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Antigenic variation is the main immune escape mechanism for RNA viruses like
influenza or SARS-CoV-2. While high mutation rates promote antigenic escape, they
also induce large mutational loads and reduced fitness. It remains unclear how this
cost–benefit trade-off selects the mutation rate of viruses. Using a traveling wave
model for the coevolution of viruses and host immune systems in a finite population,
we investigate how immunity affects the evolution of the mutation rate and other
nonantigenic traits, such as virulence. We first show that the nature of the wave
depends on how cross-reactive immune systems are, reconciling previous approaches.
The immune-virus system behaves like a Fisher wave at low cross-reactivities, and
like a fitness wave at high cross-reactivities. These regimes predict different outcomes
for the evolution of nonantigenic traits. At low cross-reactivities, the evolutionarily
stable strategy is to maximize the speed of the wave, implying a higher mutation rate
and increased virulence. At large cross-reactivities, where our estimates place H3N2
influenza, the stable strategy is to increase the basic reproductive number, keeping the
mutation rate to a minimum and virulence low.
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RNA viruses like influenza or SARS-Cov-2 are subject to a constant antigenic evolution
driven by their hosts’ immune pressure and fueled by their remarkably high mutation
rates (1–4). Although immune memories in hosts are geared toward reinfections and
possible variants (5–7) this constant evolution allows viruses to evade immunity, leading
to repeated epidemics and reinfections. The recent SARS-Cov-2 outbreak has shown
that the management of infectious diseases remains a global health challenge and is now
a major public concern in the face of an increased ecosystem disruption (8–10). In these
conditions, predicting the emergence of future variants is essential to inform vaccine
strain selection, improve collective immunity and lift the burden imposed on healthcare
systems.

These challenges have led to the development of theoretical methods to predict
influenza antigenic evolution (11–13). However, these approaches do not inform about
the evolution of nonantigenic traits like virulence or the mutation rate itself, while
these traits clearly influence the future state of the viral and host populations. On the
other hand, extensive epidemiological literature describes host-pathogen coevolution in
pathogens not escaping immunity (14–18). While bridges between this literature and
population genetics models have long been built to predict the evolution of parasite
virulence (19, 20), they have only recently been extended to study virulence evolution
in antigenically evolving viruses (21). These approaches showed that in populations of
infinite size, antigenic escape promotes higher transmission rates and virulence than
expected for pathogens at an endemic equilibrium. However, antigenic adaptation is
mostly driven by stochastic birth, death, and mutation events occurring in the most
well-adapted individuals (22, 23), which are typically in small numbers. Thus, finite-size
demographic effects are crucial to accurately describe antigenically evolving pathogens
(24–27). It remains unclear how antigenic escape in a coevolving system of viruses and
antibodies, coupled with finite size demography, constrains the evolution of nonantigenic
traits, such as the mutation rate or the virulence.

To model antigenic escape it is convenient to describe both the host immune memories
and the viral strains as living in the same antigenic space (21, 24, 27, 28), corresponding
to a space of molecular similarity, also called “shape space” (29). This construction is
not just conceptual: Dimensionality reduction of hemagglutination inhibition data can
be used to build low dimensional manifolds on which influenza and hosts antibodies
coevolve (30–32). While mapping influenza evolution in this shape space has been used
to describe evolutionary modes of influenza (27, 33, 34), it remains unclear how this
regime influences the evolution of nonantigenic traits such as the mutation rate of viruses.

In this work, we describe with a SI(R) formalism (15, 35) for the coevolution of a
finite population of viruses and immune systems of infected hosts, in an effective one
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dimensional antigenic space. The model generates a traveling
wave for the number of viruses, which escapes from a con-
tinuously adapting immune system. Our first finding is that,
depending on the model parameters, the antigenic wave crosses
over between two well-characterized regimes. Among those
parameters, the ability of antibodies to recognize pathogens
similar to the already encountered ones, called immune cross-
reactivity or cross-immunity, plays a key role. A narrow cross-
reactivity leads to a Fisher–Kolmogorov–Petrovsky–Piskunov
(FKPP) traveling wave (36), while, for a large one, the wave
converges to a linear-fitness wave dominated by finite-size effects
(25, 37), with a smooth cross-over between the two. These
regimes result in very different scalings of the macroscopic
properties of the wave, such as its speed. They also affect the
evolutionary stability of nonantigenic traits. To investigate this
effect, we derive a simple and general relation for the evolutionary
stability of viral parameters, which displays two qualitatively
different behaviors depending on the regimes. We then apply
these results to study the evolution of the viral mutation rate on
the one hand, and of the virulence on the other. We discuss how
the evolutionarily stable states are strongly impacted by cross-
reactivity.

2. Results

A. Model of Coevolving Pathogens and Immune Systems. We
start by defining and analyzing a mathematical model of
pathogen-immune dynamics. We consider the evolution of a
pathogen in a one-dimensional antigenic space with density
n(x, t) (Fig. 1A, red line), where x denotes position in that space.
Immune protections are also assigned positions in that space, so
that protections are close to the viruses they recognize. While
the antigenic space is believed to have higher dimensions (38),
theoretical work has shown that the effective evolution of the
resulting traveling wave of escaping viruses is “canalized” into
a one-dimensional track (34), provided that we ignore possible
speciation events (27, 33, 39). This picture is overall consistent
with influenza data that show a low-dimensional reduction of the
viral evolutionary trajectory from hemagglutination inhibition
assays (30).

