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Abstract

Objective: Exercise is known to increase the risk for hypoglycemia in type 1 diabetes (T1D) but predicting
when it may occur remains a major challenge. The objective of this study was to develop a hypoglycemia
prediction model based on a large real-world study of exercise in T1D.
Research Design and Methods: Structured study-specified exercise (aerobic, interval, and resistance training
videos) and free-living exercise sessions from the T1D Exercise Initiative study were used to build a model for
predicting hypoglycemia, a continuous glucose monitoring value <70 mg/dL, during exercise. Repeated mea-
sures random forest (RMRF) and repeated measures logistic regression (RMLR) models were constructed to
predict hypoglycemia using predictors at the start of exercise and baseline characteristics. Models were eval-
uated with area under the receiver operating characteristic curve (AUC) and balanced accuracy.
Results: RMRF and RMLR had similar AUC (0.833 vs. 0.825, respectively) and both models had a balanced
accuracy of 77%. The probability of hypoglycemia was higher for exercise sessions with lower pre-exercise
glucose levels, negative pre-exercise glucose rates of change, greater percent time <70 mg/dL in the 24 h before
exercise, and greater pre-exercise bolus insulin-on-board (IOB). Free-living aerobic exercises, walking/hiking,
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and physical labor had the highest probability of hypoglycemia, while structured exercises had the lowest
probability of hypoglycemia.
Conclusions: RMRF and RMLR accurately predict hypoglycemia during exercise and identify factors that
increase the risk of hypoglycemia. Lower glucose, decreasing levels of glucose before exercise, and greater pre-
exercise IOB largely predict hypoglycemia risk in adults with T1D.

Keywords: Type 1 diabetes, Risk, Prediction, Hypoglycemia, Exercise.

Introduction

Regular exercise is important for maintaining physical
fitness, insulin sensitivity, and a healthy cardiovascular

risk profile in individuals living with type 1 diabetes (T1D).1

However, exercise-associated hypoglycemia remains a major
barrier for many children2 and adults3–5 living with T1D.
Based on one recent survey, *50% of active adults with T1D
have frequent episodes of exercise-associated hypoglycemia
(during, soon after, or overnight). Rates of ‘‘in exercise’’
hypoglycemia were surprisingly higher in those on continu-
ous subcutaneous insulin infusion (CSII) and in those who
report to be knowledgeable about hypoglycemia prevention
strategies for exercise (i.e., insulin dose reductions, carbo-
hydrate feeding), compared with those on multiple daily in-
jections (MDI) or those less knowledgeable about the typical
hypoglycemia prevention strategies.6

The reasons for the higher hypoglycemia reporting rates
during exercise in those on CSII are unclear but might be
related to lower glucose levels before exercise start time
and/or higher levels of circulating insulin levels pre-exercise
compared with those on MDI.

Prediction models for when exercise-associated hypogly-
cemia will occur for individuals with T1D may be useful to
incorporate into a hybrid closed-loop (HCL) system or into a
mobile Health (mHealth) application that provides decision
support. These models can identify clinical and behavioral
targets that can be modified to reduce the risk of exercise-
associated hypoglycemia. Most forms of physical activity
can be detected, and perhaps even classified (i.e., aerobic,
anaerobic, mixed), by the continuous monitoring of heart rate
and/or accelerometry.7–10 Once activity is detected, an HCL
system can reduce or suspend the insulin delivery even before
glucose begins to fall,11 and the algorithms may even be
enhanced by machine learning12 or adaptive learning of
personalized models.10

Even if a reduction in insulin delivery is insufficient to
eliminate exercise-associated hypoglycemia, because of the
slow pharmacokinetic changes of current insulin formula-
tions and delivery strategies, the system could also either
recommend carbohydrate intake based on prediction models
that include estimated insulin on board (IOB) and glucose
rates of change or automatically deliver small doses of glu-
cagon to help prevent hypoglycemia.13,14 For non-HCL us-
ers, an mHealth application could provide decision support
related to carbohydrate feeding or modification of insulin
dosing pre-exercise.

In one study, Turksoy et al.15 described a method for
predicting hypoglycemia using exercise metrics such as en-
ergy expenditure and exercise type. In another study, based
on a decision tree and a random forest model, Reddy et al.16

identified that at least two factors (baseline glucose less than
180 mg/dL and a heart rate threshold of 120 beats per minute)
were important in predicting exercise-associated hypogly-
cemia. However, this analysis was limited to in-clinic ob-
servations of aerobic exercise only, and it is likely that
several variables other than pre-exercise glucose level in-
fluence the glucose rate of change during exercise such as the
type of exercise, the duration of exercise performed, bolus
IOB levels, and the exercise time of day. Recently, the Type 1
Diabetes and EXercise Initiative (T1DEXI) study group
found that several participant-level and exercise-level factors
influenced the glucose rate of change during study video
exercises.17

However, whether these factors are useful for predicting
exercise-associated hypoglycemia during exercise is unclear.
In addition, a sophisticated model that can assess many fac-
tors simultaneously, handle nonlinear relationships, and
consider multiple interactions may improve predictive per-
formance. The purpose of this study was to build an accurate
model that can predict hypoglycemia during exercise and
identify key physiologic measures that are important pre-
dictors of hypoglycemia during exercise. Structured (i.e.,
video sessions of aerobic, resistance, or interval-type exer-
cises) and free-living exercise sessions from the T1DEXI
study cohort were used to train and evaluate machine learning
algorithms for predicting hypoglycemia during exercise.

