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The expanding catalog of genome-wide association studies (GWAS) provides biological
insights across a variety of species, but identifying the causal variants behind these
associations remains a significant challenge. Experimental validation is both labor-
intensive and costly, highlighting the need for accurate, scalable computational methods
to predict the effects of genetic variants across the entire genome. Inspired by recent
progress in natural language processing, unsupervised pretraining on large protein
sequence databases has proven successful in extracting complex information related
to proteins. These models showcase their ability to learn variant effects in coding
regions using an unsupervised approach. Expanding on this idea, we here introduce the
Genomic Pre-trained Network (GPN), a model designed to learn genome-wide variant
effects through unsupervised pretraining on genomic DNA sequences. Our model also
successfully learns gene structure and DNA motifs without any supervision. To demon-
strate its utility, we train GPN on unaligned reference genomes of Arabidopsis thaliana
and seven related species within the Brassicales order and evaluate its ability to predict
the functional impact of genetic variants in A. thaliana by utilizing allele frequencies
from the 1001 Genomes Project and a comprehensive database of GWAS. Notably,
GPN outperforms predictors based on popular conservation scores such as phyloP and
phastCons. Our predictions for A. thaliana can be visualized as sequence logos in the
UCSC Genome Browser (https://genome.ucsc.edu/s/gbenegas/gpn-arabidopsis). We
provide code (https://github.com/songlab-cal/gpn) to train GPN for any given species
using its DNA sequence alone, enabling unsupervised prediction of variant effects
across the entire genome.

machine learning | language models | variant effect prediction | genome-wide association study |
Arabidopsis thaliana

The emergence of genome-wide association studies (GWAS) has significantly enhanced
our ability to examine the genetic basis of complex traits and diseases in both humans
and plants. In humans, GWAS have played a crucial role in identifying genetic variants
associated with a range of traits, including schizophrenia and obesity (1). Similarly, in
plants, GWAS have shed light on the genetic factors influencing traits such as drought
tolerance, disease resistance, and yield (2). A central challenge in GWAS is pinpointing
causal variants for a trait, as linkage disequilibrium (LD) can lead to spurious associations
(3). This process, known as fine-mapping, serves as a foundation for constructing accurate,
portable polygenic risk scores, and understanding the underlying biological mechanisms.
Although experimental validation of causal variants is the gold standard, it is not scalable.
Instead, a scalable fine-mapping strategy involves utilizing computational variant effect
predictors (4), which vary from conservation scores to deep learning models trained on
functional genomics data. Accurate variant effect prediction is also vital for diagnosing rare
diseases and interpreting rare variants that lie beyond the scope of traditional GWAS (5).

Recently, state-of-the-art performance in predicting the effects of missense (coding)
variants has been achieved by training unsupervised models on extensive protein sequence
databases (6) or their corresponding multiple sequence alignments (7). These large
language models can predict missense variant effects in an unsupervised manner, without
the need for additional training on labeled data. This progress has been driven by
advancements in natural language processing, where significant strides have been made
by pretraining language models on vast text corpora. Pretrained models such as BERT
can be fine-tuned for downstream tasks such as sentiment analysis (8). More recently,
language models like GPT-4 have demonstrated impressive leaps in test performance
across various disciplines, from law to computer science (9).

A widely used approach to interpreting noncoding variant effects involves training a
supervised model to predict functional genomics data—such as chromatin accessibility,
transcription factor binding, or gene expression—and then evaluating variants based on
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how they disrupt these predictions. This approach was first
introduced by DeepSEA (10), which utilized 919 functional
genomics tracks, and has since been refined by Enformer (11)
with 6,956 tracks and Sei (12) with 21,907 tracks. However, this
approach’s success depends on the availability of high-quality
functional genomics data from a diverse array of cell types,
which can be prohibitively expensive to generate for most species.
Certain models focus on specific classes of noncoding variants.
For instance, classifiers trained solely on sequence data can predict
the impact of intron variants on splicing patterns (13, 14). To
evaluate the effects of regulatory variants, Lee et al. (15) developed
a support vector machine that distinguishes putative regulatory
sequences from random genomic sequences. More recently, a
deep learning model capable of predicting Hi-C signal from
sequence data demonstrated its potential to predict the impact
of regulatory variants on DNA folding within the nucleus (16).
Additionally, a deep learning model (17) was successfully trained
to predict DNA methylation levels of CpG sites from sequence
data, enabling the prediction of noncoding variant effects on
DNA methylation.