We assume that mutations act continuously and in an unbiased
way on the antigenic space so that, in the limit of infinitely small
mutations happening at a rate �x , the density of infected hosts
effectively diffuses with constant D = �xΔx2/2, where Δx is the
typical step covered by a mutation in the antigenic space. This
continuous model approximates any arbitrary discrete mutational
model provided that a random amino acid mutation in the
antigenic sites of the pathogen is unlikely to induce a large change
in hemagglutination inhibition titer, or equivalently in the
antigenicity of the strain. For influenza, in spite of rare mutations
inducing large antigenic jumps (30, 40), the typical number of
amino acid mutations happening in the hemagglutinin antigenic
sites before observing a substantial change in antigenicity is closer
to 15 substitutions (12). In this regime and for similar pathogens,
a continuous approximation is accurate enough.

Following standard SI(R) modeling, we denote by � the
pathogen transmission rate in the absence of immunity, � its
virulence and 
 the recovery rate. An important quantity is
the reproductive ratio, R0 = �/(� + 
), corresponding to
the mean number of transmissions infectious individuals cause
in an unprotected population, before they recover or die. We
define the effective growth rate of a viral strain at position x as
F (x, t) = �S(x, t)− � − 
 , where S(x, t) is the susceptibility of

A

B

Fig. 1. Two types of antigenic waves controlled by cross-reactivity. (A) Typical
traveling wave dynamics of a population of viruses (in red) escaping the
immune system (in blue), Eqs. 1 and 5. In the Bottom panel, the immune
coverage and the viral fitness are also drawn. The increase of fitness in the
back of the wave does not give rise to a second wave as the virus is extinct
in that region. (B) Differences between the two regimes of small and large
cross-reactivity. The plots show the viral density (in red) under two different
fitness profiles (in yellow). They highlight the phenomenological difference
between the two regimes.

the population to that strain, defined below. This leads to the
following stochastic differential equation for the viral evolution:

∂tn(x, t) = F (x, t)n(x, t) + D∂2
x n(x, t)+

+ demographic noise.
[1]

We consider an effective, population-averaged effect of the
immune systems of the hosts onto the virus (27). The immune
protection is described by a function h(x, t) (Fig. 1A, blue line),
which is the probability density of immune receptors in a random
host. We consider Nh hosts, each with M immune protections
drawn at random from h(x, t). Upon infection by x, the host
acquires a new immune protection at x, which replaces one
of its M protections at random. This results in the following
population-wide dynamics:

∂th(x, t) =
1

MNh
[n(x, t)− N (t)h(x, t)] , [2]

where N (t) =
∫
n(x, t)dx is the total number of infected hosts.

To estimate the susceptibility S(x, t), we assume that a
protection at position x provides protection against nearby
pathogens, with a probability that decays exponentially with
characteristic length r0, called cross-reactivity range. This allows
us to define the immune coverage as

c(x, t) =
∫

dy h(y, t)e−
|x−y|
r0 , [3]
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Table 1. List of free parameters of the model

�x Viral mutation rate � Viral transmission rate
Δx Mutational step r0 Receptor cross-reactivity
� Virulence Nh Number of hosts

 Recovery rate M Protections per host

which is the probability that a random protection from a random
host is effective against x (Fig. 1A, green curve). The susceptibility
is then just the probability that none of the M protections of a
random host is effective against x:

S(x, t) = (1− c(x, t))M . [4]

B. Deterministic Approximation. Eqs. 1–4 describe the coevolu-
tionary dynamics of pathogens and immune protections. Because
escape mutants of the pathogen are subject to random extinctions
due to genetic drift in their early days, one should not ignore
demographic noise for all population sizes. To simplify the
computational load yet account for the effect of small numbers,
we use a deterministic version of Eq. 1 where viruses stop
spreading when n(x, t) < nc :

∂tn(x, t) = F (x, t)Θ(n− nc)n(x, t) + D∂2
x n(x, t), [5]

where Θ(x) = 1 if x > 0 and 0 otherwise. This approximation
is known to provide traveling wave results in excellent agreement
with fully stochastic agent–based simulations in various models
of rapidly adapting populations (22, 27, 37). Details about
simulations of this equation are given in Section A. We checked
that our results are consistent with a full stochastic approach,
Section B.

Note that in general, n has units of an inverse antigenic
distance. We will show that results depend very weakly on nc
(SI Appendix, Text and Fig. S1). Nevertheless, to fix the scale
of x in an interpretable way, we set Δx = 1, so that n(x, t)
roughly represents the average number of infected hosts in its
mutation class (i.e., within a bin of size Δx). We then set
nc = 1, which corresponds to one individual per class. The
cross-reactivity parameter r0 can be interpreted as the number
of mutations that a virus needs to acquire to escape an immune
protection.