Methods

Study cohort and design

The T1DEXI study was an observational, at-home study
designed to collect a variety of data around structured and
free-living exercise for adults with T1D. The study has been
described elsewhere17 and summarized herein. The protocol
received institutional review board approval and participants
provided informed consent. In brief, participants ‡18 years of
age with a minimum 2-year duration of T1D who were using
a commercially approved HCL system, a standard CSII
pump, or MDI to administer insulin were randomly assigned
to complete one of three types of study-designed structured
exercise videos (aerobic, resistance, intervals) *30 min in
length, at home for at least six sessions over 4 weeks. Parti-
cipants also continued their typical forms of daily physical
activity, including structured and free-living exercise ses-
sions, and used a study-developed, cloud-connected smart-
phone application (T1DEXI app) to enter information about
their nutrient intake and exercise.18

Diabetes history, glycated hemoglobin A1c (HbA1c), and
demographics were self-reported and collected via an online
portal. Participants used their personal Dexcom G6 contin-
uous glucose monitoring (CGM), or a study-provided blinded
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Dexcom G6 CGM (San Diego, CA) if they did not use a per-
sonal Dexcom G6 CGM, and an investigational Verily Study
Watch (South San Francisco, CA) to collect continuous glu-
cose and heart rate data throughout the 4-week study period.

Statistical methods

Exercise sessions included in the analysis met the fol-
lowing requirements: (1) exercise duration between 20 and
90 min, (2) ‡15 min of CGM data during exercise, (3) a
glucose level ‡70 mg/dL at start of exercise, and (4) non-
missing data for the predictors included in the model.
Participant-level predictors included age, sex, T1D duration,
HbA1c, body mass index, insulin modality (MDI, pump, or
HCL), International Physical Activity Questionnaire (IPAQ)
metabolic equivalent (MET)-minutes per week, and Pitts-
burgh Sleep Quality Index measured as participant-reported
hours spent asleep. Exercise-level predictors included type of
exercise, self-reported exercise intensity, exercise start time
entered into the smartphone application, glucose level at start
of exercise, glucose rate of change at start of exercise, IOB at
the start of exercise, heart rate at start of exercise, and percent
time <70 mg/dL in the 24 h before start of exercise.

Exercise type was reported by the participants through the
T1DEXI app by selecting from a prespecified list of 19 ac-
tivities or by entry of a custom activity. Of the exercise ses-
sions that were included in the analysis, 48 physical
activity/exercise activities were initially reported and then
grouped into the following eight categories: study exercise
video aerobic, interval, or resistance; sports; chores and/or
physical labor; walking/hiking; other workout aerobic; and
other workout strength. Exercise intensity was based on self-
report without a guide to represent low, medium, or high
intensity. A description of each predictor can be found in
Supplementary Table S1.

The objective was to predict whether an exercise session
will have at least one CGM value <70 mg/dL during the ac-
tivity, which is deemed low enough according to clinical
practice guidelines/consensus to stop exercise and treat with
carbohydrates (i.e., level 1 hypoglycemia).19 Two models
were trained to predict hypoglycemia during exercise: a re-
peated measures random forest (RMRF) model and a re-
peated measures logistic regression (RMLR) model. Exercise
sessions were split into ‘‘model training’’ and ‘‘model test-
ing’’ data sets by participant: 80% of the participants with all
their exercise sessions were included in the model training
data set, and the remaining 20% of participants with all their
exercise sessions were included in the model testing data set.

The best RMRF and RMLR models were chosen based on
performance on the training data, and the predictive perfor-
mance of each was compared using the test data. Area under
the receiver operating characteristic curve (AUC; higher
values representing better predictions) and Brier score (lower
values representing better predictions) were calculated for
the training and test data. Balanced accuracy (higher values
representing better predictions) was also determined for the
test data when classifying exercises as high or low risk using
Youden’s index.

A post hoc analysis compared the predictive performance
of RMRF and RMLR on two additional hypoglycemia out-
comes: (1) at least one CGM value <60 mg/dL during the
activity, and (2) at least one CGM value <54 mg/dL or at least

one CGM value <100 mg/dL with a snack during the activity.
The best RMRF and RMLR models were retrained for the
new outcome, and the predictive performance was evaluated
using the test data.

RMRF model

The RMRF model20 extends the random forest model by
Breiman21 by analyzing binary outcomes that are correlated
within participant. An RMRF model grows several large
classification trees by subsampling the participants and reit-
eratively splitting the predictors. An unbiased error rate can
be derived from the RMRF model. Details of the RMRF
model and some of its advantages are provided in the Sup-
plementary Materials and further described in Calhoun
et al.20 The predictors included in the final random forest
were selected by starting with all 16 predictors, removing the
predictor with the lowest variable importance, and then fitting
a new RMRF. These steps were repeated until there was only
one predictor remaining. The AUC was calculated for each
RMRF model, and the model with the greatest AUC was
selected. The final model was optimized based on tuning
parameters to grow the tree (Supplementary Materials).

