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Lung cancer is the leading cause of cancer-related death, 
accounting for more deaths than colon, breast, and pros-

tate cancers combined (1). In 2011, the National Lung 
Screening Trial (NLST) demonstrated a 20% mortality 
benefit after three annual screenings with low-dose CT 
(LDCT) compared with chest radiography. This result 
showed that LDCT enables lung cancer detection at ear-
lier, more treatable stages in people who smoke and are 
at high risk for lung cancer (2). Subsequent findings from 
the NELSON (Nederlands–Leuvens Longkanker Screen-
ings Onderzoek) trial and a 10-year analysis of mortality 
in the Multicentric Italian Lung Detection trial have also 
confirmed lung cancer mortality benefits of 27%–39% 
in individuals screened with LDCT compared with no 
screening (3,4).

Despite the mortality benefits of LDCT screening in 
asymptomatic high-risk populations, a competing concern 
is the high prevalence of noncalcified indeterminate pul-
monary nodules (IPNs), leading to high false-positive rates 
and potential negative consequences of downstream diag-
nostic testing. In the NLST, any noncalcified nodule with 
a maximum transverse diameter of 4 mm or larger was 
considered a positive screening result and mandated some 
form of follow-up beyond returning for an annual screen 
(2). Across all three screening rounds, screen positivity in 
the NLST LDCT arm was 24.2%, but was only 16.8% on 
the final screen because nodules observed to be stable over 
time could be categorized as negative (2).

Most nodules detected at lung screening were not can-
cer. In the NLST, 17 743 scans across three rounds con-
tained a noncalcified nodule of maximum diameter of 4 

mm or larger. In 64% of positive screens, the largest nodule 
was 7 mm or smaller, while this was the case for only 63 
(10.5%) of 598 total cancers (100). Lung cancer rates in-
creased with nodule size, most rapidly at nodule diameters 
of 10 mm or larger. Increasing the minimum size threshold 
for a positive screen to 5 mm maximum diameter would 
have resulted in a delayed or missed lung cancer diagno-
sis in 1.0% of cases while reducing the false-positive rate 
from 26.6% at baseline to 15.8%. Analyses by others using 
the NLST and other cohorts have confirmed reductions in 
false positivity rates using larger minimum size thresholds, 
but also lower test sensitivity (5,6).

The use of CT has increased substantially over time (as 
much as 53% over a 7-year period in one large health sys-
tem [7]) and has propelled a rapid increase in the detection 
of IPNs. Although variously defined, IPNs are typically 
defined as focal opacities 6–30 mm in diameter without 
clearly benign patterns of calcification or intralesional fat, 
as in a hamartoma. Conservative estimates suggest that 
at least 1.5 million incidental pulmonary nodules are 
detected annually in the United States (7). Determining 
which IPNs are malignant among the vast majority that 
are benign is a critical unmet need that will only increase as 
the use of CT in routine diagnosis and screening becomes 
more common.

The morphologic features of nodules are known to in-
fluence the probability that nodules are lung cancer, and 
these features have been incorporated as variables into lung 
nodule diagnostic prediction models. Beyond semantic 
characterization of IPNs, advanced image analyses using 
engineered radiomic features, machine learning, and deep 

