities are individualized
and impacted by environmental factors

Host identity played a major role in the composition and stability
of the gut microbiome of woodrats in addition to strong effects of
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Figure 3. Temporal trends of gut microbial composition in woodrats at Whitewater. (A) Relative abundance of the top eight most abundant bacterial
families over time in two individual woodrats. Examples of large shifts (Animal #11) and small shifts (Animal #40) in bacterial family composition over
time. (B) Results from a zero-inflated negative binomial mixed model on bacterial ASVs and the factors of time and diet on influencing their
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Boxplots demonstrating the relative abundance of ASVs that were found to have significant differential abundance over time across all individuals.

ASVs were binned at the rank of family.

season and diet. In longitudinal studies of wood mice (A. sylvati-
cus) and meerkats (S. suricatta), gut microbiome composition was
individualized, especially over short time scales spanning a few
months (Marsh et al. 2022, Risely et al. 2022). Additionally, in spot-
ted hyenas (C. crocuta), gut microbial communities progressively
individualized throughout the life of an animal and may play a
role in facilitating host preferences in diet (Rojas et al. 2022). The
formation of an individualized gut microbiome could stem from
a variety of factors such as limited transmission of microbiota
between hosts, strong host genetic control over the assemblage
of gut microbiota and host behavior. Teasing apart the relative
contribution of such factors in structuring microbial communi-
ties is difficult; however, a few of the measurements taken in this
study may provide some insight. For example, we included esti-
mates of genome-wide ancestry in our modeling of microbiome
variance, yet found only a modest influence of host genotype on
microbiome composition. Thus, as interspecific variation was in-
adequate to explain variation in gut microbiome composition, it is
highly unlikely that there is sufficient interindividual genetic vari-
ation to facilitate the individuality we detected in gut microbiome

composition. These results are in contrast to another hybrid zone
between N. bryanti and N. lepida, Whitney Well, where gut micro-
bial communities are largely species-specific (Nielsen et al. 2022).
However, parental individuals at Whitewater are less genetically
differentiated, extensively overlap in habitat use and diet, and ex-
perience a higher rate of interspecific hybridization than parental
individuals at Whitney Well (Klure et al. 2023). These population
dynamics may limit the assemblage of species-specific gut mi-
crobiota. Conversely, it is possible that the limited sample size of
woodrats with N. lepida ancestry in this dataset limited our abil-
ity to detect any potential cryptic interspecific differences in gut
microbial profiles. Nevertheless, at Whitewater we believe that
seasonal changes in interindividual microbial transmission rates
among woodrats may be playing a more substantial role in struc-
turing gut microbial communities.

For much of their life, woodrats are solitary and defend their
nest sites against congeners (Cameron 1971, Kinsey 1977), which
may limit the transmission of microbiota across individuals. Aso-
ciality is reduced during the wet season when breeding occurs, ap-
proximately between January and April at Whitewater based on
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the presence of juvenile individuals at the site. During this period,
the individualized signature of the gut microbiome disappeared
and the capture location of each woodrat explained additional
variation in gut microbiome composition. This suggests that the
seasonal sociality of woodrats may increase the transmission of
gut microbiota across hosts. Additionally, the wet season brings
with it a plethora of changes in both abiotic and biotic conditions
including drastic changes in diet that likely influence microbial
community composition and may induce seasonal restructuring
of the gut microbiome.

We found that diet explained a portion of the variation in gut
microbiome composition, which has also been documented in
several other animal species (Maurice et al. 2015, Grieneisen et
al. 2021, Viquez-R et al. 2021, Weinstein et al. 2021). Therefore, it
is likely that changes observed in diet across seasons likely con-
tribute to the seasonal restructuring of the gut microbiome of
woodrats. In the dry season at Whitewater, woodrats have a less
diverse diet dominated primarily by two fibrous and perennial
shrubs, creosote bush, and its root hemiparasite white rhatany
(Krameria bicolor; Cannon 1911). In comparison, in the wet season,
woodrats have a more diverse diet rich in ephemeral plants such
as evening primrose (Oenothera spp.), mustards (Brassica spp.), and
asters (family Asteraceae). Interestingly, gut microbial diversity
followed an inverse pattern of diet diversity, where it was higher
in the dry season and lower in the wet season. This negative re-
lationship between microbiome and diet diversity may reflect the
season-dependent nutritional quality of plant resources at White-
water. Ephemeral plants tend to have increased digestibility as
they are typically lower in recalcitrant fiber content and less toxic
due to less investment in chemical defense compared to perennial
shrubs (Meissner and Paulsmeier 1995, Johnstone et al. 2002). In
fact, in the cafeteria trial we showed that woodrats at Whitewa-
ter preferred herbaceous plants over creosote bush when avail-
able, possibly due to an avoidance of creosote bush due to its
toxicity (Arteaga et al. 2005), its nutritional quality, or both. Simi-
larly, reduced gut microbiome diversity is seen in several animal
species (including humans) feeding on diets low in fiber (Dee-
han and Walter 2016, Sonnenburg et al. 2016). In contrast, dur-
ing the dry season, we found that the gut microbial communities
of woodrats were more diverse. During this period these micro-
bial communities are exposed to a higher diversity of challenging
dietary substrates including complex plant polysaccharides and
secondary metabolites that may select for a high diversity of mi-
crobial metabolic processes, potentially driving an increase in the
overall diversity of the community.