Only one final model was chosen, and we did not reassess
the model after predicting the test data. Partial dependence
plots (PDPs) were constructed to show how the predictors
affected the probability of hypoglycemia. PDPs were created
for the variables in the final RMRF model and combined
both the training and test data sets. Importantly, PDPs with
RMRF illustrate the relationship between predictors and
hypoglycemia risk allowing for nonlinear relationships and
interactions.

RMLR model

An RMLR model was fitted using a generalized estimating
equation to estimate the parameters using an exchangeable
correlation structure. The error rate with the training data was
estimated by using fivefold cross-validation. A backward
variable selection method was used to determine the optimal
number of predictors in the RMLR model. This method
started with the full model with 16 predictors, removed the
predictor with the greatest robust Wald statistic P-value,
fitted a new RMLR model, and repeated these steps until
there was only one predictor remaining. The AUC was cal-
culated for each RMLR model using cross-validation, and the
model with the greatest AUC was chosen as the final RMLR
model.

Results

The analysis included 459 participants with a total of 8827
exercise sessions. Mean – standard deviation age was 37 – 14
years; 73% were female, 19% used MDI, 36% using standard
CSII, and 46% using HCL (Table 1). Mean HbA1c was
6.6% – 0.8%. Mean glucose level at start of exercise was
149 – 50 mg/dL and the mean glucose rate of change at the
start of exercise was 0.0 – 1.2 mg/dL/min (Table 2). Walking
or hiking was the most common form of exercise (33% of all
exercise sessions), and 39% of exercise sessions were re-
ported as low intensity, 48% as medium intensity, and 13% as
high intensity. Median (quartiles) CGM use was high, with
99% (99%, 100%) of CGM data available during exercise.
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The AUC was consistently higher for RMRF compared
with RMLR for the training data set when using the same
number of predictors except for when the only predictor was
glucose at the start of exercise (Fig. 1; Supplementary
Table S2). The selected RMRF model with the greatest AUC
had the following 10 predictors (by order of importance):
glucose level at start of exercise, glucose rate of change at
start of exercise, percent time <70 mg/dL 24 h before exer-
cise, IOB at the start of exercise, type of exercise, exercise
start time, T1D duration, insulin modality, IPAQ MET-
minutes per week, and sex. The optimal RMRF parameters
were a minimum P-value threshold of 0.10 and minimum

number of exercise sessions to continue splitting of 10, but
the AUC only slightly increased when optimizing the pa-
rameters (Supplementary Table S3).

The selected RMLR model had the following nine predic-
tors (by order of importance): glucose level at start of exercise,
glucose rate of change at start of exercise, IOB at the start of
exercise, percent time <70 mg/dL 24 h before exercise, type of
exercise, exercise start time, insulin modality, IPAQ MET-
minutes per week, and heart rate at start of exercise.

By selecting the models with the greatest AUC when
evaluated on the training data set, the estimated predictive

Table 1. Frequency of Hypoglycemia by

Participant Characteristics

No. of exercise
sessions n (%)

% of exercise
sessions with

CGM
<70 mg/dL

Overall 8,827 (100%) 8%

Age
18 - 29 years 3266 (37%) 8%
30 - 39 years 1992 (23%) 8%
40 - 49 years 1503 (17%) 7%
‡50 years 2066 (23%) 10%

Sex
Female 6470 (73%) 8%
Male 2357 (27%) 10%

HbA1c
£6.0% 1732 (20%) 10%
6.1%-6.4% 2182 (25%) 9%
6.5%-6.9% 2315 (26%) 7%
‡7.0% 2598 (29%) 8%

T1D duration
<10 years 2416 (27%) 6%
10-<20 years 3408 (39%) 9%
‡20 years 3003 (34%) 9%

BMI
Underweight

(<18.5 kg/m2)
18 (<1%) 11%

Normal (18.5-
<25.0 kg/m2)

5014 (57%) 8%

Overweight
(25.0-<30.0 kg/m2)

2780 (31%) 9%

Obese (‡30.0 kg/m2) 1015 (11%) 8%

Insulin modality
MDI 1567 (18%) 7%
Pump 3229 (37%) 10%
Hybrid closed-loop 4031 (46%) 8%

IPAQ MET-minutes per week
<1500 MET 2503 (28%) 6%
1500-<3000 MET 3017 (34%) 8%
‡3000 MET 3307 (37%) 10%

PSQI hours asleep
<7.5 h 1414 (16%) 10%
7.5-<8.5 h 3517 (40%) 9%
‡8.5 h 3896 (44%) 8%

BMI, body mass index; CGM, continuous glucose monitoring;
HbA1c, glycated hemoglobin A1c; IPAQ, International Physical
Activity Questionnaire; MDI, multiple daily injections; MET,
metabolic equivalent; PSQI, Pittsburgh Sleep Quality Index; T1D,
type 1 diabetes.