However, variant type-specific models may not be well suited
for detecting trait-associated rare variants, fine-mapping, or
calculating polygenic scores, as these tasks are facilitated by the
comparison of genome-wide variants all together. For instance,
a model that is exclusively designed for either missense or
regulatory variants would not be able to prioritize between
a de novo missense variant and a de novo promoter variant
observed in an individual with a rare disease. An important
class of genome-wide scores are conservation scores such as
phyloP (18) and phastCons (19), which are computed from
genome-wide alignment of multiple species. Since these do
not require functional genomics data, they have been widely
applied to many systems, including nonmodel organisms (20). In
humans, CADD is another important genome-wide variant effect
predictor that combines conservation and functional genomics
annotations and is trained to distinguish between an inferred set
of putative benign and putative pathogenic variants (21, 22).

In this paper, we introduce the GPN, a multispecies DNA
language model trained using self-supervision. While existing
DNA language models (23–29) have not yet demonstrated the
ability to make accurate variant effect predictions based on self-
supervision alone, GPN presents a unified approach capable
of accurate unsupervised prediction of genome-wide variant
effects. We demonstrate its utility by achieving state-of-the-art
performance in Arabidopsis thaliana, a model organism for plant
biology closely related to many agriculturally important species,
as well as a source of insight into human diseases (30). Moreover,
GPN outperforms genome-wide conservation scores such as
phyloP and phastCons, which rely on whole-genome alignments
of 18 closely related species (20). GPN’s internal representation
of DNA sequences can distinguish genomic regions like introns,
untranslated regions, and coding sequences. Additionally, the
confidence of GPN’s predictions can help reveal regulatory
grammar, such as transcription factor binding motifs. Our results
lay the foundation for developing state-of-the-art genome-wide
variant effect predictors for any species using genomic sequence
alone, which can be readily integrated into GWAS fine-mapping
and polygenic risk scores.

Results

Training a Multispecies DNA Language Model. We used
unaligned reference genomes from A. thaliana and seven related
species within the Brassicales order to pretrain a language model
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Fig. 1. Overview of GPN. The input is a 512-bp DNA sequence where certain
positions have been masked, and the goal is to predict the nucleotides at
the masked positions. During training, 15% of the positions are masked.
During variant effect prediction, only the variant position is masked. The
sequence is processed through a convolutional neural network resulting in
a high-dimensional contextual embedding of each position. Then, a final
layer outputs four nucleotide probabilities at each masked position. The
model is trained on the reference sequence with the cross-entropy loss.
The GPN variant effect prediction score is defined as the log-likelihood
ratio between the alternate and reference allele. L: window length in
base pairs. D: embedding dimension. REF: reference allele. ALT: alternate
allele.

based on a convolutional neural network (SI Appendix, Table S1).
This model was designed to predict masked nucleotides condi-
tioned on their local genomic context (Fig. 1 and Materials and
Methods). During the training process, we encountered challenges
with repetitive elements, which can be functionally significant but
are heavily overrepresented in the genomes (31). We found that
reducing the weight of prediction loss for repetitive regions led
to lower test perplexity in nonrepetitive regions, which are often
of greater interest (SI Appendix, Table S2). Compared to full
down-weighting, moderate down-weighting results in a similar
improvement in perplexity for nonrepetitive regions without
sacrificing genome-wide perplexity as much. Consequently, we
focus on this model throughout the remainder of the paper unless
otherwise specified.

