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Abstract 

Gut micr obes pr ovide essential services to their host and shifts in their composition can impact host fitness. However, despite ad- 
vances in our understanding of how microbes are assembled in the gut, we understand little about the stability of these communities 
within individuals, nor what factors influence its composition over the life of an animal. For this reason, we conducted a longitudinal 
survey of the gut microbial communities of individual free-ranging woodrats ( Neotoma spp.) across a hybrid zone in the Mojave Desert, 
USA, using amplicon sequencing approaches to characterize gut microbial profiles and diet. We found that gut microbial communities 
wer e indi vidualized and experienced compositional restructuring as a result of seasonal transitions and changes in diet. Turnover of 
gut micr obiota w as highest amongst bacterial subspecies and w as m uc h low er at the r ank of Famil y, suggesting ther e may be selection 

for conservation of core microbial functions in the w oodr at gut. Lastly, w e identified an abundant core gut bacterial community that 
may aid w oodr ats in metabolizing a diet of plants and their specialized metabolites. These results demonstrate that the gut micro- 
bial communities of w oodr ats ar e highl y dynamic and experience seasonal restructuring which may facilitate adapti v e plasticity in 

response to changes in diet. 

Ke yw ords: herbi v or e; mark and r elease; micr obiome; neotoma; symbiosis 
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Introduction 

Mammals harbor a complex community of micr oor ganisms along 
the gastrointestinal tract that provide essential services such as 
aiding in the breakdown of complex pol ysacc harides (Flint et al.
2008 ), synthesizing essential vitamins (LeBlanc et al. 2013 ), in- 
hibiting colonization by pathogens (Abt and Pamer 2014 ), mod- 
ulating host immune responses (Round and Mazmanian 2009 ),
and facilitating tolerance to dietary toxins (Kohl et al. 2014b ). The 
study of gut microbial communities has recei ved exce ptional at- 
tention over the last decade, lar gel y due to the advances in DNA 

sequencing technologies that have enabled inventorying the com- 
munity of microorganisms in the gut. Much of this research ef- 
fort has emplo y ed ca ptiv e experiments with model animal sys- 
tems such as laboratory-reared mice (Nguyen et al. 2015 , Clavel 
et al. 2016 ), or has focused on humans (Thursby and Juge 2017 ).
Such studies provide valuable insights into the factors that influ- 
ence the composition, structure, and function of the gut micro- 
biome. Ho w e v er, ca ptiv e experiments are limited to testing only 
a handful of factors at any one time and are unable to repli- 
cate the complexity of interacting factors that shape gut mi- 
cr obial comm unities of animals in natur e. In addition, the gut 
micr obiome of ca ptiv e animals is often less diverse (Kohl et al.
2014 , Schmidt et al. 2019 ) and has altered composition com- 
pared to wild counterparts (McKenzie et al. 2017 , Gibson et al.
2019 ), which limits the generalizability of the results of captive 
studies to natural populations. For these reasons, there has been 

a recent call for greater attention to studying the microbiomes 
of animals under natural conditions (Hird 2017 , Cusick et al.
2021 ). 
Recei v ed 11 J an uar y 2023; revised 22 August 2023; accepted 11 October 2023 
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Over the last decade there has been numerous studies on the
ut microbial communities of free-ranging animals that have 
dentified strong predictors of the assemblage of gut microbiota 
uch as diet (Hicks et al. 2018 , Murillo et al. 2022 ), geogr a phy
Gomez et al. 2015 ), and host genetics (Kohl et al. 2018 , Weinstein
t al. 2021 , Nielsen et al. 2022 ). Additionally, seasonal dynamics
ay be common in gut microbial communities (Ren et al. 2017 ,
icks et al. 2018 , Orkin et al. 2018 ) and these seasonal changes
an be highly individualized (Marsh et al. 2022 ). Despite the grow-
ng body of liter atur e on the gut microbiome of fr ee-r anging an-
mals, r elativ el y fe w hav e c har acterized micr obial comm unities
ithin individuals over their natural lifespan, likely due to the dif-
culties of resampling free-ranging animals. For this reason, we 
nderstand little about the temporal dynamics of gut microbial 
ommunities within individuals, or how variation in community 
omposition may influence aspects such as host fitness. There- 
or e, longitudinal surv e ys of indi viduals and their gut microbiota
r e warr anted to adv ance our understanding of the tempor al dy-
amics of such communities at both population and individual
cales, and to determine whether shifts in community composi- 
ion are largely stochastic or are repeatable across timescales. 

Her e, we r eport the r esults of a longitudinal surv ey of two
pecies of woodrats, the Bryant’s woodrat ( Neotoma bryanti ), the
esert woodrat ( N. lepida ) and their hybrids from a sympatric pop-
lation in a desert shrubland in southern, CA, USA. Woodrats are

deal for studying the factors that shape gut microbial communi-
ies as they are abundant across most habitats in North America
Goldman 1910 ), can be resampled with relative ease for longitu-
inal surveys (Shurtliff et al. 2014 ) and are amenable to captiv-
ights r eserv ed. For permissions, please e-mail: 

https://doi.org/10.1093/femsec/fiad127
https://orcid.org/0000-0001-8676-3006
mailto:dylan.m.klure@gmail.com
mailto:journals.permissions@oup.com
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ty (Egoscue 1957 ). In particular, studies on woodrats have iden-
ified important factors that influence gut microbial community
tructure including host genetics (Weinstein et al. 2021 , Nielsen
t al. 2022 ), diet (Kohl and Dearing 2012 , Martínez-Mota et al.
020 , Stapleton et al. 2022 ), and intestinal parasites (Doolin et al.
022 ). Her e, we pr esent a surv e y of indi vidual woodr ats in natur e
o c har acterize the composition, structur e and tempor al dynam-
cs of these rodents’ gut micr obial comm unities. Fr om feces, we
enerated both 16S rRNA gene sequences to profile gut micro-
ial communities and chloroplast trn L (UAA) intron sequences to
uantify diet for each individual across multiple captures. Addi-
ionally, in our analyses we included available genome-wide an-
estry estimates for each individual that were generated as part
f a pr e vious surv ey of this woodrat population (Klure et al. 2023 ).
e le v er a ged this combination of sequencing a ppr oac hes to c har-

cterize the influence of factors such as identity , ancestry , diet,
nd season in structuring gut micr obial comm unity composition.
sing this woodrat system, we aimed to: (i) c har acterize the sta-
ility of gut microbial communities within individuals in nature,
ii) identify factors that drive shifts in microbial community com-
osition, and (iii) determine whether a stable core community of
icrobiota exists in the gut. 