C. Cross-Reactivity Drives Different Regimes of Antigenic
Evolution. The coupled system of Eqs. 1 and 2 admits a traveling
wave solution, where the viral population is a moving bump

Table 2. Main quantities of the model

n(x, t), Eq. 1 Density of infected hosts
h(x, t), Eq. 2 Density of immune receptors
c(x, t), Eq. 3 Coverage of the receptors
S(x, t), Eq. 4 Susceptibility
F(x, t) = �S(x, t)− � − 
 Viral growth rate
Fmax = � − � − 
 Maximal viral growth rate
D = �xΔx2/2 Mutation diffusion coef.
R0 = �/(� + 
) Reproductive ratio
v Speed of the viral wave
FT = F(xT ) Viral growth rate at the wave tip
sT = ∂xF(xT ) Slope of growth rate at the tip
�T = �0(Ds2

T )
1/3 Notation shorthand

k = r2
0Fmax/D growth-to-escape dimensionless ratio

followed by the immune system (Fig. 1A). This dynamics is
known to be driven mainly by the few individuals the front
of the wave (22, 23): Mutations generate new strains at more
favorable antigenic positions ahead of the wave, where the hosts’
immune systems provide less protection. As a consequence, they
grow faster than strains in the bulk of the wave, which is under
stronger immune pressure. This process is controlled by the few
individuals at the front tip and therefore is intrinsically stochastic.

There are two different limits depending on the shape of the
viral fitness at the tip of the wave, as illustrated in Fig. 1B. For
small cross-reactivities r0 of the immune protections, viral strains
at the tip feel no immune pressure at all. The fitness profile is
thus locally constant. As we will see in detail, the wave dynamics
in this regime corresponds to the classical FKPP traveling wave
(36), where stochastic effects do not play an important role.

At large r0, the immune coverage extends all the way to the
tip of the wave, where viral strains experience a local gradient of
fitness. This case, where stochastic events at the wave tip drive
its motion, has been also well characterized in previous works
(25, 37). In general, varying r0 allows us to interpolate smoothly
between the two regimes.

These two different behaviors are not just of technical interest.
As we will see, they result in different parameter dependencies for
the speed of the wave and imply markedly different evolutionarily
stable states for nonantigenic traits such as the mutation rate or
the virulence. While previous work on the evolutionary stability
of such traits has focused on the FKPP regime (21), here, we treat
the general case.

D. The Cross-Over Results in Different Wave Speed Dependen-
cies. We assume that Eq. 5 admits a stationary solution in the
frame moving with constant speed v, so that all quantities depend
on the reduced variable u = x − vt:

D∂2
un(u) + v∂un(u) + F (u)Θ(n− nc)n(u) = 0. [6]

The dynamics of the wave is driven by its behavior around
the wave tip uT , defined by n(uT ) = nc , where we assume the
fitness is locally linear, F (u) ≈ FT + sT (u − uT ). This is a
strong approximation which neglects everything that happens
away from the tip, but, as shown below, it works extremely well,
confirming the idea that the individuals at maximal fitness are
the main drivers of evolution (23). In that regime, Eq. 6 may
be solved exactly in the vicinity of uT . The continuity condition
between the u > uT and u < uT parts of the solution yields the
relation (SI Appendix, Text A1):

v2

4D
= FT + �T , [7]

where �T ≡ �0(Ds2T )1/3, and �0 ≈ −2.3381 is the largest zero
of the Airy function. We verified numerically that this relation is
satisfied for both the deterministic equation with a cutoff, Eq. 5,
and the original stochastic equation, Eq. 1 (Fig. 2A). This relation
connects the wave speed with the value of the fitness, FT , and its
derivative, sT , at the tip in a very general way, without assuming
any specific behavior of the immune system. It can be potentially
applied to every system showing traveling waves and a locally
linearizable fitness at the tip. However, it is only implicit, since
the position of the fitness tip uT itself needs to be computed from
the model parameters in order to evaluate FT and �T . A second
implicit equation for v and uT may be obtained by imposing
the normalization condition

∫
du n(u) = N on the solution to

Eq. 6, where N is the number of infected hosts.
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Fig. 2. Wave speed. (A) Numerical check of Eq. 7 relating speed and fitness
profile at the tip of the wave, for both the stochastic model and its
deterministic approximation with a cutoff (Eq. 5). The gray line is identity.
Each point is defined by the values of speed, fitness, and selection at the
tip of the numerical solutions of our model. Different points are different
values of r0 and fixed values of the other parameters: �x = 4 10−3 day−1,
� = 0.12 day−1, 
 + � = 0.1 day−1, M = 5, Nh = 1010 (B) Wave speed as
a function of the cross-reactivity, showing the cross-over between the FKPP
and linear-fitness regime. In the two extreme regimes, analytical predictions
can be explicitly obtained (Eq. 8 for the dotted line and SI Appendix, Eq. S24 for
the dashed one). Same simulation parameters as (A). (C) Inset: speed vs cross-
reactivity for different values of D in n.mutations2 day−1 and Fmax = �−�−

in day−1. The main plot shows the collapse of these curves as a function of
the growth-to-escape ratio k = r2

0FmaxD. The dashed and dotted lines are the
theoretical predictions for the FKPP and linear fitness regimes.