Unsupervised Clustering of Genomic Regions. To understand
how well the model has learned the structure of the genome,
we averaged GPN’s contextual embeddings (512 dimensions)
of nucleotides over 100 base pair (bp) windows from the
reference genome and visualized them using UMAP (32)
(Fig. 2A). Notably, GPN, trained without any supervision,
has learned to distinguish genomic regions such as intergenic,
introns, coding sequences (CDS), untranslated regions (UTR),
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Fig. 2. Unsupervised clustering of genomic windows. (A) UMAP visualization
of GPN embeddings averaged over nonoverlapping 100-bp windows along
the genome, annotated with gene region. (B) Confusion matrix for classifica-
tion of gene regions using a logistic regression model trained on averaged
embeddings. Each chromosome was predicted from a model trained on the
remaining chromosomes.

and noncoding RNA (ncRNA). To quantify GPN’s ability to
distinguish genomic regions, we trained a logistic regression
classifier using the averaged embeddings as features, achiev-
ing the highest accuracy on CDS (96%) and the lowest on
ncRNA (51%), the least frequent class. As summarized in
Fig. 2B, the highest confusion was observed between intergenic
regions and ncRNAs; this may be partly explained by errors in
ncRNA annotation, which is especially challenging given their
low expression levels and poor conservation (33). This level
of classification accuracy cannot be achieved merely through
k-mer frequencies (k = 3: 8% to 70%; k = 6: 15% to
67%; see SI Appendix, Fig. S1). We also note that, to some
extent, GPN embeddings can distinguish different repeat families
(SI Appendix, Fig. S2).

DNA Motifs Revealed by High-Confidence Model Predictions.
To further understand GPN, we individually masked each posi-
tion in the genome and obtained the model output distribution
over nucleotides, given its context. To facilitate utilizing these
predicted distributions, we created sequence logos that can be
visualized in the UCSC Genome Browser (34, 35) (https://
genome.ucsc.edu/s/gbenegas/gpn-arabidopsis), where the height
of each letter is proportional to its probability, and the overall
height is given by the information content, measured in bits
(36) (see Fig. 3A for an example). The model’s prediction
confidence correlates with the expected functionality of the
sites. For example, exonic positions are predicted with higher
confidence than the surrounding introns, except for the canonical
splice acceptor and donor dinucleotide motifs. Similarly, within
codons, the third nucleotide position (CDS3), which usually does
not affect amino acid identity, is generally predicted with lower
confidence than the first two positions (CDS1, CDS2). Start and
stop codon motifs are also generally well predicted (examples in SI
Appendix, Fig. S3). Across a 1-Mb region in the test chromosome
(containing 264 genes and 471 transcripts), model perplexities
in splice donors (median = 1.02), splice acceptors (median =
1.03), start codons (median = 1.08), CDS2 (median = 2.24),
CDS1 (median = 2.44), CDS3 (median = 2.79), and stop
codons (median = 2.8) are significantly smaller than those in
intergenic and intronic regions (median = 3.24, all Mann–
Whitney P-values < 10−17, SI Appendix, Fig. S4). Perplexity in
CDS2 is significantly smaller than that in CDS1, which in turn
is significantly smaller than that in CDS3 (all Mann–Whitney
P-values < 10−300), consistent with their different expected
levels of constraint (18).

We hypothesized that scanning promoters for small regions
of high-confidence GPN predictions could help identify tran-
scription factor binding sites. To achieve this, we adapted TF-
MoDISco (37), a tool for de novo identification of transcription
factor binding sites using supervised models. This tool clusters
high-scoring regions into motifs and compares them to databases
of known motifs. Applying the adapted TF-MoDISco to GPN
scores in promoter regions, we identified approximately a
hundred and sixty motifs (SI Appendix, Fig. S5), with four
examples shown in Fig. 3B, the first two having a significant
match in PlantTFDB (20) [with q-value < 0.05 in Tomtom
(38)]. Some of the identified motifs are well-documented in the
literature but do not have a significant match in this database,
such as the third motif (39) in Fig. 3B. Some motifs could
represent promoter elements not identified previously, like the
fourth motif, which is palindromic with symmetrical entropies,
suggesting that it could potentially form RNA or DNA alternative
secondary structure (40).