Table 2. Frequency of Hypoglycemia by Exercise

Characteristics

No. of
exercise
sessions
n (%)

% of exercise
sessions

with CGM
<70 mg/dL

Overall 8,827 (100%) 8%

Type of exercise
Study video aerobic 657 (7%) 4%
Study video interval 652 (7%) 3%
Study video resistance 668 (8%) 3%
Sports 580 (7%) 9%
Chores and physical labor 605 (7%) 10%
Walking/hiking 2897 (33%) 6%
Workout aerobic 2191 (25%) 4%
Workout strength 577 (7%) 3%

Exercise intensity level
High 1145 (13%) 9%
Medium 4239 (48%) 9%
Low 3443 (39%) 8%

Exercise time of day
Morning (3 AM-<12 PM) 3111 (35%) 8%
Afternoon (12 PM-<6 PM) 3621 (41%) 6%
Evening (6 PM-<9 PM) 1624 (18%) 9%
Night (9 PM-<3 AM) 471 (5%) 12%

Glucose at start of exercise
70-<100 mg/dL 1332 (15%) 23%
100-<140 mg/dL 3158 (36%) 9%
140-<180 mg/dL 2318 (26%) 5%
180-<250 mg/dL 1637 (19%) 2%
‡250 mg/dL 382 (4%) 2%

Glucose rate of change at start of exercise
<-0.5 mg/dL/min 2490 (28%) 16%
-0.5 to <0.5 mg/dL/min 3909 (44%) 6%
‡0.5 mg/dL/min 2428 (28%) 5%

% time <70 mg/dL 24 hours before exercise
<1% 3961 (45%) 5%
1%-<4% 2505 (28%) 8%
‡4% 2361 (27%) 14%

IOB at start of exercise
<1 U 3874 (44%) 6%
1-<2 U 1788 (20%) 9%
2-<3 U 1191 (13%) 10%
‡3 U 1974 (22%) 12%

Heart rate at start of exercise
<75 beats/min 2066 (23%) 7%
75-<95 beats/min 4256 (48%) 9%
‡95 beats/min 2505 (28%) 9%

IOB, insulin on board.
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performance may be overly optimistic. Thus, the true error
rate was estimated with a test data set: the AUC was 0.833
with RMRF and 0.825 with RMLR (Table 3, Supplementary
Fig. S1). Balanced accuracy was 77% for both models, and
Brier score was also similar for the two models (0.055 for

RMRF vs. 0.056 for RMLR). The predictive performance of
RMRF and RMLR for two other hypoglycemic outcomes
during exercise found similar results with a slightly higher
AUC for RMRF compared with RMLR, but a similar bal-
anced accuracy and Brier score (Supplementary Table S4).

The variable importance of the predictors for the final
RMRF is shown in Figure 2. Lower glucose values at the start
of exercise (i.e., values <125 mg/dL) and a greater negative
glucose rate of change at the start of exercise (i.e.,
<-0.5 mg/dL/min) were the most important predictors for
hypoglycemia (Figs. 3 and 4). The probability of hypogly-
cemia was also increased for greater percent time <70 mg/dL
in the 24 h before exercise and for higher IOB at the start of
exercise. The mean probability of hypoglycemia was highest
for free-living aerobic workouts (9.2%), walking/hiking
(8.9%), and chores and physical labor (8.8%), while the mean
probability of hypoglycemia was lowest for the study videos
(6.6% interval and resistance, 6.8% aerobic; Fig. 5).

Higher IPAQ MET-minutes per week, T1D duration, ex-
ercise start time, insulin modality, and sex also had a small
effect on the probability of hypoglycemia and were included
in the final model (Supplementary Figs. S2–S5). Other fac-
tors including exercise intensity and heart rate at start of
exercise did not affect the probability of hypoglycemia dur-
ing exercise.

Discussion

We present results on two glucose forecasting algorithms
that can be used to predict hypoglycemia risk with some
degree of precision/accuracy during real-world exercise in
adults living with T1D. Importantly, these algorithms were
trained and tested on the largest known data set of real-world
exercise data in an adult T1D cohort currently available
(https://doi.org/10.25934/PR00008428).17 The AUC of RMRF
and RMLR was similar (0.833 vs. 0.825, respectively) and
both models had a balanced accuracy of 77%.

Hypoglycemia forecasting algorithms such as the RMRF
and the RMLR models may be used by people with T1D, or
future mHealth applications, to estimate the likelihood of
hypoglycemia before performing exercise. If the algorithms
are accurate, they can help the person avoid hypoglycemia
and maintain better glycemic management during exercise
while helping to alleviate fears about hypoglycemia. Overall,
the risk for hypoglycemia during all forms of physical
activity/exercise was *8% in the T1DEXI data set. We
identified that lower glucose levels just before exercise and a
greater negative glucose rate of change at the start of exercise
as highly associated with hypoglycemia during exercise.
Specifically, the results from RMRF, shown in Figure 3,
demonstrate that CGM-based glucose values at the start of
exercise <125 mg/dL, and a glucose rate of change below
-0.5 mg/dL/min had higher-than-average risk of hypoglyce-
mia after adjusting for the other predictors in the model.

These results support current consensus recommendations
to target both a stable glucose concentration at the start of
exercise and a pre-exercise glucose of *150 mg/dL when
using CGM.19 However, the results from RMRF, shown in
Figure 4, also demonstrate that a lower glucose value at the
start of exercise could be safe if the glucose rate of change is
positive (i.e., glucose is increasing), perhaps because of
pre-exercise insulin dose adjustments and/or carbohydrate

FIG. 1. AUC of RMRF and RMLR in training data set
based on number of predictors included. Individual data
points (i.e., dots) indicate training AUC for RMRF and
RMLR based on number of predictors in the model, with
higher numbers indicating better prediction performance.
The training AUC is estimated using the out-of-bag sample
for RMRF and using fivefold cross-validation for RMLR.
AUC, area under the receiver operating characteristic curve;
RMLR, repeated measures logistic regression; RMRF, re-
peated measures random forest.