A special case is given by the regime of “small” cross-reactivity
(Fig. 1 B, Left) where the fitness at the tip FT = �−�−
 = Fmax
is maximal, and its derivative sT = 0. Then Eq. 7 is sufficient
to determine the speed, giving back the classical expression for
FKPP waves:

v = 2
√
FmaxD, [8]

Fig. 2B shows how the wave speed of our model converges to this
limit (dotted line) for decreasing r0.

In the opposite limit of a linear fitness profile, F (u) ≈ F (0)+
su (Fig. 1 B, Right), the normalization condition can be expressed
analytically (25, 37, 41), leading to the following approximated
formula for the speed (SI Appendix, Text A2 for a full expansion):

v ≈ 2
(

3sD2 ln
(
N
nc

s1/3

D1/3

))1/3

. [9]

The fitness profile F (u) may be obtained by integrating Eq. 2.
The stationarity condition of zero mean fitness, F (0) = 0, gives
an additional relation between N and v, N/Nh = vM(R1/M

0 −

1)/r0. The gradient then reads s = (� + 
)M(R1/M
0 − 1)/r0.

This creates a closed system of 2 implicit equations that allows us
to estimate N and v. The speed obtained numerically converges
to that solution in the large r0 regime (Fig. 2B, dashed line).

To better understand the dependency of the cross-over on
the model parameters, we introduce the natural dimensionless
parameter k = r2

0Fmax/D. It is equal to the ratio of two timescales:
the typical time r2

0/D it takes a single virus to escape immunity
by antigenic drift, and the characteristic doubling time∝ F−1

max in
the absence of immunity. We call this quantity the “growth-to-
escape ratio.” As Fig. 2C shows, the normalized speed v/(r0Fmax)
collapses as a function of k for a wide range of parameter values.
The cross-over takes place around k ≈ 103. In particular, a
larger diffusion coefficient helps the virus to be well ahead of the
immune coverage, which corresponds to the FKPP regime. By
contrast, a large cross-reactivity increases the immune coverage
and pushes the system toward the linear-fitness regime.

E. The Evolutionarily Stable Strategy has a Cross-Over between
Maximizing the Speed and the Reproductive Ratio. From this
section on, we tackle the main question of this manuscript:
understanding the evolutionarily stable strategies of the viral
population under immune pressure. The first step is to ask
whether a mutant competing with a resident population can
displace it. Consider a mutant strain with slightly different
parameters than the resident one. The evolution of its number,
n′(x, t), is given by Eq. 5. In the early days of this mutant, the
resident strain is at stationary state, and that the mutant is too
rare to contribute to the immune receptor density h(u).

We assume that the fate of the mutant is determined by
its behavior at the tip of the wave, where the fitness profile is
approximately linear. Then, as we show in SI Appendix, Text
C1, the mutant population evolves in the moving frame as
n′(u, t) = e�t�(u), with growth rate:

� = F ′T + �′T −
v2

4D′
, [10]

where F ′T = � ′S(uT ) − �′ − 
 ′ and �′T = �0(D′s′T )1/3, with
s′T = � ′∂uS(uT ), and where the mutant parameters are indicated
with a prime and v is the speed of the resident population. The
mutant invades if and only if � > 0.

As expected, when the mutant is phenotypically identical to the
resident,F ′T = FT ,�′T = �T ,D′ = D, then Eq. 7 implies � = 0,
meaning that the mutant has no advantage or disadvantage. We
tested the validity of the invasion condition � > 0 for mutants of
� and D in SI Appendix, Text and Fig.S2. Note that this stability
relation depends only on the fitness and the selection coefficient
at the tip, without specific details of our immune framework.
This implies that it can be extended to other models.

Eq. 10 allows us to see how the best viral strategy radically
depends on the considered regime. In the FKPP limit (small
r0), the condition becomes F ′max − v2/4D′ > 0, or equivalently
v′ > v with v′ = 2

√
F ′maxD′: The best strategy is to maximize

the speed of adaptation. In the linear-fitness regime (large r0),
the fitness in the bulk of the wave dominates Eq. 10, yielding the
condition F ′(0) > 0 or equivalently R′0 > R0: The best strategy
is to maximize the reproductive ratio.

We can use Eq. 10 to derive evolutionarily stable points of
the population in all regimes. Consider phenotypic continuous
variables � over which the evolutionary process acts, so that
D(�), �(�), and so on. The growth rate of an invading mutant,
Eq. 10, depends on both the phenotypes of the resident and
invading population, �(�′; �). A stable point �∗ must satisfy
�(�∗+��; �∗) ≤ 0 for all perturbations ��. Since �(�∗; �∗) = 0,
this implies ∂�′�(�∗; �∗) = 0, which can be rewritten as
(SI Appendix, Text C1):
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∂�′ [(F ′T + �′T )D′]
∣∣
�∗ = 0. [11]

We will now use this condition to study the evolutionary
stability of two distinct quantities independently: the mutation
rate (next two sections) and the virulence (last section).