Unsupervised Variant Effect Prediction. GPN can be employed
to calculate a pathogenicity or functionality score for any single-
nucleotide polymorphism (SNP) in the genome using the log-
likelihood ratio between the alternate and reference allele (GPN
score, Fig. 1). Visually, this involves comparing the heights of the
letters in the logo plot (Fig. 3A).
In silico mutagenesis. We first computed GPN scores for in silico
mutagenesis of SNPs within a 1-Mb region and aggregated
the results across variant types (Fig. 4). The ranking of variant
types based on the lowest percentile of GPN scores is generally
consistent with established notions of deleteriousness (41)*. For
example, the four lowest scored variant types are splice donor,

*https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html.
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B GPN motif extracted by TF-MoDISco Reported match in PlantTFDB
Motif 18 (780 occurrences) AT4G24470

Motif 2 (3386 occurrences) AT1G72740

Motif 9 (1385 occurrences)

Motif 10 (1057 occurrences)

(no match)

(no match)

Splice acceptor Splice donor
A

Fig. 3. Sequence logos derived from model predictions. Each position in the genome was independently masked and the model distribution over the four
nucleotides was computed. (A) Sequence logo visualized in the UCSC Genome Browser (https://genome.ucsc.edu/s/gbenegas/gpn-arabidopsis). The height of
each letter is proportional to its probability, while the overall height at each position is equal to 2 minus the entropy of the distribution. (B) Example GPN motifs
in promoter regions, extracted by TF-MoDISco, with significant matches in PlantTFDB.

splice acceptor, stop gained, and start lost variants, which
significantly disrupt the open reading frame. As expected,
missense variants are predicted to have a bigger impact than
synonymous variants. However, we observed that some vari-
ants within repetitive elements were assigned rather low GPN
scores, ranking close to missense variants. Furthermore, the
proportion of low GPN scores for repeat variants depends on
the training loss weight on repeats (SI Appendix, Fig. S6A).
More precisely, in models with 0.0 and 0.1 down-weighting,
respectively, 8% and 9% of repeat variants are ranked before
the first decile of missense variants. These represent a substantial
decrease compared to the 27% observed in the model without
any down-weighting (SI Appendix, Fig. S6B, Fisher’s exact test
P < 10−300).
Benchmarking using allele frequencies in 1001 genomes. Follow-
ing our in silico mutagenesis experiments, we analyzed over 10
million SNPs from naturally occurring accessions of the 1001
Genomes Project (42). While most variants have a neutral GPN
score, there is a heavy tail of putative functional variants with
negative GPN scores (Fig. 5A). Notably, variants with lower
GPN scores are, on average, less frequent in the population,
suggesting they could be under purifying selection (Fig. 5B,
full distribution in SI Appendix, Fig. S7). To evaluate the
capability of identifying putative functional variants, we assessed
the enrichment of rare versus common variants in the tail of

genome-wide score distributions. Putative functional SNPs,
defined as the lowest 0.1% of GPN scores, exhibit a 5.5-fold
enrichment in rare variants (Fig. 5C ); see SI Appendix, Fig. S8
for different allele frequency thresholds. GPN outperforms other
genome-wide variant effect predictors for Arabidopsis, specifically
phyloP and phastCons, which are conservation scores derived
from a broader set of 18 Brassicales species (Fig. 5D). In fact, GPN
scores are only weakly correlated with phyloP (r = 0.22, P <

10−300) and phastCons (r = 0.13, P < 10−300). We also
considered the alternative abs(phyloP) (the absolute value of
phyloP), but it did not achieve a significant enrichment. A notable
advantage of GPN is that it is able to score variants that could
not be scored by phyloP and phastCons due to unsuccessful
whole-genome alignment (14.2% of all variants). GPN performs
comparably to phyloP and phastCons when using less stringent
thresholds for defining putative functional SNPs (SI Appendix,
Fig. S9), indicating its particular strength in detecting deleterious
variants at the extreme tail. GPN also achieves significant odds
ratios when computed only within particular variant classes, but
its performance relative to phyloP and phastCons varies (SI
Appendix, Fig. S9). On a separate note, a slightly higher odds
ratio is achieved by the GPN model trained with an intermediate
loss weight on repeats (SI Appendix, Fig. S6C ). The model
trained on only a single species performs substantially worse
(SI Appendix, Fig. S10A).
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Fig. 4. Variant effect prediction: in silico mutagenesis. Distribution of GPN
scores computed for all possible single-nucleotide polymorphisms (SNPs) in
a 1-Mb region, across categories, sorted by first percentile (dashed vertical
lines).