Table 3. Predictive Performance for Repeated

Measures Random Forest and Repeated Measures

Logistic Regression for Test Data Set

Model AUC
Brier
score

Optimal cut point

Sensitivity Specificity
Balanced
accuracy

RMLRa 0.825 0.056 75% 78% 77%
RMRFb 0.833 0.055 70% 84% 77%

aRMLR model with an exchangeable covariance structure and
glucose level at start of exercise, glucose rate of change at start of
exercise, insulin on board at the start of exercise, % time <70 mg/dL
24 h before exercise, type of exercise, exercise start time, insulin
modality, IPAQ MET-minutes per week, and heart rate at start of
exercise as covariates.

bRMRF model with an exchangeable covariance structure,
maximum depth of 10, 500 trees, and glucose level at start of
exercise, glucose rate of change at start of exercise, % time
<70 mg/dL 24 h before exercise, insulin on board at the start of
exercise, type of exercise, exercise start time, T1D duration, insulin
modality, IPAQ MET-minutes per week, and sex as covariates.

AUC, area under the receiver operating characteristic curve;
RMLR, repeated measures logistic regression; RMRF, Repeated
measures random forest.
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feeding, which are also recommended for planned exercise,
particularly when CGM systems are not used.22 These find-
ings are important as they identify ways in which the risk of
exercise-associated hypoglycemia can be minimized. Such
risk mitigation measures may ultimately be integrated into
future HCL and mHealth decision-support systems to help
people with T1D better manage glucose during exercise. In
addition, the PDPs produced from RMRF allow for an easy
determination of the risk of hypoglycemia before exercise.

However, it should also be noted that other important
factors that could be assessed during the exercise itself, such
as relative exercise intensity based on heart rate levels or
ratings of perceived exertion, competition stress, and esti-
mated circulating insulin levels, may also be of value for
integration into a hypoglycemia risk algorithm for automated
insulin delivery systems designed for exercise.23

Besides glucose value and glucose rate of change at start of
exercise, HCL systems could also incorporate the patient’s
prandial and/or correction IOB and prior time <70 mg/dL in
the previous 24 h before exercise. The simplest RMRF model
that included these four predictors plus exercise type had an
out-of-bag AUC of 0.8324, similar to the highest out-of-bag
AUC of 0.8328. Understanding how these factors interact
with each other and affect the probability of hypoglycemia
during exercise can be difficult for a person, but use of HCL
systems could simplify the process by computing the prob-
ability of hypoglycemia and possibly suggesting carbohy-
drate intake or by automatically suspending insulin delivery
when hypoglycemia risk increases.

Experimental and commercially available HCL systems
have been found to improve glycemic control in laboratory
settings, such as minimizing hypoglycemia while maximiz-
ing time in glycemic target range,24 and the results presented
in this analysis can help generalize this ability as the exercise

sessions were free-living. However, in this analysis, the in-
sulin modality had little effect on the probability of hypo-
glycemia during exercise, although the probability of
developing hypoglycemia was indeed numerically less in
those on MDI than for those on both types of CSII systems
(Supplementary Fig. S5), which is in line with the recent
survey data by Paiement et al.6

The reasons for the apparent differences in hypoglycemia
risk rate during exercise between MDI (7.8%), HCL (8.2%),
and pump (8.7%) may be related to behavioral differences on
how individuals manage planned and unplanned exercise6

and/or differences in IOB levels (median IOB at exercise start
is 0.90 U for MDI, 1.51 U for HCL, and 1.12 U for pump). In
any event, we found little evidence here that HCL systems
were superior to MDI or CSII pump for the prevention of
exercise-associated hypoglycemia when starting with the
same glucose concentration, glucose rate of change, IOB, and
prior time with glucose <70 mg/dL.

The type of exercise had a small effect on the probability of
hypoglycemia with the study video interval exercises having
the lowest mean probability of hypoglycemia (6.6%), while
common physical activity including walking, hiking, chores,
and physical labor had the highest mean probability of hy-
poglycemia at *9.2%. It is possible that participants were
more cognizant of hypoglycemia risk mitigation when per-
forming the study video exercises, and they prepared for
exercise differently and responded accordingly when hypo-
glycemia was imminent, while they may have overlooked the
risk of hypoglycemia related to routine or spontaneous
physical exertion. Indeed, the study videos recommended
that pre-exercise glucose level be monitored before exercise
start time.

One limitation with this analysis is that we did not collect
information on if exercise was stopped prematurely because

FIG. 2. Variable importance for the
selected RMRF model. The gray bars
represent the scaled permutation vari-
able importance.
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of an individual’s concerns about glucose levels during ex-
ercise. In other words, we do not know if participant volun-
teers stopped exercising because they achieved an a priori
fitness or time goal or if they possibly stopped to treat an
imminent hypoglycemic event. Thus, we purposefully did not
use exercise duration as a predictor in our model because
duration could be a cause of a hypoglycemic event or be
impacted by the hypoglycemic event if adults stopped exer-
cising to treat a low glucose.