F. Evolutionary Stability of Mutation Rate Under Mutational
Load Trade-Off. The mutation rate plays a key role for antigenic
escape. By raising it, the ability of the virus to escape immune
protection increases, as shown by the positive dependency of
the wave speed on D (Eqs. 8 and 9). However, a majority of
mutations occurring in viruses are not affecting antigenic traits
and generically decrease the intrinsic fitness of the strain (42–44).
The larger the total mutation rate, the more these deleterious
mutations accumulate and decrease the pathogen’s infectivity,
possibly leading to viral extinction. In fact, increasing mutation
rates is a widely used antiviral strategy (45). To account for
this trade-off between the harmful effect of mutations and the
benefits of antigenic escape, we let the infectivity depend on
the rate of deleterious mutations per transmission Ud as � =
�0(1−Ud ). In SI Appendix, Text B, we derive this relation from
the balance between mutation and selection (43, 46, 47) in an
epidemiological context, using an approach similar to ref. 48.
The two rates �x and Ud are assumed to scale both with the
global mutation rate, so that they are linearly related, Ud = a�x .
This implies Ud = �D, with � = 2a/Δx2.

Using Eq. 11 with D as the only phenotypic control param-
eter �, yields an implicit expression for the evolutionarily stable
state:

F∗T (1− 2�D∗) + �∗T

(
4
3
− 2�D∗

)
− 
�D∗ = 0. [12]

In the two extreme limits r0 → 0 and r0 → ∞, we obtain
explicit expressions that give us two different scalings between
the normalized diffusion coefficient, and the normalized scaling
factor: D∗/r2

0 ∼ (�r2
0)−1 for FKPP, and D∗/r2

0 ∼ (�r2
0)−3/2 for

linear fitness (SI Appendix, Text C2). Note that D∗/r2
0 may be

interpreted as the inverse of the time it takes for a single strain
to escape an immune protection by antigenic diffusion, while
�r2

0 may be interpreted as the number of deleterious mutations
accrued during that time.

These expressions are compared to numerical simulations of
the evolutionary stability in Fig. 3A, and confirm the scaling
relation D∗/r2

0 = f (�r2
0). We also tested the validity of the

general stability condition, Eq. 12, for both the stochastic model
and its deterministic approximation with a cutoff (SI Appendix,
Text, Fig.S3).

Fig. 3B shows the different behavior of the viral strategy
depending on the value of r0 discussed in the previous section:
It tends to be the one that maximizes the speed for small r0, and
the reproductive ratio for large r0.

G. Application to H3N2 Evolution. We can apply the predictions
from our model for the mutational trade-off to data obtained for
the strain H3N2 of influenza infections. Some of the parameters
of the model can be fixed from data and their values are well-
established in literature. Recall that we have set Δx = 1. The
reproductive ratio is set to R0 = �0(1 − Ud )/(� + 
) ≈ 1.8,
the recovery rate to 
 ≈ 0.2 d−1, and the virulence to � ≈ 0,
which is negligible compared with the recovery rate. We consider
those parameters as fixed and we explore our model by varying
the remaining ones, whose estimate is more indirect and less

B

A

Fig. 3. Evolutionary stability of the mutation rate. (A) Evolutionarily stable
mutation coefficient D∗, rescaled by r2

0 , as a function of the rescaled
coefficient �r2

0 . The dotted and dashed lines show the FKPP and linear-
fitness predictions valid for small and large r0 (SI Appendix, Text 3B). Used
parameters: �0 = 0.05 day−1, 
 + � = 0.04 day−1, M = 5, Nh = 1010.
The value of � shown in the legend is in days/n.mutations2. Inset: same
simulations plotted without rescaling. (B) Wave speed and reproductive ratio
as a function of the mutation coefficient for two extreme cross-reactivities:
r0 = 0.5, r0 = 22.4 at � = 200 day/n.mutations2. The evolutionarily stable
coefficient is indicated with the black line. It tends to maximize the speed for
small r0, and the reproductive ratio for large r0.

precise. The number of receptors per host, M , is both difficult to
estimate and specific to the particular modeling choice. However,
we observed that results depend very weakly on its choice in the
range M = 1–10. The effective population of hosts can be
difficult to estimate, and we considered two reasonable choices
Nh = 108, 109.

We are left with three parameters to fix: the cross-reactivity in
units of mutational steps r0, the deleterious mutation rateUd , and
the diffusion coefficient D (or equivalently �x = 2D/Δx2). The
substitution rate of nonsynonymous mutations in antigenically
interacting regions of the virus, which can be identified with
the wave speed in units of antigenic effects v/Δx ≈ 2.6 year−1

(24, 49, 50), imposes an implicit relation between these parame-
ters. In addition, the condition of evolutionary stability, Eq. 12,
imposes another constraint. This leaves us with one degree of
freedom, which we chose to control through the deleterious
mutation rate, Ud .