The implementation of low-dose chest CT for lung screening presents a crucial opportunity to advance lung cancer care through  
early detection and interception. In addition, millions of pulmonary nodules are incidentally detected annually in the United States,  
increasing the opportunity for early lung cancer diagnosis. Yet, realization of the full potential of these opportunities is dependent on 
the ability to accurately analyze image data for purposes of nodule classification and early lung cancer characterization. This review 
presents an overview of traditional image analysis approaches in chest CT using semantic characterization as well as more recent  
advances in the technology and application of machine learning models using CT-derived radiomic features and deep learning  
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model, and the need for well-annotated image data sets for the purposes of training and validation, will be reviewed, with a view  
toward the ultimate incorporation of these potentially powerful decision aids into routine clinical practice.
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Semantic Feature Annotation
Semantic feature annotation is the labeling of an IPN by a human 
reader based on visual morphologic characteristics. Traditional 
features that may help differentiate benign and malignant IPNs 
include nodule-specific features such as size, border characteris-
tics (smooth, spiculated, lobulated), and internal features (vacu-
oles, cavitation) and features of the perinodule surround (vascular  
convergence, pleural retraction, paracicatricial emphysema)  
(Fig 2). Visual assessment is the backbone of traditional image 
assessment, requires no special equipment, and continues to in-
form most current guidelines for nodule management. The Fleis-
chner Society guidelines for the management of indeterminate 
nodules (8) and the Lung Imaging Reporting and Data System 
(Lung-RADS) guidelines developed by the American College of  
Radiology for screen-detected nodules (9) rely on semantic fea-
tures to direct the timing and methods of follow-up of IPNs.

Interobserver Agreement
Radiologists’ ability to identify and assess nodules is relatively 
robust when faced with variations in image acquisition and re-
construction parameters (10). While the software and hardware 
requirements for visual characterization of nodules are modest, 
human resource requirements in semantic annotation are high, 
and interobserver agreement on the designation of semantic fea-
tures is variable. For example, concordance on the characteriza-
tion of part-solid as opposed to pure ground-glass nodules has 
been reported as moderate across several studies, with Cohen 
κ values ranging from 0.51 to 0.67 (11). A radiologist’s ability 

learning algorithms are increasingly being used to improve IPN 
classification as well as prognostication and optimal management 
of newly diagnosed lung cancers. Here, we present an overview 
of current image analysis approaches for refining indeterminate 
nodule classification and early lung cancer prognostication in 
newly diagnosed lung cancer (Fig 1).

Abbreviations
AUC = area under the receiver operating characteristic curve, CNN = 
convolutional neural network, IPN = indeterminate pulmonary nodule, 
LDCT = low-dose CT, Lung-RADS = Lung Imaging Reporting and 
Data System, NLST = National Lung Screening Trial

Summary
The analysis of indeterminate pulmonary nodules by semantic  
annotation and, recently, quantitative approaches using machine 
learning and deep learning techniques are improving the distinction 
of malignant from benign nodules and may inform histologic and 
molecular features in early lung cancer.

Essentials
	■ Advancements in chest CT have resulted in improvements in early 
lung cancer detection and the potential to reduce lung cancer 
mortality.

	■ Owing to the increased use and capabilities of CT, millions of 
screen-detected and incidental pulmonary nodules are detected 
annually.

	■ Semantic feature analysis, models developed with engineered radiomic  
features, and deep learning architectures present opportunities to  
improve our ability to determine which pulmonary nodules are  
malignant as well as their histologic and genetic makeup.

Figure 1:  Diagram shows an overview of the major approaches to indeterminate pulmonary nodule classification and characterization of early lung cancer. A lung 
nodule detected on a CT scan may be annotated using semantic terms, undergo segmentation for extraction of radiomic features, or serve as input to a deep learning engine. 
The outputs of each analysis pathway are then submitted to some form of classifier to produce an output providing a probability of lung cancer or prediction of the histologic 
characteristics and/or genetic makeup of a known lung cancer. LUL = left upper lobe.
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to accurately assign semantic features to nodules improves with 
experience, and concordance between readers is highest among 
those with more years of post-training experience (12). The use 
of a standardized lexicon can also improve radiologist agreement 
in semantic annotation, as demonstrated with the adoption of 
the Lung-RADS reporting lexicon (13).