We also did not include factors that could have been
measured during exercise (e.g., mean heart rate during ex-
ercise) as the objective was to predict hypoglycemia based on
information available at the start of exercise. Insulin sensi-
tivity was unavailable for many participants, but incorporat-
ing both the IOB and insulin sensitivity factor may better
predict hypoglycemia during exercise. And finally, each
participant’s fitness level may also have been an important
metric to consider a predictive feature. Prior work by Tyler
et al.12 has shown that people with higher levels of fitness
tended to experience faster glucose drops and more hypo-
glycemia during aerobic exercise. In the current study, the
probability of hypoglycemia increased from 7.5% to 9.0%

when the IPAQ score increased from 1500 to 3000 MET-
minutes per week.

Midroni et al.25 and Ben Brahim et al.26 found that prior
glucose values were the most important factor when pre-
dicting future glucose values. Ben Brahim et al.26 and
Rodrı́guez-Rodrı́guez et al.27 also found that IOB was an
important predictor, and Ben Brahim et al.26 found that
greater IOB values predicted decreases in future glucose
values. Reddy et al.16 found that a glucose <182 mg/dL at the
start of exercise was highly predictive of hypoglycemia risk.
They also found that higher heart rates within the first 10 min
after the start of exercise increased the likelihood of hypo-
glycemia; however, RMRF did not consider heart rate read-
ings during exercise as the point was to predict hypoglycemia
before starting exercise and the heart rate at the start of ex-
ercise was not selected in the final model.

The methods used in these previous studies did not account
for correlated data, and the studies specifically examining
glucose dynamics during exercise were limited to only one
exercise classification (i.e., treadmill walking or jogging) per-
formed in a highly controlled clinic setting. The RMRF model
handles nonlinear relationships and interactions and handles

FIG. 3. Probability of ‘‘in exercise’’ hypoglycemia (defined as one or more CGM values <70 mg/dL during exercise)
based on CGM-based glucose level at the start of exercise (A), glucose rate of change at start of exercise (B), IOB at the
start of exercise (C), and % time <70 mg/dL in 24 h before exercise (D). Black dots indicate the mean probability of
hypoglycemia during exercise at each level of the variable. The dashed blue line represents the mean incidence of
hypoglycemia during exercise. CGM, continuous glucose monitoring; IOB, insulin on board.
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FIG. 5. Probability of hypoglycemia during exercise based on type of exercise. The gray bars represent the mean
probability of hypoglycemia during exercise for each type of exercise. The dashed blue line represents the mean incidence
of hypoglycemia during exercise.

FIG. 4. Heat map probability of hypoglycemia risk during exercise based on glucose levels and glucose rate of change at
the start of exercise. Shaded region represents mean probability of hypoglycemia based on glucose level and glucose rate of
change at start of exercise. The blue regions in the upper right indicate below average risk of hypoglycemia, and the red
regions in the bottom left denote above average risk of hypoglycemia. The white region between the blue and red regions
indicates average hypoglycemia risk. The solid black line indicates the average risk of hypoglycemia.
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correlated outcomes within a participant, which can better
identify predictors’ effect on hypoglycemia during exercise.

A major strength of the study is the large database of real-
world data with 8827 exercise sessions analyzed from 459
participants. However, a limitation of the analysis is that ex-
ercise sessions with a duration between 20 and 90 min were
analyzed, so predicting hypoglycemia for exercises longer than
90 min may not be reliable. The analyses only included exer-
cises with at least 15 min of CGM data, but CGM use was high
during exercise and similar results would be seen with a stricter
CGM data requirement (e.g., as a certain percentage of exercise
duration). In addition, this cohort may not represent the general
T1D population as many of the participants exercised regu-
larly, maintained a low HbA1c level, and used CGM tech-
nology, so the results may not generalize to individuals who do
not exercise regularly or exhibit higher glycemic levels.

However, the exercise-level predictors were assessed
within participant, and we believe their effect on hypogly-
cemia would likely be similar for adults with T1D who do not
regularly exercise or have higher glycemic levels. Another
limitation of our analysis approach is that multicollinearity
can affect the relationship between factors and risk of hy-
poglycemia during exercise, but having correlated variables
is less of an issue with random forests and often has little
effect on predictive performance. Partial least-squares re-
gression could be a good alternative over RMLR if the goal
was to interpret some of the correlated factors in the regres-
sion context. Finally, the computational burden of building
the RMRF model limited the parameter optimization and
hindered formally testing if the predictors were significantly
associated with increased hypoglycemia. However, once the
RMRF model was built, predictions could be returned im-
mediately for a new exercise session.

In summary, accurate predictions of hypoglycemia during
exercise are possible with either an RMRF or an RMLR
model. Moreover, the study identified factors that can be
modified to reduce the risk of exercise-associated hypogly-
cemia. In our model, lower glucose values, a steeper negative
glucose rate of change, greater IOB, and greater prior time
<70 mg/dL at start of exercise were associated with increased
risk of hypoglycemia during exercise. Notably, these vari-
ables would all be available to HCL systems, suggesting that
algorithms incorporating these variables can make it possible
to help people with T1D exercise safely.