Enrichment of GWAS hits in regions with low GPN scores. In our
pursuit to further evaluate the efficacy of GPN, we examined the
AraGWAS Catalog (43), a comprehensive database of GWAS in

A. thaliana. We hypothesized that GWAS hits may be enriched
in regions with low GPN scores. An advantage of GPN is that
it can give substantially different scores to variants in strong
linkage disequilibrium (LD) with each other, if their surrounding
contexts are different, e.g., Fig. 6 A, Top). In contrast, the
standard GWAS would give similar scores to such variants;
in particular, neutral variants in strong LD with a functional
variant would also be associated with a trait. To account for
this difference, we devised a score, GPN × LD, which weighs
GPN scores by LD (Materials and Methods). With this approach,
GPN × LD effectively distinguishes GWAS hits from nonhits
in this example locus (Fig. 6 A, Bottom). More generally, across
the genome and all traits, the tail of GPN × LD scores is greatly
enriched in GWAS hits, much more so than the tail of raw
GPN scores (Fig. 6B). In particular, by analyzing odds ratios
(Fig. 6C ), we found that SNPs with the lower 1% of GPN
× LD scores are 10.3-fold enriched in GWAS hits compared
to the upper 99% of GPN × LD scores, while less than 7.5-
fold enrichment was observed for other methods (Fig. 6D);
see SI Appendix, Fig. S11 for different thresholds. Using the
Bonferroni correction instead of the permutation-based signifi-
cance threshold recommended by AraGWAS (44) yields lower
odds ratios for all methods, but GPN × LD still achieves
the highest enrichment (SI Appendix, Fig. S12). Interestingly,
the GPN model trained with an intermediate loss weight on
repeats achieves the best performance (SI Appendix, Fig. S6D).
The model trained on only a single species performs worse
(SI Appendix, Fig. S10B). Furthermore, GPN × LD achieves
much higher odds ratios when considering the full variant set,
including regions that do not align to other Brassicales (Fig. 6E);
failed alignment could be partly due to genomic rearrange-
ments that may be potentially associated with local adaptation
in A. thaliana (45).

A B

C D

Fig. 5. Variant effect prediction: rare vs. common. The GPN score was computed for over 10 million variants in the 1001 Genomes. (A) Distribution of GPN
scores. (B) Mean allele frequency for different GPN score bins ([−9.5,−8.5), [−8.5,−7.5), . . . , [3.5,4.5)). (C) Contingency table and odds ratio showing enrichment
of putative functional GPN scores in rare (AC = 1) vs. common (AF ≥ 5%) variants. AC: allele count. AF: allele frequency. (D) Comparison of odds ratios as in (C)
obtained with different models. abs(phyloP) is excluded as it did not achieve a significant enrichment.
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B

D

A

C

lowest GPN score
in this window

EVariants with whole-
genome alignment All variants

Fig. 6. Variant effect prediction: GWAS. GPN scores were analyzed for around half a million variants tested in AraGWAS. (A) Example window with six variants
tested for association with maximum temperature in January. GPN×LD successfully separates GWAS hits and nonhits. (B) Percentage of GWAS hits (for any
trait) in each percentile bin of GPN and GPN × LD scores. (C) Contingency table and odds ratio showing enrichment of GWAS hits (for any trait) in putative
functional (associated) GPN × LD scores. (D) Comparison of odds ratios obtained with different models (n = 453,281 variants with whole-genome alignment).
(E) Odds ratios with the full variant set (n = 510,462).