Role of Semantic Features in Existing Risk Models
Semantic features factor in several logistic regression models of 
nodule malignancy (14–21). Table 1 provides a list of traditional 
models described in studies from 1997 to 2019 for assessing 
IPNs using semantic features. Earlier models by Gould et al (20) 
and Swensen et al (21) were based on nodules visible on chest 
radiographs, classic tomography images, or CT scans; more re-
cent models were based on IPNs detected using CT. The models 
were developed in various clinical settings among populations 
with varying risks of lung cancer, including lung cancer screen-
ing populations, patients with IPNs identified through medi-
cal records reviews, or individuals undergoing surgical resection 
or nodule biopsy. With one exception (18), all of the models 
included imaging and clinical variables. Clinical variables dif-
fered across models, potentially because they were exclusionary 
criteria in some cohorts (eg, personal history of cancer), and in 
the case of smoking variables, their discriminatory ability was 
influenced by whether the cohorts under observation had ex-
plicit levels of smoking intensity or included individuals who 
had never smoked. Interestingly, chronic obstructive pulmonary 
disease, which is known to be associated with a three- to sixfold 
increase in lung cancer risk (22,23), was not a variable in most 
regression models.

Common imaging variables were nodule size, consistency, 
spiculation, location, number of nodules per scan, and enhance-
ment following intravenous injection of contrast agent (Table 
1). Nodule size is among the most discriminatory features in risk 
prediction models but was not included in three of the models 

(14,15,17). Tammemagi et al (17) developed two separate mod-
els using nodule mean diameter or volume. These were then 
tested on an NLST subsample in which benign nodules were 
matched to malignant nodules based on size, masking size as a 
distinguishing feature. Nodules in the models of Chen et al (14) 
and Reid et al (15) were of sufficiently high suspicion for cancer 
that they were all undergoing resection or biopsy, respectively. 
Nodules in these cohorts were within a narrower size range in-
dependent of histologic characteristics, obscuring the predictive 
association of size. Walter et al (18) explored benign and malig-
nant new nodules seen on CT scans from incidence screening 
examinations and observed that morphologic characteristics that 
were associated with cancer in univariate analysis were not dis-
criminatory in multivariate analysis. The authors found that size 
was more informative than other morphologic characteristics in 
new solid incidence nodules because size more closely reflects 
growth rate at incidence screening, as compared with prevalence 
nodules that may have been present for years prior to detection.

These models warrant a cautionary note when applying them 
to other IPN cohorts. Specifically, risk models perform optimally 
when applied to cases that are like the data sets in which they 
were developed. Selecting the appropriate model for a set of cases 
is critical to replicating model performance in real-world appli-
cations. For example, the Brock University model developed 
by McWilliams et al (19) was shown to retain high predictive 
performance in various screening cohorts that included small, 
largely benign nodules representing the spectrum of screen- 
detected lesions (Fig 3). However, when applied to a data set of 
predominantly large, high-risk nodules in which 69% were ma-
lignant, the area under the receiver operating characteristic curve 
(AUC) dropped to 0.693 (24). In clinical practice, prediction 
models are infrequently used in decision-making. A survey study 
among physicians in the American College of Chest Physicians 
reported a prediction model use rate of only 28% (25). Fortu-
nately, physicians’ intuitive assessments of cancer risk perform 

Figure 2:  Representative targeted CT images and corresponding semantic descriptors of lung nodules. A–F demonstrate different nodule consistencies and margin  
characteristics: (A) solid consistency, smooth margin; (B) part-solid consistency, smooth margin; (C) solid consistency, lobulated margin; (D) ground-glass consistency,  
lobulated margin; (E) solid consistency, spiculated margin; and (F) pericystic solid nodule, spiculated margin. G–J demonstrate different external characteristics of the  
surrounding perinodule lung parenchyma: (G) vascular convergence (arrow), (H) perinodule septal stretching (lines), (I) perinodule septal stretching with halo of paraseptal 
emphysema (line demarcates the emphysematous halo), and (J) pleural retraction (arrow).
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Table 1: Studies from 1997 to 2019 Describing Logistic Regression Models for Assessing IPNs Using Semantic (Visual) 
Imaging Features