Authors’ Contributions

S.B. and P.C. wrote/edited the article. S.B. performed
statistical analysis. M.C.R., P.G.J., Z.L., R.L.G., M.A.C.,
F.J.D., C.K.M., S.R.P., J.R.C., M.B.G., R.W.B., and M.R.R.
reviewed, edited, and contributed to discussion.

Disclaimer

The content is solely the responsibility of the authors and
does not necessarily represent the official views of The Leona
M. and Harry B. Helmsley Charitable Trust.

Author Disclosure Statement

S.B. reports no conflicts of interest: M.C.R. reports receiv-
ing consulting fees from the JAEB Center for Health Research,
Eli Lilly, Zealand Pharma, and Zucara Therapeutics; speaker

fees from Sanofi Diabetes, Eli Lilly, Dexcom Canada, and
Novo Nordisk; and stock options from Supersapiens and Zu-
cara Therapeutics. P.G.J. reports receiving grants from the
National Institutes of Health, The Leona M. and Harry B.
Charitable Trust, JDRF, Dexcom, and the Oregon Health and
Science University Foundation; consultancy fees from CDISC;
U.S. patents 62/352,939, 63/269,094, 62/944,287, 8810388,
9,480,418, 8,317,700, 61/570382, 8,810,388, 7,976,466, and
6,558,321; and reports stock options from Pacific Diabetes
Technologies, outside submitted work. Z.L. reports no conflict
of interests. R.L.G. reports no conflict of interest. M.A.C. is
Chief Medical Officer of Glooko, Inc., and has received grants
or contracts from Dexcom, Abbott Diabetes Care, National
Institutes of Health, JDRF, the Emily Rosebud Foundation, Eli
Lilly, Tolerion, and Garmin.

F.J.D. reports no conflict of interests. C.K.M. reports no
conflict of interests. S.R.P. reports receiving grants from The
Leona M. and Harry B. Helmsley Charitable Trust, the Na-
tional Institutes of Health, and the JAEB Center for Health
Research; and honorarium from the American Diabetes As-
sociation, outside the submitted work. J.R.C. reports receiv-
ing grants from JDRF, the National Institutes of Health,
Dexcom, and Medtronic; consultancy fees from Novo Nor-
disk, Insulet, and Zealand, outside the submitted work.
M.B.G. reports no conflict of interest. R.W.B. reports re-
ceiving consulting fees, paid to his institution, from Insulet,
Bigfoot Biomedical, vTv Therapeutics, and Eli Lilly, grant
support and supplies, provided to his institution, from Tan-
dem and Dexcom, and supplies from Ascensia and Roche.
M.R.R. reports consultancy fees from Zealand Pharma. P.C.
reports no conflict of interests.

Funding Information

Research reported in this publication was supported by
The Leona M. and Harry B. Helmsley Charitable Trust. One
of the author’s institutions (C.K.M., Pennington Biomedical
Research Center) is supported by the NORC Center grant P30
DK072476 entitled ‘‘Nutrition and Metabolic Health
Through the Lifespan’’ sponsored by NIDDK and by grant
U54 GM104940 from the National Institute of General
Medical Sciences, which funds the Louisiana Clinical and
Translational Science Center. Verily (South San Francisco,
CA) provided the Study Watch at no cost. Dexcom provided
continuous glucose monitors at a discounted rate.

Supplementary Material

Supplementary Data S1
Supplementary Figure S1
Supplementary Figure S2
Supplementary Figure S3
Supplementary Figure S4
Supplementary Figure S5
Supplementary Table S1
Supplementary Table S2
Supplementary Table S3
Supplementary Table S4

References

1. Riddell MC, Peters AL. Exercise in adults with type 1 di-
abetes mellitus. Nat Rev Endocrinol 2023;19(2):98–111.

610 BERGFORD ET AL.



2. Jabbour G, Henderson M, Mathieu ME. Barriers to active
lifestyles in children with type 1 diabetes. Can J Diabetes
2016;40(2):170–172.

3. Brazeau AS, Rabasa-Lhoret R, Strychar I, et al. Barriers to
physical activity among patients with type 1 diabetes.
Diabetes Care 2008;31(11):2108–2109.

4. Keshawarz A, Piropato AR, Brown TL, et al. Lower ob-
jectively measured physical activity is linked with per-
ceived risk of hypoglycemia in type 1 diabetes. J Diabetes
Complications 2018;32(11):975–981.

5. Lascar N, Kennedy A, Hancock B, et al. Attitudes and
barriers to exercise in adults with type 1 diabetes (t1dm)
and how best to address them: A qualitative study. PLoS
One 2014;9(9):e108019.

6. Paiement K, Frenette V, Wu Z, et al. Is better under-
standing of management strategies for adults with type 1
diabetes associated with a lower risk of developing hypo-
glycemia during and after physical activity? Can J Diabetes
2022;46(5):526–534.

7. Breton MD, Brown SA, Karvetski CH, et al. Adding heart
rate signal to a control-to-range artificial pancreas system
improves the protection against hypoglycemia during ex-
ercise in type 1 diabetes. Diabetes Technol Ther 2014;
16(8):506–511.