Discussion

Here, we present an unsupervised genome-wide variant effect
predictor based on pretraining of DNA language models. We
demonstrate that GPN outperforms other genome-wide variant
effect predictors in A. thaliana, a model species for plant
biology. Since GPN is trained only on DNA sequence, it can
be readily applied to understudied nonmodel organisms even
in the absence of extensive functional genomics data, while still
providing state-of-the-art unsupervised variant effect prediction
genome-wide.

We can think of GPN as a generalized conservation score.
Similar to phyloP and phastCons, GPN is genome-wide, can
be trained on genomic sequence alone, and is cell-type and
mechanism agnostic (46). The key distinction is that while
phyloP and phastCons only consider nucleotide frequencies at a
specific site, GPN can learn from joint nucleotide distributions
across all similar contexts appearing in the genome. Furthermore,
GPN does not rely on whole-genome alignments, which can often
have a lower quality in noncoding regions.

The capability of GPN to score genome-wide variants on a uni-
fied scale renders it ideal for integration into rare disease diagnosis,
fine-mapping, and polygenic risk scores, including burden tests.
The separation of genomic regions based on GPN embeddings
suggests that it could be further fine-tuned for de novo genome

annotation. Combining GPN predictions with TF-MoDISco
offers a promising strategy for identifying functional motifs.
Although in this study we focused on transcription factor binding
sites, we believe that GPN predictions around splice junctions
could also facilitate the identification of splicing factor binding
sites.

Repetitive elements, which are inherent components of eu-
karyotic genomes, pose several challenges that have been underex-
plored in DNA language modeling studies. First, these elements
are significantly overrepresented (31). The lower perplexity
in nonrepetitive regions upon down-weighting repeats can be
attributed to the model allocating fewer parameters exclusively to
repetitive elements. Second, repetitive elements display reduced
sequence variation compared to other regions, in particular
younger repeats with little time to accumulate mutations (47).
We believe that these factors together may cause differences in
model likelihoods in these regions to be less clearly associated with
differences in fitness. Our proposed down-weighting of repeats
only partially mitigates these issues, and we encourage further
investigation by the scientific community. Potential research
directions include examining the effects of down-weighting
repeats based on their respective families or inferred age.

While the current implementation of GPN achieves state-of-
the-art variant effect prediction for A. thaliana, there is room
for improving its training scheme. Mounting evidence suggests
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that larger models and more extensive training data can enhance
performance (48). Our current proof-of-concept model is consid-
erably smaller—by 200 times—than the largest published protein
language model (49). One strategy to improve GPN, inspired
by protein modeling, involves explicitly incorporating multiple
sequence alignments (50, 51). However, this enhancement will be
bottle-necked by the quality of alignment in noncoding genome
regions. Other promising avenues for DNA language modeling
include incorporating DNA-specific inductive biases, such as
reverse-complement equivariance (52), as opposed to our current
method of averaging model outputs for both strands during
testing. Additionally, integrating long-range information using
recent advances in state space models (53) may further boost
performance. In conclusion, DNA language models represent a
powerful framework for genome-wide variant effect prediction,
and we believe that exploring the above avenues to further
improve GPN would be worthwhile.

Materials and Methods

Pretraining. We obtained a list of Brassicales reference genome assemblies
from NCBI Genome (https://www.ncbi.nlm.nih.gov/data-hub/genome/) (54),
filtered for RefSeq-annotated and kept only one per genus, resulting in a
total of 8 reference genomes (SI Appendix, Table S1). We held out A. thaliana
chromosomes 4 and 5 for validation and testing, respectively. For each genome,
we subsampled genomic windows of size 512 bp, with a step of 256 bp and
augmented with the reverse complement. However, we did not draw genomic
windows uniformly from the whole genome, but emphasized certain regions.
In particular, we took the union of exons (with a small intronic flank), promoters
(1,000 bp upstream of transcription start sites) as well as an equivalent amount of
random windows from the whole genome. We think this decision may improve
performance, but leave experimentation for further studies. Additionally, we
subset the number of windows from each genome to the number of windows
from Arabidopsis, given its unusually small genome.