Study and  
Year

No. of Individuals or Validation Method*
Cohort 
Characteristics Imaging Variables Clinical Variables Validation

Model 
PerformanceTraining Testing

Chen  
et al, 2019 
(14)

493 (214) 216 (88) Preresection IPN 
8–20 mm

Nodule spiculation, 
enhancement  
> 15 HU, pleural 
indentation

Age External C index = 0.847

Reid  
et al, 2019 
(15)

301 (200) 45 (25) Prebiopsy IPN 
9–22 mm

Nodule  
spiculation or 
irregular border, 
consistency, 
lobar location, 
emphysema

Age, pack-years, 
PH of other 
cancers

External C index = 0.67

Marcus  
et al, 2019 
(16)

1013 (52) Bootstrap  
200 times

Baseline  
screen-detected 
IPN ≥ 3 mm

Nodule volume, 
consistency,  
lobar location

Sex, smoking 
duration, 
asthma, 
bronchitis, 
asbestos 
exposure, PH 
of prior cancer, 
FHLC, FVC

Internal AUC = 0.885

Tammemagi 
et al, 2019 
(17)

1711 (111) 3680 (441) Baseline  
screen-detected 
IPN: training 
cohort, ≥1 mm; 
test cohort,  
≥3 mm

Nodule spiculation, 
consistency, lobar 
location, no. of 
nodules/scan, 
emphysema

Sex, FHLC External Using mean 
diameter  
for size:  
AUC = 
0.810; using 
volume for 
size: AUC = 
0.821

Walter  
et al, 2018 
(18)†

809  
(approximately 48)

10-fold  
cross-validation

Incidence  
screen–detected 
solid nodules 
<30 mm3 to 
>200 mm3

Nodule volume 
categories‡, lobar 
location, central 
location, visibility 
in retrospect on 
prior screens

None Internal Using three 
volume 
categories‡: 
AUC = 0.82; 
volume as 
continuous 
variable:  
AUC = 0.85

McWilliams 
et al, 2013 
(19)

1871 (102) 1090 (42) Baseline  
screen-detected 
IPN 1–86 mm

Nodule spiculation, 
consistency, size, 
lobar location, 
nodule count, 
emphysema

Age, sex, FHLC External AUC = 0.970

Gould  
et al, 2007 
(20)

375 (204) 10-fold  
cross-validation

VA population;  
IPN 7–30 mm  
at CXR

Nodule  
diameter

Age, smoking 
status (current, 
former, never), 
years since quit 
smoking

Internal AUC = 0.79

Swensen  
et al, 1997 
(21)†

419  
(approximately 97)

210  
(approximately 48)

Hospital  
record of IPN 
4–30 mm  
(CXR, 
tomography, 
CT)

Nodule spiculation, 
diameter, lobar 
location

Age, smoking 
status, PH of 
extrathoracic 
cancer  
(diagnosis  
≥5 y ago)

Internal AUC = 0.8014

Note.—All of the referenced models had good to excellent calibration. AUC = area under the receiver operating characteristic curve,  
CXR = chest radiography, FHLC = family history of LC, FVC = forced expiratory volume, IPN = indeterminate pulmonary nodule,  
LC = lung cancer, PH = personal history, VA = Veterans Affairs.
* Numbers in parentheses are numbers of LCs.
† In the models by Walter et al and Swensen et al, approximate numbers of LCs in training and testing groups are estimates based on the 
proportions of cancers across the entire cohort.
‡ In the model by Walter et al, nodule volume categories were based on semiautomated volume measurements, as follows: less than 30 mm3, 
low risk; 30 to less than 200 mm3, intermediate risk; and 200 mm3 or greater, high risk.
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well and have been shown to outperform prediction models in 
some instances (26,27).

Though routine in radiologic practice, semantic annotation 
is not quantitative. Moreover, the creation of large semantically 
annotated data sets is hampered by the fact that annotation is 
human resource intensive and does not scale well to the analysis 
of large, multi-institutional data sets. These limitations have led 
the imaging community to look to artificial intelligence to help 
analyze medical images.