aterials and methods 

ample collection and ancestry determination 

oodr ats wer e r epeatedl y liv e-tr a pped acr oss eight sampling
 v ents fr om January 2019 to Nov ember 2020 at a site known as
Whitewater” located in the San Gorgonio Pass, Riverside County,
A, USA within creosote bush ( Larrea tridentata ) shrublands (lati-
ude/longitude: 33 ◦ 55 ′ N; 116 ◦ 38 ′ ). This site was selected for this
tudy due to the r elativ e ease of resampling individuals o vertime ,
ts high degree of seasonality, and due to the ongoing interspe-
ific hybridization, which allows for the testing of genotypic ef-
ects on gut microbial assemblage. Woodrats are a primary prey
pecies and as such have low annual survival rates as compared
o larger mammal species and thus, to produce a multiyear co-
ort of 35 individuals analyzed in this study, it was necessary to
ample more than 200 individuals captured more than 400 times
Klure et al. 2023 ). Sherman traps were baited with oats, set at
usk, and c hec ked at dawn. Woodr ats wer e weighed, sexed and
oth fresh fecal pellets and a tissue sample from the ear were col-
ected from each individual. Fecal and tissue samples were stored
n a liquid nitrogen dewar while in the field and stored at –80 ◦C
n the lab prior to pr ocessing. Eac h woodr at r eceiv ed an ear ta g
ith a unique identifier and was released at their site of ca ptur e

o that individuals could be resampled over time. Trap collected
eces were selected for this work as they r epr esent a noninva-
ive metric for characterizing the gut microbiota of individuals
 vertime , contain little environmental contamination of microbes
Kohl et al. 2015 ), and provide census of the microbiota most sim-
lar to the community present in the lo w er gastr ointestinal tr act,
ut also to that of the foregut (Kohl et al. 2014a ). Due to the ongo-

ng interspecific hybridization present at Whitewater, the ancestry
f each individual was previously determined as part of Klure et
l. ( 2023 ) using a genome-wide single nucleotide pol ymor phism
ataset gener ated fr om a r educed r epr esentation sequencing a p-
r oac h (P arc hman et al. 2012 ). 

mplicon library preparation and sequencing 

e extr acted DNA fr om feces in batc hes as samples became avail-
ble once three sampling trips were completed using the Qiagen
o w erFecal DN A Isolation Kit (#12830) follo wing the manufactur-
rs protocol. We prioritized individuals for sequencing if they had
 high r eca ptur e r ate (i.e. ca ptur ed at least thr ee times); how-
 v er, as par ental and bac kcr oss N. lepida hav e low surviv al r ates at
hite water (Klur e et al. 2023 ), we also included individuals with

ow r eca ptur e r ates (i.e. ca ptur ed onl y once or twice) to maintain
 balanced ancestry r epr esentation. In total, we extr acted DNA
rom 129 fecal samples from 35 individuals ( ∼3.7 samples per
ndividual on av er a ge) for the 2019–2020 sampling period r epr e-
enting the following ancestry classes: parental N . bryanti ( n = 10),
ac kcr oss N . bryanti ( n = 11), F 1 /F 2 hybrids ( n = 5), bac kcr oss N . lep-

da ( n = 6), and parental N. lepida ( n = 3). We included negative con-
rols for each extraction batch ( n = 12) and extracted three preps
f a Zymo Microbial Mock Community Standard (ZymoBIOMICS
icr obial Comm unity Standard D6300) to assess for any poten-

ial environmental or reagent contamination. Library preparation
nd sequencing of DN A extracts w ere conducted by the Univer-
ity of Chicago at Urbana-Champaign DNA Sequencing Facility.
ndividual libraries were prepared using a two-stage PCR proto-
ol as described in Naqib et al. ( 2018 ). For each DN A sample, w e
enerated both 16S rRNA gene (V4 subunit) amplicon libraries to
stimate microbial composition using the unmodified 515F/806R
rimer pair (Ca por aso et al. 2011 , P ar ada et al. 2016 ) and c hlor o-
last trn L (UAA) intr on amplicon libr aries to estimate diet using
he unmodified g / h primer pair (Taberlet et al. 2007 ). Libraries
ere combined into three separate library pools that each con-

ained ∼50 samples of each library type . T hese library pools were
hen sequenced individuall y acr oss a single lane of an Illumina
iniseq to generate 2 × 150 bp paired-end reads, requiring a total

f three sequencing lanes. To test for any potential lane effects,
e included controls consisting of the repeated sequencing of a

ingle 16S rRNA libr ary gener ated fr om woodr at feces and a 16S
RNA libr ary gener ated fr om an artificial micr obial moc k comm u-
ity (ZymoBIOMICS Microbial Community Standard D6300). 

ead processing and gener a tion of final datasets 

 air ed-end r eads wer e pr ocessed in R . v. 4.2.1 (R Cor e Team 2022 )
ollowing the dada2 v.1.24.0 (Callahan et al. 2016 ) workflow. Reads
er e pr ocessed independentl y based on their r espectiv e libr ary

ype and sequencing lane. First, we r emov ed primer sequences
sing cutadapt v.3.5 (Martin 2011 ) and then filtered out reads if
hey contained ambiguous nucleotides, sites with base-site qual-
ty scores less than 10, more than two expected errors as calcu-
ated from the nominal definition of the quality score as follows,
E = sum ( 10 ( 

−Q 
10 ) ) , and if they corresponded to the PhiX loading

ontrol. For the 16S rRNA gene reads, we removed 2 bp from the
nd of the forw ar d and r e v erse r eads due to quality dr ops at these
ositions and r emov ed an y r esulting r eads less than 100 bp in

ength. For the trn L reads, we filtered out any reads less than 14 bp
n length, but did not perform length trimming as trn L amplicons
 ary consider abl y in length. Sequencing err ors wer e inferr ed on
 per lane basis using 100 000 000 bp fr om eac h lane using ran-
omly selected samples as input. Dereplicated reads and their cor-
 esponding inferr ed err or r ates wer e then used to identify mem-
ers of each sequence community as amplicon sequence variants
ASV) at 100% sequence identity (Callahan et al. 2017 ). We then

er ged pair ed-end r eads r equiring a minim um ov erla p of 10 bp
ith no mismatches allo w ed in the ov erla p r egion. We r emov ed

himeric sequences from the resulting sequence tables and then
er ged eac h table fr om eac h sequencing lane to gener ate a sin-

le data frame containing sequences from all samples for each
ibrary type. 
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Microbial taxonomy was assigned to the 16S rRNA gene 
ASVs using the naïve Bayesian classifier method (Wang et 
al. 2007 ) in dada2 with default parameters except that we 
increased the minimum bootstrap confidence to assign a tax- 
onomic rank from 50% to 70%. Taxonomy assignments were 
based on the current version at the time of analyses (v.138.1) 
of the Silva 16S rRNA gene small-subunit r efer ence database 
( https:// www.arb-silva.de/ download/ arb-files/ ). We were unable 
to assign plant taxonomy using dada2 to the trn L ASVs as many 
of the resulting read lengths were too short for this method ( < 