The strong individuality in gut microbiome composition we
detected in the dry season also may be influenced by autoco-
prophagy in woodrats reinforcing individual-specific patterns of
gut microbiota assemblage. Coprophagous behavior may be more
frequent in woodrats in the dry season as a mechanism to in-
crease nutrient uptake from nutritionally poor sources. Indeed, we
have noticed in our laboratory feeding trails that woodrats seem
to increase fecal ingestion with increasing levels of creosote bush
resin in the diet (Dearing, personal observation). Moreover, this
pattern has been demonstrated in the greater cane rat (T. swinde-
rianus), where it increases coprophagic behavior in response to
increases in fiber in its diet (Zyi and Delport 2010). Additionally,
studies on the role of coprophagy in modulating the gut micro-
biome in Brandt'’s voles (L. brandtii) found that coprophagy stabi-
lizes microbial communities and when prevented, induces dys-
biosis (Bo et al. 2020). Therefore, it is probable that seasonal differ-
ences in the frequency or type of coprophagy may influence the
gut microbiome of woodrats, potentially strengthening the indi-
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viduality of gut microbial communities during nutrient challeng-
ing periods and diminishing its individual signal during the wet
season when allocoprophagy may be more common.

Despite turnover, a core microbial community
exists in the gut

We identified an abundant core microbial community belonging
to a high diversity of bacterial families, the majority of which are
rich in fibrolytic functions. These core ASVs were highly abun-
dant and accounted for a disproportionate amount of the total
read abundance across samples (~20%) despite only represent-
ing ~10% of the average diversity within individual gut micro-
bial communities. Approximately two-thirds of the core ASVs be-
longed to a single family, Muribaculaceae (previously $24-7), a
common taxon in the guts of homeothermic animals, and typi-
cally the most abundant family in the gut microbiome of woodrats
(Kohl et al. 2014b, Weinstein et al. 2021, Stapleton et al. 2022). This
family harbors a versatile functional profile with regard to the
degradation of complex carbohydrates (Lagkouvardos et al. 2019)
and contains tropic guilds with distinct hydrolases that specialize
on the degradation of plant glycans (Ormerod et al. 2016). Other
core ASVs belonged to additional fibrolytic families such as Lacto-
bacillaceae, Ruminococcaceae, and Erysipelotrichaceae that have
rich functional profiles for the degradation of plant glycans (Bid-
dle et al. 2013, Despres et al. 2016, Wu et al. 2021). This function of
the microbiome could be critical to herbivorous hosts in access-
ing the limited dietary protein contained within plant cell walls;
therefore, the stability of core ASVs may be due to selection from
the host to maintain essential microbial functions in the gut for
processing plant foliage, and in particular for processing creosote
bush.

Creosote bush is the most abundant item in the diets of
woodrats at Whitewater, occurring in animals in every sampling
period, and as such may be a key factor in facilitating the sta-
bility of core microbes in the guts of woodrats. As previously de-
scribed, core microbes likely aid woodrats in the processing of
complex polysaccharides present in a diet high in creosote bush,
but are also likely involved in its detoxification in the gut. Sev-
eral core microbes belonged to the families Lactobacillaceae and
Eggerthellaceae that produce enzymes that degrade plant toxins.
In particular, Lactobacillaceae possess a diverse profile of aryl-
alcohol dehydrogenases that detoxify phenolics (Kohl et al. 2014b)
and Eggerthellaceae produce a diverse set of enzymes that de-
grade polyphenols (Rodriguez-Daza et al. 2020) including resvera-
trol (Bode et al. 2013), an inducible metabolite produced by plants
in response to herbivory. One of the most compelling examples
of the potential for members of Eggerthellaceae to degrade toxic
plant metabolites come from studies on Eggerthella lenta. This bac-
terial species readily degrades cardiac glycosides in the human
gut to such an efficiency that it can metabolize digoxin (also com-
mercially known as Digitalis or Lanoxin), a plant-derived medicine
used to treat cardiac abnormalities, before its absorption into the
blood stream (Haiser et al. 2013). In fact, the abundance of Eg-
gerthellaceae was positively correlated with the abundance of
dietary creosote bush, further suggesting it may play a role in
its metabolism. In addition to creosote bush and its secondary
metabolites, woodrats at Whitewater also consume significant
quantities of white rhatany that is chemically defended by a di-
verse suite of phenolics (Hyder et al. 2002, Jiménez-Estrada et al.
2013). Therefore, in addition to potential fibrolytic services, the
core microbial community likely aids woodrats in detoxifying di-

etary phenols, enabling them to capitalize on toxic diets when less
toxic plant species are unavailable.

Conclusion

The gut microbiome of individual woodrats consists of both sta-
ble and dynamic microbes. It responds to changes in both environ-
mental abiotic conditions and changes in host behavior. At White-
water, woodrat gut microbial communities become progressively
individualized during highly xeric and nutritional challenging pe-
riods, then experience seasonal restructuring during the wet sea-
son. This seasonal restructuring may facilitate adaptive plasticity
to its host to season-dependent nutritional challenges (Baniel et
al. 2021). Woodrats at Whitewater also contain a set of core mi-
crobial taxa that may facilitate their ability to capitalize on low
digestible and highly toxic diets. This study expands our under-
standing on the seasonal dynamics of the gut microbiome of wild
animals and by incorporating comprehensive measurements of
host genetics and behavior, further demonstrates that these sea-
sonal dynamics may be indicative of synchronous ecological pro-
cesses that may contribute to the adaptive plasticity of the host.
Lastly, these results are the product of a limited survey of individ-
ual woodrats from a single habitat, and as such, additional longi-
tudinal studies are necessary to identify whether the gut micro-
bial communities of other small mammal species are shaped by
similar ecological processes.
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