Figs. 4A,B shows the values of the two parameters r∗0 and �∗x
obtained by imposing the two conditions discussed above for
different given values of Ud (see Section D for details on how
r∗0 and �∗x are evaluated). Hemagglutination experiments with
immunized ferrets show that the minimal number of antigenic
mutations before escaping immunity can be of order 1–5
(30, 40), while epidemiological models (12, 24) estimate the
cross-reactivity to be around r0 = 14–15. This discrepancy stems
from the fact that antigenic effects are heterogeneous, and while
there exist rare mutations leading to immune escape, the majority
of mutations are unlikely to induce a sizable change in the strain’s
antigenicity. Therefore, as opposed to controlled experiments on
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Fig. 4. Application to the H3N2 influenza strain. Evolutionarily stable values
of the (A) cross-reactivity r0 and (B) antigenic mutation rate �x as a function
of the rate of deleterious mutations Ud , for fixed values of the parameters
R0 ≈ 1.8, 
 ≈ 0.2 day−1, � ≈ 0, M = 5, and Nh specified in the legend, with
the additional constraint v/Δx = 2.6 y−1, as fixed by empirical estimation.
The orange arrows are the predictions of our model assuming using the
empirical estimate r0 ≈ 15 which implies Ud ≈ 0.08. Panels (C) and (D) show
the incidence and the time from the most recent common ancestor.

ferrets, the typical number of mutations observed between two
successive epidemic strains is larger than the minimal number
of antigenic mutations needed to escape immunity. From the
left panel of Fig. 4 starting from r0 ∼ 15, we can estimate
Ud ≈ 0.08 deleterious mutation per genome per transmission
event, which is consistent with an independent estimate of≈ 0.1
(48). Using the right panel of Fig. 4, this value ofUd in turn leads
to an estimate for the beneficial mutation rate �x ≈ 1.2 · 10−3

antigenic mutations per day.
These numbers allow us to determine the regime of evolution

of the virus. We estimate k ≈ 6 · 104
� 103, suggesting that

H3N2 evolves in the linear fitness regime as has been assumed in
other work, e.g., refs. 27 and 24. While our analysis is very similar
to these earlier works, we do not hypothesize a linear fitness
regime to study H3N2 evolution. We show that H3N2 evolves
in this regime under an evolutionary stability constraint balancing
antigenic escape and deleterious mutations. This observation
provides, with no additional fitting parameters, a justification
for this early hypothesis.

We tested if other observables predicted by the model
were consistent with empirical estimates. Fig. 4C shows the
incidence, defined as the fraction of infected people in a
given time: N 
/Nh. The H3N2 strain infects 7 − 9% of
the population each year (24, 51), while our model predicts
3 − 4%. Fig. 4D shows the average time from the most
recent common ancestor, which can be computed as the time
the wave takes to reach its tip, TMRCA ≈ c uT /v, where
c ≈ 1.66 (27, 41). Our numerical estimates predict 2–2.5 y,
versus empirical estimates of 3.2± 1.2 (33). For both quantities,
our model captures the correct order of magnitude, recapitu-
lating the overall features of influenza evolution with minimal
ingredients.

H. Evolutionary Stability of Virulence Under Transmission
Trade-Off. We now turn to the application of our stability
condition to the evolution of the virulence �. Recall that
according to the classical argument (which ignores immune
escape and waves), virulence should evolve to maximize the viral
reproductive ratio R0 = �/(
 + �) (14, 17). If � is an increasing
but concave function of �, there exists a tradeoff �∗ between
the opposing needs to increase transmissibility and to decrease
virulence.

By contrast, applying Eq. 11 with � = � gives us the following
condition for the evolutionarily stable virulence:(

FT + � + 
 +
2
3
�T
)
�−1∂�� = 1. [13]

To check the validity of this relation, we numerically looked for
the evolutionarily stable value of the virulence �∗ as a function
of r0, for the commonly used concave function �(�) = b

√
�

(Fig. 5A). The numerical results are consistent with Eq. 13 (SI
Appendix, Text and Fig.S4), and show a collapse of �∗ as a
function of r2

0/D.
As we expect from previous arguments, the evolutionary

endpoint maximizes the speed of the wave v in the FKPP regime
of low cross-reactivity (∂�� = 1), consistent with a previous
analysis (21). By contrast, the reproductive ratio R0 is maximized
in the linear-fitness regime of high cross-reactivity, consistent
with the classical result in the absence of escape. The two limit
cases are illustrated in Fig. 5B.

Fig. 5A also implies that short cross-reactivities favor the
evolution of higher virulence.

This result holds for every concave function �(�). This
highlights the importance of correctly estimating the quantitative

A

B

Fig. 5. Evolutionary stability of virulence. (A) Evolutionarily stable virulence
as a function of the diffusion-escape time D/r2

0 . Transmissibility has the form
�(�) = b

√
�. The dotted and dashed lines show the two limits of FKPP

and linear fitness (SI Appendix, Text 3C). Parameters: b = 0.5 days−1/2,

 = 0.05 days−1, M = 5, Nh = 1010. The values of D in the legend
are in n.mutations2/d. Inset: same simulations shown as a function of the
nonrescaled variables. (B) Wave speed and reproductive ratio as a function
of the virulence for two different cross-reactivities, r0 = 0.5 and r0 = 75.7,
and D = 5 10−4 n.mutations2/d.
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effect of immunity for predicting the evolution of nonantigenic
traits.