50 bp). Instead, we created a custom trn L r efer ence database as 
described in Weinstein et al. ( 2021 ), and aligned the sequences 
fr om eac h sample a gainst this database using BLASTN v.2.9.0 + 

( https:// doi.org/ 10.1186/ 1471- 2105- 10- 421 ). ASVs were assigned 

taxonomy based on the r efer ence sequence with the lo w est E - 
value, highest % identity, and the closest length to the ASV. We did 

not assign taxonomy if there was no reference sequence with an 

E-value < 1, % identity ≥ 90, and length within 10% of that of the 
ASV sequence. If multiple best hits were identified for an ASV se- 
quence, taxonomy was assigned at each rank if at least 70% of the 
best hits shared that rank. The script used for the taxonomic clas- 
sification of the trn L ASVs (classify_sequences.py) and associated 

documentation is available at https://github.com/ 
r obertgr eenhalgh/ stand/ . 

We created a phylogenetic tree of the resulting 16S rRNA gene 
sequences for use in downstr eam anal yses. To do this, we gener- 
ated a matrix of multiple sequence alignments from the ASV se- 
quences using DECIPHER v.2.24.0 (Wright 2016 ) with a kmer size 
of 8. We exported the multiple sequence alignment data in FASTA 

format using ShortRead v.1.54.0 (Morgan et al. 2009 ) and generated 

a maxim um-likelihood tr ee of the 16S rRNA gene sequences us- 
ing FastTree2 v.2.1.10 (Price et al. 2010 ) employing the nucleotide 
and generalized time-reversible model parameters. We then com- 
bined the ASV table, taxonomy table, sample metadata and phy- 
logenetic tree stored in Newick format into a single S4 class data 
frame using phyloseq v.1.40.0 (McMurdie and Holmes 2013 ). 

We performed additional filtering of ASVs in phyloseq for each li- 
brary type and subsequently rarified the resulting amplicon com- 
munities to limit the effects variation in read depth across sam- 
ples. For the 16S rRNA gene amplicon dataset, we r emov ed sin- 
gletons, ASVs with taxonomic assignments to Mitochondria or 
Chlor oplast, ASVs with exceptionall y low pr e v alence by r emoving 
ASVs not found in at least two individuals, and ASVs that lacked 

taxonomic assignments at the rank of Family or abo ve . Although 

the process of rarefying amplicon count data has been a matter 
of debate due to the perceived loss of data and power for sta- 
tistical inference (McMurdie and Holmes 2014 ), we opted to rar- 
efy our libraries as there is strong evidence that that rarefying 
leads to a reduction in the frequency of type-1 errors with com- 
mon microbiome analyses (McKnight et al. 2019 , Yang and Chen 

2022 ). We generated rarefaction curves with v e gan v.2.6–2 (Dixon 

2003 ) and opted to r ar efy the 16S rRNA gene libraries to 14687 
reads, as this was the lowest read depth achieved by a sample that 
was still sufficient to ca ptur e the div ersity of ASVs present in our 
dataset ( Figure S1 , Supporting Information ). For the trn L dataset,
we r emov ed singletons/doubletons and r emov ed ASVs that corr e- 
sponded to oats (Genus Avena ), the bait that was used during tr a p- 
ping. We then r emov ed ASVs that accounted for less than 1% of 
the r elativ e r ead abundance in eac h sample, as these ASVs likel y 
r epr esented envir onmental contamination or low-fr equency di- 
etary items . T he r esulting trn L libr aries wer e then r ar efied to a 
depth of 4190 reads, the lo w est read depth of a sample present in 

the dataset. 
omm unity di v ersity and composition analyses 

e used v e gan to estimate alpha and beta diversity indices for
he 16S rRNA and c hlor oplast trn L libr aries. For the trn L libr aries,
SVs were binned at the rank of family to avoid ov er estimat-

ng diet ric hness (i.e. se v er al plant species were represented by
ultiple ASVs). For estimates of alpha diversity, we estimated ob-

erv ed ric hness (i.e. observ ed plant families for the trn L libr aries
nd observed ASVs for the 16S rRNA libraries) and the Shannon–
iener index (Shannon 1948 ) as a measurement of both commu-

ity richness and evenness. We determined significant differences 
etween mean alpha diversity measurements using nonparamet- 
ic rank sum tests for either population comparisons with the
ruskal–Wallis test (Kruskal and Wallis 1952 ) or pairwise compar- 

sons of individuals with the Wilcoxon test (Wilcoxon 1945 ). 
For beta diversity comparisons of diet, we created a matrix of

airwise Bray–Curtis distances (Bray and Curtis 1957 ) and sub-
equently performed principal coordinate analysis (PCoA) on the 
esulting trn L distance matrix. We stored the resulting principal
oordinate axes in a separate data frame for use in subsequent
odeling efforts. For beta diversity analyses of gut microbial com-
 unities, we cr eated pairwise distance matrices based on J accar d

J accar d 1912 ), Bra y–Curtis , and UniFrac distances (Lozupone and
night 2005 ). We then performed PCoA based on the ordination
f the above distance matrices. Using the R pac ka ge v e gan , we
ested for homogeneity of group dispersions using a m ultiv ari-
te analogue of the Le v ene’s test (PERMDISP) using the betadis-
er() function and tested for the significance of our measured fac-
ors on structuring micr obial comm unity composition using per-
 utational m ultiv ariate anal ysis of v ariance (PERMANOVA) us-

ng the adonis2() function. We included the following variables in
he model for each distance metric: ancestry , identity , diet (con-
isting of the first principal coordinate from the Bray–Curtis diet
rdination), season, sex, and r epr oductiv e status. We did not in-
lude age as a variable in these models as all individuals were
dults at the time of their first ca ptur e based on body weight ( >
00 g). We c har acterized the pr ecipitativ e seasonality of White-
ater using climate data from an atmospheric monitoring sta- 

ion located at the Palm Springs International Airport ( ∼15 km
rom the site). A total of 140 mm of precipitation occurred be-
ween December 2018 and April 2019 and 127 mm between De-
ember 2019 and April 2020, accounting for ∼75% and ∼95% of
he total precipitation over the following 12-month period, respec- 
iv el y. T hus , we classified these periods as the “wet” season at

hitewater. 
Variance partitioning of a 16S rRNA Bray–Curtis distance ma- 

rix was performed with v e gan using r edundancy anal ysis ordi-
ation (RDA) with the following explanatory matrices: identity,
iet (consisting of the first four principal components from the
iet PCoA analysis as described above), sampling trip, within site
a ptur e location (latitude and longitude based on GPS coordi-
ates taken at the site of ca ptur e), ancestry ( q ), and sex. Sig-
ificance of each of the explanatory matrices was assessed us-

ng permutation tests with the anova.cca() function in vegan . The
ulerr v.6.1.1 pac ka ge ( https:// github.com/ jolars/ eulerr) was used
o plot ar ea-pr oportional Venn-dia gr ams of the individual v ari-
nce and covariance explained by each significant explanatory 
atrix. 