Engineered Radiomic Features
Compared with the largely qualitative semantic descriptors of 
lung nodules, radiomic features are mathematically derived 
and provide a quantitative approach to nodule analysis. Several 
categories of mathematically derived features can be extracted 
from images: first-order (histogram-based), second-order, 
higher-order, transform-based, and shape features. This list is 
not comprehensive, as the number of extractable features has 
grown in the literature. Data mining and the use of radiomic 
features for classification tasks, prediction, and prognostication 

are of evolving interest in the lung cancer domain, primarily 
due to the fact that radiomics enables the noninvasive, objec-
tive assessment of the entire tumor at single or sequential time 
points, circumventing sampling biases inherent in histologic 
sampling.

The Radiomics Workflow
The prescribed mathematical formulae of engineered radiomic 
features are attractive in that they theoretically allow for features 
to be computed consistently between research laboratories. Sev-
eral sequential steps are involved in radiomic analyses, including 
image acquisition, preprocessing to minimize image parameter 
heterogeneity, detection of the nodule of interest, nodule seg-
mentation, extraction of radiomic features, feature selection and 
dimension reduction, and model fitting (Fig 4). In practice, the 
reproducibility of radiomic analysis is affected by each step in 
this pipeline. Here, we provide a high-level overview of the chal-
lenges associated with these steps as well as the potential uses of 
engineered radiomic features in nodule classification and lung 
cancer characterization.

Figure 3:  (A–C) Images in a 70-year-old woman without emphysema who is a current smoker. (A) Image from lung screening CT  
examination shows a part-solid nodule with a 26-mm mean diameter and a 9-mm solid component in the left upper lobe. The model  
developed by McWilliams et al (19) yielded a 78.1% probability of cancer given patient’s age, sex, and negative family history of lung cancer,  
and the nodule consistency, size, and location. (B) Image shows CT-guided percutaneous lung biopsy procedure. (C) Photomicrograph 
(hematoxylin-eosin stain) shows atypical epithelial cells with chronic inflammation and scarring. The patient underwent left upper lobectomy 
with resection of an invasive adenocarcinoma with a primarily acinar pattern, with papillary and lepidic components. (D–F) Images in a 
68-year-old woman without significant emphysema who is a former smoker. (D) Image from low-dose CT examination of the chest shows 
part-solid nodule in the left lower lobe with a 14.1-mm mean diameter and a 13-mm solid component. The model developed by McWilliams 
et al (19) gave a 20.1% probability of malignancy. (E) Image shows CT-guided percutaneous lung biopsy procedure. (F) Photomicrograph 
(hematoxylin-eosin stain) shows well to moderately differentiated invasive lung adenocarcinoma with lepidic and focal acinar patterns.
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Image Acquisition and Reconstruction
The accuracy and reproducibility of radiomic feature analysis 
are inherently dependent on the choice of image acquisition 
and reconstruction parameters. Nonuniformity in CT imaging 
parameters, such as radiation dose, scanner pitch, section thick-
ness, convolution kernel, and reconstruction algorithm, contrib-
utes to inconsistent, unstable radiomic features (28) and limits 
generalizability (29–32), and these issues are magnified in small 
and subsolid nodules (33,34). Radiomic shape features and first-
order statistics appear to be more resilient to image parameter 
heterogeneity (28). There have been major efforts by the Image 
Biomarker Standardization Initiative, Quantitative Imaging Bio-
markers Alliance, European Imaging Biomarkers Alliance, and 
others to establish standards for imaging biomarkers (35–37). 
However, uniform adoption is currently far from being realized, 
and image heterogeneity remains among the greatest obstacles to 
widescale dissemination of radiomics-based analyses.