We set up a masked language modeling task (8), in which 15% of the tokens
in a nucleotide sequence were masked and had to be predicted from their
context. In contrast to most DNA language models that tokenize sequences into
overlapping k-mers (24, 26, 28) or use byte-pair encoding (23), we used bare
nucleotides as tokens. While a thorough benchmark of different tokenization
strategies is lacking, using single-nucleotide tokens makes interpretation easier,
in particular for unsupervised variant effect prediction.

While language model pretraining successes were first showcased by
transformer architectures, convolutional models have shown similarly good
performance in natural language (55) and protein modeling (56). In our
initial experiments, we noticed that convolutional models converged faster than
transformer models. The locality of convolutions may be a good inductive bias
for modeling DNA sequences at this scale. The linear complexity of convolution
also simplifies inference or fine-tuning on longer sequences such as entire
chromosomes, which in the case of transformers might require chunking (with
some overlap) and aggregating the results.

We implemented GPN, a convolutional neural network, using the Hugging
Face library (57). The masked DNA sequence was one-hot encoded and then
consecutively processed by 25 convolutional blocks. Each convolutional block
consisted of a dilated convolutional layer followed by a feed-forward layer, with
intermediate residual connections and layer normalization (Fig. 1). Throughout
the layers, the embedding dimension (number of convolutional filters) was kept
fixed at 512. The dilation was increased exponentially up to a certain value and
then cycled. A list of hyperparameters is displayed in SI Appendix, Table S3.
We trained three models varying only in the loss weight on repetitive elements
(marked lowercase in the FASTA file). We trained each model for 150,000 steps,
taking approximately 4 d with 4 NVIDIA A100 80 GB GPUs. Perplexity is defined
as the exponentiation of the cross-entropy loss, which is equivalent to 1 over
the probability given to the correct nucleotide. Test perplexity is displayed in
SI Appendix, Table S2. We also trained a separate model on the single genome
of A. thaliana, with a repeat weight of 0.1 and the same hyperparameters except

for only 12,000 steps with decaying learning rate, as we noticed it would soon
start overfitting. This model obtained a higher test perplexity of 3.13 (3.17 on
nonrepeat regions).

Analysis of Model Embeddings. Model embeddings were averaged over
nonoverlapping 100-bp windows. Embeddings from the forward and reverse
strand were averaged, and then standardized. UMAP was run with default param-
eters. The gene annotation was downloaded from EnsemblPlants. The annotation
of repetitive elements was downloaded from http://ucsc.gao-lab.org/cgi-
bin/hgTables?hgsid=167291_E9nY5UIAQRUOAR01xJAsum4vDukw. We con-
sidered intergenic regions with 100% overlap with repeats as a separate “Repeat”
class. Windows with ambiguous annotation (e.g., 50% CDS and 50% intron)
were excluded from the analysis. Genomic region classification was performed
with logistic regression as implemented by scikit-learn (58), using class weight
inversely proportional to frequency and L2 regularization strength chosen via
cross-validation. Windows in each chromosome were predicted by a model
trained on the remaining chromosomes.

Motif Analysis. Each position in the genome was independently masked and
the model distribution over nucleotides was extracted. The distribution was
averaged between the results from the forward and reverse strands. The held-
out model perplexity was computed for splice acceptors, splice donors, start
codons, stop codons, CDS, and intergenic and intronic positions in the 1-Mb
region Chr5:3,500,000-4,500,000, after excluding repeats.

An adaptation of TF-MoDISco was run with model predictions in regions
1,000 bp upstream and downstream of transcription start sites (all chromo-
somes), after filtering repeats and coding exons. The exact score fed into
TF-MoDISco was the nucleotide probability minus 0.25, so it would be roughly
centered at 0. Since TF-MoDISco expects genomic windows of equal length, we
concatenated our variable-length windows into one large window, interspersed
with 20 undefined “N” nucleotides.