uantifying microbiome dissimilarity 

he R pac ka ge Microbiome v.1.18 ( https://micr obiome.github.io/)
as used to model microbiome dissimilarity over time within in-
ividuals. We used the plasticity() function in an iter ativ e man-

https://www.arb-silva.de/download/arb-files/
https://doi.org/10.1186/1471-2105-10-421
https://github.com/robertgreenhalgh/stand/
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
https://github.com/jolars/eulerr
https://microbiome.github.io/
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er to calculate pairwise dissimilarity values at the ASV-le v el
ased on J accar d, Bra y–Curtis , unw eighted UniF rac, and w eighted
niFrac distances for samples from the same individual for
ll possible comparisons. We repeated this process with Jac-
ard and Bray–Curtis distances with ASVs binned at the rank
f Family. We compared differences in mean dissimilarity val-
es using a pairwise Wilcoxon rank sum test and adjusted re-
ulting P -values for multiple comparisons using the Bonferroni
orrection method (Bonferroni 1936 ). We assessed for a rela-

ionship between time (distance in days between samples) on
issimilarity scores using a generalized linear model (GLM) for
oth Bray–Curtis and w eighted UniF r ac distances. Lastl y, we ex-
lored the effects of the % sequence similarity cutoff used to
ssign sequences to ASV bins on influencing dissimilarity es-
imates. We used the DECIPHER pac ka ge to align and cluster
he sequences from the original 100% identity ASV sequence ta-
le using the following sequence similarity cutoffs for ASV bin-
ing: 90% , 92%, 94%, 96%, and 98%. We then recalculated pair-
ise Bray–Curtis distances between samples from the same in-
ividual as described pr e viousl y and modeled the effect of se-
uence similarity cutoff on Bray–Curtis distances using linear 
 egr ession. 

dentification of microbes with differential and 

ta ble a bundances ov er time 

e used the R pac ka ge NBZIMM v.1.0 (Zhang and Yi 2020 ) to per-
orm a negative binomial mixed model with zero inflation to iden-
ify microbial ASVs with differential abundance based on the vari-
bles of time (days since pr e vious sampling) and diet (first princi-
al component from the diet PCoA of Bray–Curtis distances). This
ype of model is particularl y a ppr opriate for modeling longitudi-
al microbiome data as it can account for within-subject correla-
ion structures and is robust to data sparsity (Zhang and Yi 2020 ).
n our model, we tested for differential abundance of ASVs that
ad nonzero proportions greater than 0.20 using rarefied counts.
e included time and diet as fixed effects, individual as a ran-

om effect and fitted the logistic r egr ession with the logarithmic
ransformation of the initial library size of each sample. We con-
rolled for false discovery rate using the Benjamini–Hochberg pro-
edur e and consider ed ASVs with an adjusted P -v alue ≤ .001 as
axa with differential abundance (Benjamini and Hoc hber g 1995 ).
he R pac ka ge microbiome was used to identify the core taxonomic
embers of the gut microbiome of wild woodrats. We classified

n ASV as belonging to the “core community” if it occurred in ev-
ry sampling period, was present in ≥ 80% of samples collected at
hat time, and had a r elativ e abundance of > 0.0001. We assessed
hether the structure of the core microbial community was in-
uenced by ancestry , identity , diet, season, sex, and r epr oductiv e
tatus using PERMANOVA in the same manner as pr e viousl y de-
cribed. 

dentifying microbes associated with creosote 

ush feeding 

e investigated the abundance of creosote bush (the most abun-
ant diet item with little seasonality) in the diet of woodrats and

ts relationship to the abundance of bacterial families present in
oodrat feces. We ran a GLM with the base stats pac ka ge in R for

ac h bacterial famil y with an offset term consisting of a loga-
ithmic transformation of initial library sizes and used a Quasi-
oisson r egr ession to account for overdispersion. We performed a
quar e r oot tr ansformation of the r elativ e abundances of bacte-
ial families and creosote bush to impr ov e the fit of the residuals.
ield cafeteria experiment 
e conducted a limited fr ee-c hoice feeding experiment with adult
oodrats ( n = 7) in March 2019 at Whitewater to assess whether

he dietary shifts found in the wet season reflect individual forag-
ng pr efer ence or ar e simpl y an artifact of plant r esource av ailabil-
ty. Woodr ats wer e tempor aril y housed in solid-bottom shoebox
ages (48 cm × 27 cm × 20 cm) with pine shavings and a plastic
ube for shelter. Eac h woodr at was provided 10 g each of freshly
lipped leaves from creosote bush ( L . tridentata ), Sahara mustard
 Brassica tournefortii ) and desert dandelion ( Malacothrix glubrata ).
he leaf bundles wer e pr esented at thr ee separ ate corners of the
age and secured with wire . T he two forb species were selected as
hey were the most abundant ephemeral plants at Whitewater at
he time of the experiment and were commonly found cached on

iddens during tr a pping. Woodr ats wer e pr ovided water ad libi-
um and were released at their site of ca ptur e after 24 h. After the
elease of the woodrats, the remaining plant material in each cage
 as collected, separated b y species, and w eighed. We calculated

oliar intake as follows: foliage consumed (g)/body mass (kg)/day.
e compar ed differ ences in mean intake using ANOVA with post

oc analysis following the Tuk e y’s procedure. 

esults 

uality control and v alida tion of 16S rRNA 

ibraries 

n the initial unfiltered dataset containing both fecal and con-
rol samples there were a total of 9102 ASVs, and the 129 fecal
amples ac hie v ed an av er a ge r ead depth of 41395 ± 12814 (stan-
ard de viation) r eads. A total of 5899 ASVs wer e filter ed fr om this
ataset due to the following exclusionary criteria: taxonomic clas-
ification to Chloroplast or Mitochondria (2409 ASVs), present as
 singleton (577 ASVs), did not meet sample pr e v alence thr esh-
ld (2765 ASVs), and lacked taxonomic assignment to at least the
ank of Family (124 ASVs). In the final filtered dataset, we re-
ained a total of 3227 ASVs and the fecal samples had an aver-
 ge r ead depth of 33524 ± 14003 prior to r ar efying. After r ar efy-
ng, 127 fecal samples were retained after discarding two sam-
les with read depths less than the r ar efied count of 14687. Of
he 3227 ASVs retained in this final dataset, only 36.6% were as-
igned a taxonomic classification at the rank of Genus or be-
ow and ther efor e we used the r ank of Famil y or abov e for com-
ositional analyses . T he 16S rRNA libr aries demonstr ated con-
istent results across different sequencing lanes based on the
oodr at and moc k comm unity contr ol samples ( Figur e S2A and B ,
upporting Information ). The negativ e contr ols consisting of ex-
raction blanks ( n = 12) had an av er a ge of 596 ± 890 ( ∼1.4% of the