3. Discussion

The relevance of propagating waves for describing the continual
dynamics of viral escape from immunity according to the “Red
Queen” hypothesis has long been recognized, but using two
seemingly contradictory mathematical paradigms. The FKPP
wave, originally introduced to describe the spatial spreading
of beneficial mutations (36), was shown to emerge in simple
models of joint viral-immune dynamics along an antigenic
dimension (52). The fitness-wave model was proposed to model
the evolution of RNA viruses with an infinite reservoir of
beneficial mutations (25). Shifting immunity was then proposed
as a mechanism for such a reservoir in models of viral-immune
coevolution (27, 33). The two descriptions lead to markedly
different predictions for the rate of adaptation and its dependence
upon the antigenic mutation rate and host population size. We
have explicitly shown that these two descriptions correspond
to limiting cases of the same model, reconciling apparently
incompatible approaches.

These two limits may be understood intuitively as follows.
In the regime of low cross-reactivity, where the FKPP wave
description holds, the fittest variants at the tip of the wave
grow in an almost entirely susceptible host population. They all
have comparable growth rates, and so do variants with additional
escape mutations, which only confer a negligible advantage until
hosts start getting infected in large numbers. By contrast, in the
regime of high cross-reactivity, where the fitness-wave description
is valid, even the most advanced escape mutants face a partially
immune host population. This implies that additional escape
mutations at the tip have an immediate growth advantage over
their ancestors, driving the evolution of the virus.

Applying our theory to the evolution of H3N2 influenza,
by plugging parameter estimates along with the additional
assumption that the viral mutation rate is evolutionarily stable,
we are able to recover the empirical estimates of the incidence
rate and the time from the most recent common ancestor, which
have not been used in the fitting procedure. We argued that
H3N2 falls in the linear-fitness regime, where cross-reactivity
is relatively large. This implies that the new variants driving
influenza evolution are still largely subject to the hosts’ collective
immunity, albeit a bit less so that they retain a small fitness
advantage to the majority of circulating strains. This is consistent
with the observation that emerging variants have a moderate
effective reproductive number relative to the basic one R0 (49).
We may expect the evolution of SARS-CoV-2 to fall in the same
regime as it settles in its endemic state.

We showed that our model is able to capture key features of
influenza evolution, and allows us to estimate both evolutionary
and epidemiological quantities such as the antigenic mutation
rate and the incidence rate. However, this model oversimplifies
several aspects of influenza evolution and notably ignores the
rare mutations capable of inducing large jumps in the antigenic
space (30, 40). While our continuous model is a simple approx-
imation to influenza evolution, we believe that a more detailed
treatment of its mutational process (53) could provide a more
accurate estimation of the parameters presented in this paper, and
would also allow for the estimation of yet inaccessible parameters
such as the rate and the size of large antigenic jumps. While in
the current state our simulations does not give us philogenies,
it would be interesting to compare observations with the results
of a more detailed version of the model allowing for genealogy

reconstruction, e.g., particular the succession of clades bursting
from the trunk of the tree, as seen in the data.

We showed that the cross-over between high and low cross-
reactivity has a strong impact of the evolution of nonantigenic
traits. In the low cross-reactivity regime, the ESS maximizes
the speed of the wave (the rate of adaptation), consistent with
(21): Strains that get ahead at the tip of the wave outcompete
slower ones. In the high cross-reactivity regime, however, the
ESS maximizes the reproductive number. Intuitively, all strains
are under strong immune pressure, so that their effective growth
rate is close to 0, with a minute growth advantage for the most
advanced immune-escape strains; any intrinsic fitness advantage
(larger R0) is likely to fix in the bulk of the wave, regardless
of the wave’s speed. This last conclusion differs from that of
ref. 21, where it was argued that the speed of the wave was
maximized in the ESS regardless of the extent of cross-immunity.
This discrepancy may be explained by the different assumptions
about the dynamical regime. In this paper, we specifically looked
for strict steady-state solutions (in the moving frame of the wave),
while ref. 21 also considered oscillatory solutions, which emerge
in the high cross-reactivity limit (where we claim the fitness-wave
solution holds). One limitation of our approach is that it ignores
the possible effect of such oscillations. However, oscillations also
lead to near population collapse, and may not survive a full
stochastic setting where extinction is likely. Which dynamical
regime is relevant for real viruses remains an interesting question
for future research.

Our results have several implications for the evolution of
nonantigenic traits. The suggestion that respiratory viruses may
be in the linear-fitness regime implies that their mutation rate
should evolve toward low values to minimize their mutational
load, at the expense of their ability to escape immunity. More
broadly, our result that R0 is maximized in the linear-fitness
regime implies that antigenic and nonantigenic evolutions are
decoupled, suggesting that previous arguments that ignored
antigenic escape may still be valid. We also predict that viruses
for which there is more cross-immunity should evolve to be less
virulent.