Variant Effect Prediction. We scored variants by masking the position and
calculating the log-likelihood ratio between the alternate and reference allele.
Scores computed from the forward and reverse strands were averaged. We
calculated the odds ratio and P-value with Fisher’s exact test. When comparing
to phyloP and phastCons, we excluded variants where these scores are undefined
(due to the lack of whole-genome alignment).

All possible SNPs in the region Chr5:3,500,000-4,500,000 were generated
and their consequences annotated with Ensembl Variant Effect Predictor (41)
web interface https://plants.ensembl.org/Arabidopsis_thaliana/Tools/VEP, with
the upstream/downstream argument set to 500, used to call variants as
upstream/downstream instead of intergenic. We compared scores for variant
types with at least 1,000 variants, and we excluded variants with different
consequences in different transcripts.

The 1001 Genomes genotype matrix was downloaded from https://aragwas.
1001genomes.org/api/genotypes/download (59) and combined with metadata
from https://1001genomes.org/data/GMI-MPI/releases/v3.1/1001genomes_
snp-short-indel_only_ACGTN.vcf.gz. This genotype matrix is binary, since all
the accessions are homozygous, as Arabidopsis is predominantly selfing. For
variants with alternate allele frequency greater than 50%, we flipped the
sign of GPN scores (equivalent to taking the log-likelihood ratio between
the minor and the major allele) and did all analyses in terms of minor
allele frequency. Variant consequences produced by Ensembl Variant Effect
Predictor were downloaded from Ensembl Plants. Conservation scores were
downloaded from http://plantregmap.gao-lab.org/download.php#alignment-
conservation (60). For conservation scores phyloP and phastCons, we simply
flipped the sign to obtain a variant score, i.e., variants at conserved sites should
be considered more pathogenic. We additionally scored variants using (minus)
the absolute value of phyloP, referred to as abs(phyloP), which means prioritizing
putative accelerated regions over putative neutral ones. We defined rare variants
as those with allele count equal to 1 (to be precise, it is two alleles in the same
homozygous accession), and common variants as those with allele frequency
above 5%. Model scores were defined as pathogenic or benign based on a
quantile threshold that we varied from 0.1% to 10%.
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GWAS summary statistics for all 462 phenotypes were downloaded through
the AraGWAS API, with the default threshold of minimum allele count of
6 (i.e., at least 6 homozygous accessions having the allele). The summary
statistics include information on whether an association is significant according
to a permutation-based approach recommended (44) as well as a Bonferroni
threshold. The LD matrix of squared Pearson correlations (r2) was calculated
within a radius of 100 kb around each variant, using sgkit (https://pystatgen.
github.io/sgkit/). We define a weighted sum of GPN scores according to LD (i and j
index SNPs):

GPN×LDi = −
∑

j

|GPNj| · r
2
ij .

This is known as a stratified LD Score (61) and can also be interpreted
as the multiplication between the LD matrix and the vector of GPN scores.
The reason why we used unsigned LD and model scores is that we focused on
assessing whether a variant would have a significant association with differences
in a trait, regardless of the direction of the association. Since the association
P-value is invariant to recoding of reference and alternate alleles, we took
the absolute value of GPN scores. We arbitrarily added a negative sign in
front to be consistent with more negative implying more likely functional. We
similarly defined phyloP × LD (first shifting the scores to reside entirely on
the negative side of the number line), abs(phyloP)× LD and phastCons× LD.

We considered the baseline LD Score (62), the unweighted sum of LD with a given
variant:

LD Scorei = −
∑

j

r2
ij .

Use of AI Software. ChatGPT was used to improve the wording of some
paragraphs, but not to generate new content.

Data, Materials, and Software Availability. Code to reproduce all
results, including instructions to load the pretrained model, is available at
https://github.com/songlab-cal/gpn (63). All other data are included in the
manuscript and/or SI Appendix. Previously published data were used for this
work (https://www.ncbi.nlm.nih.gov/data-hub/genome/ (54), https://aragwas.
1001genomes.org/api/genotypes/download (59), and http://plantregmap.gao-
lab.org/download.php#alignment-conservation (60)).
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