ean initial r eads pr oduced by the fecal samples) and 179 ASVs.
f the 179 ASVs present in the extraction blanks, 68 also occurred

n the fecal samples . T he read abundances of microbial taxa from
lank samples are shown in Figure S3 ( Supporting Information )
t the rank of Family. The mock community control samples that
er e extr acted alongside the fecal samples and were present in

ac h libr ary pool contained all eight of the expected gener a with-
ut any evidence of significant contamination ( Figure S2A and B ,
upporting Information ). We repeated a subset of the analyses
escribed in this study using a dataset where we removed the
hared ASVs between the negative control and fecal samples and
ound that this did not influence the ov er all r esults of the study
 Figure S4 , Supporting Information ). Based on these results, we de-
ermined the 16S rRNA libraries from feces to be of high quality
ith minimal concerns for significant lane effects , en vironmental,

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
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cr oss-sample, or r ea gent contamination and thus, used the origi- 
nal dataset containing all 3277 ASVs for all downstream analyses.

Factors influencing the structure of the gut 
microbiome of w oodr a ts in nature 

Based on the results of the redundancy analysis, we found four 
factors: identity, sampling period, diet, and ca ptur e location ex- 
plain a significant portion of the variance in gut microbiome as- 
semblage (Fig. 1 A; Table S1, Supporting Information ). In total,
these four factors together explained 30.9% of the ov er all v ari- 
ance in gut micr obial comm unity composition acr oss all samples 
(Fig. 1 A). We also performed r edundancy anal ysis independentl y 
for samples from the wet and dry season that revealed identity 
explained more variance in gut microbiome composition in the 
dry season (14.03%) and was nonexplanatory in the wet season 

( Table S1, Supporting Information ). Additionally, in the wet season 

RDA, ca ptur e location (1.09%) explained mar ginall y mor e v ariance 
in gut microbiome composition than either the combined or dry 
season RDAs ( Table S1, Supporting Information ). We found that 
season impacted the r elativ e abundances of both dietary items 
(Fig. 1 B) and bacterial families in the gut of woodrats (Fig. 1 C). Diet 
diversity (Shannon’s index) was significantly higher during the 
w et season (J anuary–April) of each y ear (Kruskal–Wallis test: χ2 

= 5.112, P = .024; Fig. 1 D), and gut micr obial div ersity (Shannon’s 
index) was significantly lower during the same period (Kruskal–
Wallis test: χ2 = 26.564, P < .001; Fig. 1 E). Comm unity ric hness was 
also impacted by season in similar manner to div ersity, wher e diet 
richness was higher in the wet season (Kruskal–Wallis test: χ2 = 

14.242, P < .001; Figure S5, Supporting Information ) and microbial 
richness w as lo w er in the same period (Kruskal–Wallis test: χ2 = 

23.077, P < .001; Figure S5 , Supporting Information ). Gut microbial 
comm unity structur e was also impacted by season (PERMANOVA: 
Sum of squares = 1.065, Pseudo-F = 5.054, R 

2 = 0.030, P = .001) 
but to a lesser extent than community richness and evenness 
(Fig. 1 F). Using PERMANOVA, w e also found that ancestry ( q ) w as 
a significant factor in explaining variation in microbial composi- 
tion across all distance metrics assessed; ho w ever, its explana- 
tory po w er w as small ( R 

2 < 0.02 for all distance metrics; Table S2 ,
Supporting Information ). 

Stability of individual gut microbial communities 

The stability of individual gut microbial communities varied dra- 
matically based on the measure of dissimilarity and the sampling 
periods being compared. At the ASV-le v el, we found that non- 
phylogenetically weighted distance metrics demonstrated sub- 
stantial ASV turnover within individuals over time (Fig. 2 A). In 

contrast, distance metrics that incorporate phylogenetic related- 
ness (UniFr ac), especiall y when weighted for the abundance of 
ASVs, demonstr ated substantiall y less dissimilarity between sam- 
pling periods spanning 2–4 months (Fig. 2 A). When ASVs were 
binned to the famil y-le v el, ther e was less dissimilarity within 

an individual’s gut microbiome over time indicating that the 
turnover in microbial composition was largely at the level of 
species and below (Fig. 2 B). This same pattern was found when 

we compar ed micr obiome dissimilarity for eac h individual with 

ASVs binned at artificial sequence similarity cutoffs stepwise 
from 100% to 90% ( Figure S6 , Supporting Information ). Specifi- 
call y, mean gut micr obiome dissimilarity was positiv el y corr elated 

with the le v el of sequence similarity used to bin ASVs (linear re- 
gression: F 1:478 = 131.5, R 

2 = 0.214, P < .001), where gut microbial 
comm unities r epr esented b y 90% ASV bins had lo w er dissimilar- 
ity estimates compared to higher ASV sequence similarity bins 
 Figure S6 , Supporting Information ). We also found that individual
ut microbial communities were more dissimilar when compared 

cross seasons for both sampling years (2019: Kruskal–Wallis test: 
2 = 8.08, P = .004; 2020: Kruskal–Wallis test: χ2 = 8.00, P = .005;
ig. 2 C). Sur prisingl y, we found no relationship between gut micro-
iome dissimilarity and the time in days between samples based
n either Bray–Curtis (GLM; P > .05) or weighted UniFrac (GLM; P
 .05) distances (Fig. 2 D). 

icrobes with differential abundance 

e found strong individual-specific patterns of gut microbiome 
tability, where some individuals demonstrated higher stability 
f their micr obial comm unities than others (e.g. Fig. 3 A; sum-
ary Figure S7 , Supporting Information ). We identified 50 ASVs

ut of the 493 ASVs considered with nonzero proportions > 0.20
 Figure S8 , Supporting Information ) that had differential abun-
ance either over time (25 ASVs) or with changes in diet (25 ASVs;
ig. 3 B). The majority of ASVs (68%) with significant differen-
ial abundance over time belonged to three families, Muribacu- 
aceae (10 ASVs), Lac hnospir aceae (fiv e ASVs), and Ruminococ-
aceae (two ASVs). These significant ASVs demonstrated tempo- 
 al tr ends in their r elativ e abundance that was consistent across
ost individuals (Fig. 3 C). 