4. Materials and Methods
A. Deterministic Simulation with a Cutoff. Eqs.2–5are simulated using the
Euler–Maruyama method. The code can be found at the following repository:
https://github.com/statbiophys/viral_coevo. Time and space are discretized with
resolution �t and �x, respectively (note that �x is a “parameter” of the algorithm
for solving the continuous equation and should not be confused with Δx). We
choose �x small compared to both r0 and the width of the wave (the second
condition between checked a posteriori), and then set �t to satisfy the Courant-
Friedrichs-Lewy condition, D�t/�x2 < 1.

The one-dimensional antigenic space is simulated with periodic boundary
conditions,withaboxsizelargerthantheimmunepersistencevMNh/N.Previous
passages are erased by settingh(x, t) to zero ahead of the wave. In some regimes,
the immune protection cannot be sufficient to prevent individuals at the back of
the wave to grow again, creating a secondary wave. Since the behavior of the pri-
mary wave is not affected and secondary waves can create numerical instabilities,
we artificially impose perfect immunity (S = 0) at the back of the wave.

For large cross-reactivities r0, some initial conditions may lead to oscillations
occurringaroundthestationarystateof thewave(21), leadingtoextinctionswhen
a cutoff is imposed. To start close to the stationary wave solution, we initialize
n(x, t) as a skewed Gaussian: n(x, 0) = kne−x

2/2
(

1 + erf
(

4x/
√

2
))

,

where the normalization coefficient kn is chosen to obtain an incidence rate
of 1%:

∑
x n(x, 0) �x = Nh/100. The immune protection is initialized as

h(x, 0) = khH(x)e−|x|/�, where H(x) = 1 if x > 0 and 0 otherwise,

� = r0(R
1/M
0 − 1)−1, and kh is chosen such that

∑
x h(x, 0) �x = NhM. To
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study the stationary state, we first simulate for some time Tburn 1 =100–1,000 d
without the cutoff (nc = 0), and some time Tburn 2 = 200–20,000 d with the
cutoff (the larger the r0, the longer the equilibration time).

B. Stochastic Simulation. The stochastic simulation of Eqs. 1–4 uses a
hybrid deterministic-stochastic approach. The bulk of the wave, characterized
by very large numbers where demographic noise is negligible, is treated
deterministically, while the front is simulated stochastically. We fix a threshold
on the number of infected people nstoch (= 106 for Fig. 2, 104 for Fig. 3, 105

for Fig. 5). If n(x, t)�x < nstoch, we update its value at each time step following
the following stochastic prescription, which appropriately models demographic
noise. Each individual can mutate with probability p = 1− exp[−2D�t/�x2],
generating a binomial number of mutationsNmut,r(x) ∼ Binom(n(x)�x, p/2)
to the right at x + �x, and a similarly distributed number Nmut,r(x) to
the left at x − �x. Numbers are then updated as n(x, t + �t/2) =

n(x, t) + �x−1[Nmut,l(x+ �x)− Nmut,l(x) + Nmut,r(x− �x)− Nmut,r(x)].
Growth is then implemented by updating n(x, t+�t) ∼ Poiss(N̄(x))/�x, with
N̄(x) = (1 + F(x, t)�t)n(x, t + �t/2)�x.

C. Evolutionary Stability Simulations. To simulate the evolution of popu-
lations with nonantigenic mutations, we consider a two-dimensional system
(x, �), where � is the phenotypic parameter over which evolution is acting (i.e.,
D or � in the two examples considered in this paper). We then assume that the
system diffuses slowly with coefficient � in the second dimension, and the full
simulated equation reads:

∂tn(x, �, t) = F(x, �, t)n(x, �, t) + D(�)∂2
x n(x, �, t)

�∂2
�n(x, �, t) + demographic noise

where the demographic noise can be treated fully or through a cutoff as in
Eq. 5. The diffusion coefficient � is chosen to be as small as possible, so that

the dynamics of the wave will be much faster than the evolutionary time scale
over which � changes, and that the simulation converge to an evolutionarily
stable state well peaked in � . The � dimension is discretized with step ��.
After the simulation has converged, we take as the evolutionary end point
�∗ = 〈�〉 =

∫
dxd� n(�, x)�.

D. Imposing Evolutionary Stability and Speed of the Wave for the H3N2
Study. Here, we detail the method for getting r∗0 and D∗, all other parameters
(R0,
 ,M,Nh,Ud) being fixed, by using the following two relations: v/Δx = 2.6
y−1, and evolutionary stability.

The pseudoalgorithm for finding these two values is the following:

1. Choose an initial guess for r0.
2. Find D∗ that matches the speed condition through nested iteration:

a. Choose an initial guess D.
b. Calculate the speed v with F(x) = 
(R0S(x)− 1).
c. Update D∗ ← D∗ − �1(v− v̂), where v̂ = 2.6 is the target value, and

�1 is a learning rate. Go to b.
3. Run an evolutionary simulation where D is left free as in Section C, now with

F(x) = 
(R0S(x)(1− �D)/(1− Ud)− 1), with � = Ud/D
∗ fixed. Call

D′ the resulting evolutionarily stable point.
4. Update r0 ← r0 − �2(D

′
− D∗) and go back to 2.

Data, Materials, and Software Availability. There are no data underlying
this work. The software for the numerical simulations and for reproducing the
figures can be found at https://github.com/statbiophys/viral_coevo (54).
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