8. Dasanayake IS, Bevier WC, Castorino K, et al. Early de-
tection of physical activity for people with type 1 diabetes
mellitus. J Diabetes Sci Technol 2015;9(6):1236–1245.

9. Jacobs PG, Resalat N, El Youssef J, et al. Incorporating an
exercise detection, grading, and hormone dosing algorithm
into the artificial pancreas using accelerometry and heart
rate. J Diabetes Sci Technol 2015;9(6):1175–1184.

10. Turksoy K, Paulino TM, Zaharieva DP, et al. Classification
of physical activity: Information to artificial pancreas
control systems in real time. J Diabetes Sci Technol 2015;
9(6):1200–1207.

11. Turksoy K, Quinn LT, Littlejohn E, Cinar A. An integrated
multivariable artificial pancreas control system. J Diabetes
Sci Technol 2014;8(3):498–507.

12. Tyler NS, Mosquera-Lopez C, Young GM, et al. Quanti-
fying the impact of physical activity on future glucose
trends using machine learning. iScience 2022;25(3):1–19.

13. Castle JR, El Youssef J, Wilson LM, et al. Randomized
outpatient trial of single- and dual-hormone closed-loop
systems that adapt to exercise using wearable sensors.
Diabetes Care 2018;41(7):1471–1477.

14. Wilson LM, Jacobs PG, Ramsey KL, et al. Dual-hormone
closed-loop system using a liquid stable glucagon formu-
lation versus insulin-only closed-loop system compared
with a predictive low glucose suspend system: An open-
label, outpatient, single-center, crossover, randomized
controlled trial. Diabetes Care 2020;43(11):2721–2729.

15. Turksoy K, Bayrak ES, Quinn L, et al. Hypoglycemia early
alarm systems based on multivariable models. Ind Eng
Chem Res 2013;52(35):12329–12336.

16. Reddy R, Resalat N, Wilson LM, et al. Prediction of hy-
poglycemia during aerobic exercise in adults with type 1
diabetes. J Diabetes Sci Technol 2019;13(5):919–927.

17. Riddell MC, Li Z, Gal RL, et al. Examining the acute
glycemic effects of different types of structured exercise
sessions in type 1 diabetes in a real-world setting: The type
1 diabetes and exercise initiative (t1dexi). Diabetes Care
2023;46(1):704–713.

18. Gillingham MB, Li Z, Beck RW, et al. Assessing mealtime
macronutrient content: Patient perceptions versus expert
analyses via a novel phone app. Diabetes Technol Ther
2021;23(2):85–94.

19. Moser O, Riddell MC, Eckstein ML, et al. Glucose man-
agement for exercise using continuous glucose monitoring
(CGM) and intermittently scanned CGM (ISCGM) systems
in type 1 diabetes: Position statement of the European
Association for the Study of Diabetes (EASD) and of the
International Society for Pediatric and Adolescent Diabetes
(ISPAD) endorsed by JDRF and supported by the American
Diabetes Association (ADA). Diabetologia 2020;63(12):
2501–2520.

20. Calhoun P, Levine RA, Fan J. Repeated measures random
forests (rmrf): Identifying factors associated with nocturnal
hypoglycemia. Biometrics 2021;77(1):343–351.

21. Breiman L. Random forest. Mach Learn 2001;45:5–32.
22. Riddell MC, Gallen IW, Smart CE, et al. Exercise man-

agement in type 1 diabetes: A consensus statement. Lancet
Diabetes Endocrinol 2017;5(5):377–390.

23. Hobbs N, Samadi S, Rashid M, et al. A physical activity-
intensity driven glycemic model for type 1 diabetes.
Comput Methods Programs Biomed 2022;226:107153.

24. Eckstein ML, Weilguni B, Tauschmann M, et al. Time in
range for closed-loop systems versus standard of care
during physical exercise in people with type 1 diabetes: A
systematic review and meta-analysis. J Clin Med 2021;
10(11):2445.

25. Midroni C, Leimbigler P, Baruah G. Predicting glycemia in
type 1 diabetes patients: Experiments with xgboost. Pro-
ceedings of the 3rd International Workshop on Knowledge
Discovery in Healthcare Data. 2018. https://ceur-ws.org/
Vol-2148/paper13.pdf [Last accessed June 14, 2023].

26. Ben Brahim N, Place J, Renard E, et al. Identification of
main factors explaining glucose dynamics during and im-
mediately after moderate exercise in patients with type 1
diabetes. J Diabetes Sci Technol 2015;9(6):1185–1191.

27. Rodrı́guez-Rodrı́guez I, Chatzigiannakis I, Rodrı́guez JV,
et al. Utility of big data in predicting short-term blood
glucose levels in type 1 diabetes mellitus through machine
learning techniques. Sensors (Basel) 2019;19(20):4482.

Address correspondence to:
Peter Calhoun, PhD

JAEB Center for Health Research
15310 Amberly Drive, Suite 350

Tampa, FL 33647
USA

E-mail: pcalhoun@jaeb.org

T1DEXI: PREDICTING HYPOGLYCEMIA RISK DURING EXERCISE 611

https://ceur-ws.org/Vol-2148/paper13.pdf
https://ceur-ws.org/Vol-2148/paper13.pdf