table core microbial community 

e identified a stable core microbiome consisting of 26 
SVs belonging to six bacterial families: Muribaculaceae (20 
SVs), Lactobacillaceae (two ASVs), Ruminococcaceae (one ASV),
rysipelotric haceae (one ASV), Oscillospir aceae (one ASV), and Eg- 
erthellaceae (one ASV). These core ASVs varied little in relative
bundance and e v enness ov er time (Fig. 4 A) and accounted for
n av er a ge of 18.20 ± 0.05% of the total read abundance across
ll samples. Based on PERMANOVA using Bray–Curtis distances,
s compared to the gut microbial communities of woodrats with
ll members present, the core microbial community did not dif-
er in its structure by season (Sum of Squares = 0.174, Pseudo-F
 1.472; R 

2 = 0.010; P = .145), but did retain a significant signa-
ure of host identity (Sum of Squares = 5.978; Pseudo-F = 1.580; R 

2 

 0.338; P = .001) and diet (Sum of Squares = 0.483; Pseudo-F =
.080; R 

2 = 0.027; P = .003). Additionally, as expected, core ASVs
emonstr ated significantl y higher stability acr oss all pairwise
omparisons of samples from the same individual (unweighted 

niFrac distances; Kruskal–Wallis test: χ2 = 105.37, P < .001; 
ig. 4 B). 

acterial families associated with creosote bush 

eeding 

reosote bush was the most abundant diet item across seasons
Fig. 1 B), consistent with the fact that the majority of woodrats at

hitewater construct their nest in this plant. We identified two 
icrobial families, Eggerthellaceae (GLM: t = 3.727, pseudo- R 

2 =
.123, P < .001) and Erysipelotrichaceae (GLM: t = 4.797, pseudo-
 

2 = 0.188, P < .001) whose r elativ e abundance was positiv el y cor-
elated with the abundance of creosote bush in diet ( Figure S9 ,
upporting Information ). 

oraging preferences 

he woodrats in the cafeteria trial weighed an av er a ge of 180 ±
9 g (standard deviation) and consumed an av er a ge of 84 ± 7%
f the fr eshl y clipped plant material presented. We found that
oodrats had a higher foliar intake of the two ephemeral plant

pecies than creosote bush (ANOVA: F 2:15 = 16.24, P < .001; Fig. 5 ).

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
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Figure 1. Factors influencing the composition of gut microbiota and diet of woodrats at Whitewater. (A) Euler diagram displaying the significant 
explanatory factors and their % variance on gut microbiome composition based on redundancy analysis for the entire dataset. (B) Relative abundance 
of diet items at the famil y-le v el av er a ged by season. (C) Relativ e abundance of gut bacteria binned b y Or der b y season. (D) Diet diversity b y season. 
Diet was more diverse in the wet season (Kruskal–Wallis test: χ2 = 5.112, P = .024). (E) Gut microbiome diversity by season. Gut microbial communities 
wer e mor e div erse in the dry season (Kruskal–Wallis test: χ2 = 26.564, P < .001). (F) Principal coordinates anal ysis of the gut micr obiome based on 
Bra y–Curtis distances . Season was a significant factor in structuring micr obial comm unities (PERMANOVA: Sum of squar es = 1.065, Pseudo-F = 5.054, 
R 2 = 0.030, P = .001). Ellipses r epr esent 95% confidence intervals. Significant differences are denoted by ∗ ( ∗ = P < .05; ∗∗ P < .01, and ∗∗∗ P < .001). 
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he ancestry ( q ) of this woodrat cohort was unknown at the time
f the experiment, but later found to consist of a range of an-
estry classes consisting of se v er al par ental N. bryanti ( q = 1.00,
.97, 0.96), a bac kcr oss N. bryanti ( q = 0.71), an earl y gener ation
ybrid ( q = 0.53), and a bac kcr oss N. lepida ( q = 0.38). This ances-
ry composition is fairly re presentati ve of the ancestry distribu-
ion of the entire population (Klure et al. 2023 ). Despite a small
ample size and a lack of r epr esentation of parental N. lepida , we
ound that woodrats with more N. lepida ancestry consumed a
reater amount of creosote bush during the cafeteria trial (LM:
 1:6 = 6.46, R 

2 = 0.56, P < .05; Figure S10 , Supporting Information ),
onsistent with known interspecific differences in their respec-
iv e toler ance to cr eosote bush fr om this site (Dearing et al.
022 ). 

iscussion 

e understand little about the temporal dynamics of the gut mi-
robiome of animals in nature, and if present, whether tempo-
 al v ariation in gut micr obial comm unity composition is lar gel y
tochastic or rather indicative of underlying ecological processes.
his gap in knowledge is largely due to the scarcity of studies that
urvey the gut microbiomes of individuals repeatedly in nature.
her efor e, we inv estigated the stability of the gut microbiome of

ndividual woodrats at a seasonal shrubland in the Mojave Desert.
e found exceptionally high turnover of ASVs within the gut mi-
robiome of individuals, but substantially less turnover at higher
axonomic ranks. We also found a strong signal of individuality
n gut microbiome composition, but this signal was lost during
easonal r estructuring. Additionall y, despite a high le v el of ov er all
urnover in the gut microbiome, we identified a highly stable and
bundant core community of microbes that likely aids woodrats
n feeding on plants. We discuss these findings and their implica-
ions in greater detail below. 

ut microbial community stability is low 

mongst microbial ASVs and high at the rank of 
amily 

t the deepest taxonomic resolution (ASV), we found high
urnov er of micr obial taxa within individuals ov er time, wher e

ost individuals retained less than half of their ASVs across
ampling periods spanning as little as 2–4 months . T hese re-
ults are similar to levels of turnover in the gut microbiomes of
ther small mammals in nature such as red squirrels ( T. hud-
onicus ; Bobbie et al. 2017 ) and meerkats ( S. suricatta ; Risely et
l. 2022 ). Additionally, we found no relationship between micro-
ial turnover and time between sampling, which is compara-
le to that reported from a 13-year longitudinal survey of ba-
oons (Ren et al. 2017 ). These findings indicate that the gut
icrobiome is highly dynamic and shifts in taxonomic com-

osition, especially at a species and strain resolution, may be
ar gel y stoc hastic. Possible explanations for this phenomenon

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiad127#supplementary-data
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may be that ASVs with high turnover contribute little to essential 
functions of the gut microbiome , or ma y they be mer el y “pass- 
ing through” the gut and are not established residents of the 
community. 

In comparison, when assessed at a higher taxonomic resolu- 
tion (family), we found substantially lo w er turnover in gut mi- 
cr obial comm unities with most turnov er occurring in taxa with 

low abundance . T his difference ma y be the result of selection by 
the host for the maintenance of core functions in the gut micro- 
biome but not for subspecies diversity. The phylogenetic conser- 
vation of function among bacteria is highly variable, dependent 
on environmental conditions, and influenced by horizonal gene 
transfer (Louca et al. 2018 ). Furthermore, the genic content of 
closel y r elated bacterial str ains can v ary consider abl y (Lladó Fer- 
nández et al. 2018 ). Ho w e v er, deeper phylogenetic conserv ation is 
known for microbial enzymes that metabolize carbohydrates , fats ,
and proteins (Koren et al. 2013 ) and for glycoside hydrolases that 
br eakdown complex pol ysacc harides suc h as cellulose and chitin 

(Berlemont and Martiny 2015 ). One of the many essential services 
provided by gut bacteria to mammalian herbivores is the degra- 
dation of complex pol ysacc harides deriv ed fr om their plant-based 

diet (Dearing and Kohl 2017 ). The higher stability of gut microbiota 
n woodrats at higher taxonomic ranks may indicate selection 

or the maintenance of essential bacterial functions for digesting 
lant matter. The most abundant diet item of woodrats at White-
ater is creosote bush, which is both high in fiber and toxic sec-
ndary metabolites, primarily phenolics (Meyer and Karasov 1989 ,
yder et al. 2002 , Arteaga et al. 2005 , Dearing et al. 2022 ). T hus ,

he successful metabolism of creosote bush foliage likely requires 
 high diversity of both host and microbial enzymes. Woodrats
 el y on their gut microbiota to metabolize creosote bush resin
nd avoid toxicity (Kohl et al. 2014b ), further indicating that se-
ection to maintain core functions may be essential in woodrats to

eet their nutritional demands . T his woodr at–cr eosote bush sys-
em presents a valuable opportunity for additional experimental 
alidation of the functions of core gut microbes as woodrats are
menable to experimental manipulations (Stapleton et al. 2022 ) 
nd retain a majority of their wild microbiota from nature when
n captivity (Martínez-Mota et al. 2020 ). 

ut microbial communities are individualized 

nd impacted by environmental factors 

ost identity played a major role in the composition and stability
f the gut microbiome of woodrats in addition to strong effects of
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eason and diet. In longitudinal studies of wood mice ( A. sylvati-
us ) and meerkats ( S. suricatta ), gut microbiome composition was
ndividualized, especiall y ov er short time scales spanning a fe w

onths (Marsh et al. 2022 , Risely et al. 2022 ). Additionally, in spot-
ed hyenas ( C. crocuta ), gut microbial communities progressively
ndividualized throughout the life of an animal and ma y pla y a
ole in facilitating host pr efer ences in diet (Rojas et al. 2022 ). The
ormation of an individualized gut microbiome could stem from
 variety of factors such as limited transmission of microbiota
etween hosts, strong host genetic control over the assemblage
f gut microbiota and host behavior . T easing apart the relative
ontribution of such factors in structuring microbial communi-
ies is difficult; ho w e v er, a fe w of the measurements taken in this
tudy ma y pro vide some insight. For example , we included esti-
ates of genome-wide ancestry in our modeling of microbiome
 ariance, yet found onl y a modest influence of host genotype on
icrobiome composition. T hus , as interspecific variation was in-

dequate to explain variation in gut microbiome composition, it is
ighl y unlikel y that ther e is sufficient interindividual genetic v ari-
tion to facilitate the individuality we detected in gut microbiome
omposition. These results are in contrast to another hybrid zone
etween N. bryanti and N. lepida , Whitney Well, where gut micro-
ial communities are largely species-specific (Nielsen et al. 2022 ).
o w e v er, par ental individuals at Whitewater are less genetically
iffer entiated, extensiv el y ov erla p in habitat use and diet, and ex-
erience a higher rate of interspecific hybridization than parental

ndividuals at Whitney Well (Klure et al. 2023 ). These population
ynamics may limit the assemblage of species-specific gut mi-
r obiota. Conv ersel y, it is possible that the limited sample size of
oodrats with N. lepida ancestry in this dataset limited our abil-

ty to detect any potential cryptic interspecific differences in gut
icr obial pr ofiles. Ne v ertheless, at White w ater w e belie v e that

easonal changes in interindividual microbial transmission rates
mong woodrats may be playing a more substantial role in struc-
uring gut microbial communities. 

For m uc h of their life, woodr ats ar e solitary and defend their
est sites against congeners (Cameron 1971 , Kinsey 1977 ), which
ay limit the transmission of micr obiota acr oss individuals. Aso-

iality is reduced during the wet season when breeding occurs, ap-
r oximatel y betw een J anuary and April at Whitewater based on
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Relative abundance of the 26 core ASVs binned at the family-level by 
sampling date. (B) Core ASVs were significantly more stable than 
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he presence of juvenile individuals at the site. During this period,
he individualized signature of the gut microbiome disappeared 

nd the ca ptur e location of each woodrat explained additional
ariation in gut microbiome composition. This suggests that the 
easonal sociality of woodrats may increase the transmission of 
ut microbiota across hosts. Additionally, the wet season brings 
ith it a plethora of changes in both abiotic and biotic conditions

ncluding drastic changes in diet that likely influence microbial 
ommunity composition and may induce seasonal restructuring 
f the gut microbiome. 

We found that diet explained a portion of the variation in gut
icr obiome composition, whic h has also been documented in

e v er al other animal species (Maurice et al. 2015 , Grieneisen et
l. 2021 , Víquez-R et al. 2021 , Weinstein et al. 2021 ). Ther efor e, it
s likely that changes observed in diet across seasons likely con-
ribute to the seasonal restructuring of the gut microbiome of
oodrats. In the dry season at Whitew ater, w oodrats have a less
iverse diet dominated primarily by two fibrous and perennial 
hrubs, creosote bush, and its r oot hemipar asite white rhatan y
 Krameria bicolor ; Cannon 1911 ). In comparison, in the wet season,
oodr ats hav e a mor e div erse diet ric h in ephemer al plants suc h
s e v ening primr ose ( Oenothera spp.), m ustards ( Brassica spp.), and
sters (family Asteraceae). Interestingly, gut microbial diversity 
ollo w ed an inverse pattern of diet div ersity, wher e it was higher
n the dry season and lo w er in the wet season. This negative re-
ationship between microbiome and diet diversity may reflect the 
eason-de pendent n utritional quality of plant resources at White-
ater. Ephemeral plants tend to have increased digestibility as 

hey ar e typicall y lo w er in r ecalcitr ant fiber content and less toxic
ue to less investment in chemical defense compared to perennial
hrubs (Meissner and Paulsmeier 1995 , Johnstone et al. 2002 ). In
act, in the cafeteria trial we showed that woodrats at Whitewa-
er pr eferr ed herbaceous plants ov er cr eosote bush when av ail-
ble, possibly due to an avoidance of creosote bush due to its
oxicity (Arteaga et al. 2005 ), its nutritional quality, or both. Simi-
arl y, r educed gut microbiome diversity is seen in several animal
pecies (including humans) feeding on diets low in fiber (Dee-
an and Walter 2016 , Sonnenburg et al. 2016 ). In contrast, dur-

ng the dry season, we found that the gut microbial communities
f w oodrats w ere more diverse. During this period these micro-
ial comm unities ar e exposed to a higher diversity of challenging
ietary substrates including complex plant polysaccharides and 

econdary metabolites that may select for a high diversity of mi-
r obial metabolic pr ocesses, potentiall y driving an increase in the
v er all div ersity of the comm unity. 

The strong individuality in gut microbiome composition we 
etected in the dry season also may be influenced by autoco-
r opha gy in woodr ats r einforcing individual-specific patterns of
ut micr obiota assembla ge. Copr opha gous beha vior ma y be more
r equent in woodr ats in the dry season as a mechanism to in-
rease n utrient uptak e from n utritionally poor sour ces. Indeed, w e
ave noticed in our laboratory feeding trails that woodrats seem 

o increase fecal ingestion with incr easing le v els of cr eosote bush
esin in the diet (Dearing, personal observation). Moreover, this 
attern has been demonstrated in the greater cane rat ( T. swinde-
ianus ), where it increases coprophagic behavior in response to
ncreases in fiber in its diet (Zyi and Delport 2010 ). Additionally,
tudies on the role of copr opha gy in modulating the gut micro-
iome in Brandt’s voles ( L. brandtii ) found that copr opha gy stabi-
izes microbial communities and when prevented, induces dys- 
iosis (Bo et al. 2020 ). Ther efor e, it is pr obable that seasonal differ-
nces in the frequency or type of copr opha gy may influence the
ut microbiome of woodrats, potentially strengthening the indi- 
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iduality of gut microbial communities during nutrient challeng-
ng periods and diminishing its individual signal during the wet
eason when allocopr opha gy may be more common. 

espite turnover, a core microbial community 

xists in the gut 
e identified an abundant core microbial community belonging

o a high diversity of bacterial families, the majority of which are
ic h in fibr ol ytic functions . T hese cor e ASVs wer e highl y abun-
ant and accounted for a disproportionate amount of the total
ead abundance across samples ( ∼20%) despite only represent-
ng ∼10% of the av er a ge div ersity within individual gut micro-
ial comm unities. Appr oximatel y tw o-thir ds of the core ASVs be-
onged to a single famil y, Muribaculaceae (pr e viousl y S 24-7), a
ommon taxon in the guts of homeothermic animals, and typi-
ally the most abundant family in the gut microbiome of woodrats
Kohl et al. 2014b , Weinstein et al. 2021 , Stapleton et al. 2022 ). This
amily harbors a versatile functional profile with regard to the
egradation of complex carbohydrates (Lagkouvardos et al. 2019 )
nd contains tropic guilds with distinct hydrolases that specialize
n the degradation of plant glycans (Ormerod et al. 2016 ). Other
ore ASVs belonged to additional fibr ol ytic families suc h as Lacto-
acillaceae , Ruminococcaceae , and Erysipelotrichaceae that have
ic h functional pr ofiles for the degr adation of plant gl ycans (Bid-
le et al. 2013 , Despres et al. 2016 , Wu et al. 2021 ). This function of
he microbiome could be critical to herbivorous hosts in access-
ng the limited dietary protein contained within plant cell walls;
her efor e, the stability of core ASVs may be due to selection from
he host to maintain essential microbial functions in the gut for
r ocessing plant folia ge, and in particular for processing creosote
ush. 

Creosote bush is the most abundant item in the diets of
oodrats at Whitewater, occurring in animals in every sampling
eriod, and as such may be a k e y factor in facilitating the sta-
ility of core microbes in the guts of woodrats. As previously de-
cribed, cor e micr obes likel y aid woodr ats in the pr ocessing of
omplex pol ysacc harides pr esent in a diet high in cr eosote bush,
ut are also likely involved in its detoxification in the gut. Sev-
r al cor e micr obes belonged to the families Lactobacillaceae and
ggerthellaceae that produce enzymes that degrade plant toxins.
n particular, Lactobacillaceae possess a diverse profile of aryl-
lcohol dehydrogenases that detoxify phenolics (Kohl et al. 2014b )
nd Eggerthellaceae produce a diverse set of enzymes that de-
r ade pol yphenols (Rodríguez-Daza et al. 2020 ) including r esv er a-
rol (Bode et al. 2013 ), an inducible metabolite produced by plants
n response to herbivory. One of the most compelling examples
f the potential for members of Eggerthellaceae to degrade toxic
lant metabolites come from studies on Eggerthella lenta . This bac-
erial species r eadil y degr ades cardiac gl ycosides in the human
ut to such an efficiency that it can metabolize digoxin (also com-
er cially kno wn as Digitalis or Lanoxin), a plant-derived medicine

sed to treat cardiac abnormalities, before its absorption into the
lood stream (Haiser et al. 2013 ). In fact, the abundance of Eg-
erthellaceae was positiv el y corr elated with the abundance of
ietary creosote bush, further suggesting it may play a role in

ts metabolism. In addition to creosote bush and its secondary
etabolites, woodr ats at White water also consume significant

uantities of white rhatany that is c hemicall y defended by a di-
erse suite of phenolics (Hyder et al. 2002 , Jiménez-Estrada et al.
013 ). Ther efor e, in addition to potential fibr ol ytic services, the
or e micr obial comm unity likel y aids woodr ats in detoxifying di-
tary phenols, enabling them to capitalize on toxic diets when less
oxic plant species are una vailable . 

onclusion 

he gut microbiome of individual woodrats consists of both sta-
le and dynamic microbes. It responds to changes in both environ-
ental abiotic conditions and changes in host behavior. At White-
 ater, w oodr at gut micr obial comm unities become pr ogr essiv el y

ndividualized during highly xeric and nutritional challenging pe-
iods, then experience seasonal restructuring during the wet sea-
on. This seasonal restructuring may facilitate ada ptiv e plasticity
o its host to season-dependent nutritional challenges (Baniel et
l. 2021 ). Woodr ats at White water also contain a set of core mi-
robial taxa that may facilitate their ability to capitalize on low
igestible and highly toxic diets . T his study expands our under-
tanding on the seasonal dynamics of the gut microbiome of wild
nimals and by incor por ating compr ehensiv e measur ements of
ost genetics and behavior, further demonstrates that these sea-
onal dynamics may be indicative of synchronous ecological pro-
esses that may contribute to the ada ptiv e plasticity of the host.
astl y, these r esults ar e the pr oduct of a limited surv e y of indi vid-
al woodr ats fr om a single habitat, and as such, additional longi-
udinal studies are necessary to identify whether the gut micro-
ial communities of other small mammal species are shaped by
imilar ecological processes. 
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