Image Standardization, Harmonization, and Segmentation
To enhance the reproducibility of radiomic features, harmoni-
zation approaches can be applied directly to images or to the 
extracted radiomic features. Investigations have shown that 
harmonization techniques, by enhancing feature reproducibil-
ity, improve diagnostic and prediction models, although some 
techniques may adversely impact feature values and their dis-
crimination ability (38). In the image domain, interpolation 

and resampling techniques are designed to produce image data 
of uniform spatial resolution since some radiomic features are 
dependent on voxel size (39). Similarly, denoising (40) and 
gray-scale discretization methods (41) are often applied to re-
constructed images. Harmonization techniques can also be ap-
plied after radiomic features have been computed. For example, 
ComBat is an algorithm used to transform feature distributions 
that differ due to scanner and protocol use so that they are more 
similar (42,43).

Nodule segmentation approaches may be manual, semiau-
tomatic, or fully automatic. Segmentation results can be highly 
variable, particularly for subsolid nodules or nodules with poorly 
defined margins (44), and may vary with the segmentation al-
gorithm (45), which also adversely affects the reproducibility of 
some radiomic features. Manual segmentation can be highly la-
bor intensive and does not scale for large studies; some experts 
advocate for radiologists to overread 5%–10% of such segmenta-
tions to enhance accuracy (46).

Feature Extraction, Selection, and Model Development
Open-source platforms such as the Quantitative Imaging Feature 
Pipeline (47), Computational Environment for Radiological Re-
search (48), and PyRadiomics (49), among others, have been 
developed to extract a wide variety of engineered features using 
standardized definitions. Care should be taken when attempting 
to reproduce radiomic feature values across tools because, while 

Figure 4:  Diagram shows image analysis pipeline for conventional radiomic feature extraction and model development. Following input of the CT scan, image standard-
ization may be performed to reduce image heterogeneity. Segmentation of the lung and nodule of interest can be performed automatically, semiautomatically, or manually. 
Following segmentation, radiomic features are extracted. Feature selection methods are applied to reduce the number of features while retaining as much feature variation as 
possible. The optimal radiomic features can then be input into one of a number of different machine learning models to train and validate the model. Model testing uses cross-
validation, an internal subset of the data that has been set aside, or an external data set unrelated to the training data set. CART = classification and regression tree, KNN = 
k-nearest neighbor, LR = logistic regression, NB = naive Bayes, RF = random forest, SVM = support vector machine.
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efforts have improved the standardization of radiomic features, 
variations in values for some features remain due to implicit as-
sumptions made about the input data or the ways in which cer-
tain mathematical operations or parameters are implemented by 
tool developers (50).

Given the large number of engineered radiomic features that 
can be extracted from a region of interest, some form of feature 
selection and dimension reduction is mandatory to minimize 
overfitting, which occurs when the model is too closely fit to 
the training data set and performs poorly when applied to other 
data sets. Both feature selection and dimension reduction seek 
to reduce the number of features by selecting the most highly 

relevant, nonredundant features, eliminating highly correlated 
or irrelevant features that contribute to noise.

Once extracted, radiomic features can be applied to models 
independently or in combination with additional clinical data 
such as demographics, histologic characteristics, or molecular 
tests to classify indeterminate nodules or predict the histologic 
characteristics, mutation status, or prognosis of known tumors. 
Several machine learning approaches have been used, including 
logistic regression, random forests, support vector machines, 
classification and regression trees, naive Bayes, k-nearest neigh-
bor, and adaptive boosting, often grouped into families of linear, 
nonlinear, and ensemble classifiers.

Table 2: Studies from 2019 to 2021 Using Handcrafted Radiomic Features to Classify Indeterminate Nodules as Benign or 
Malignant

Study and Year
Total No. of  
Nodules*

No. of Radiomic  
Features†

Other  
Features

Analytical  
Approach

Validation  
Technique

Diagnostic 
Performance

Astaraki  
et al, 2021 (51) 

1297 Approximately  
40 (1334)

None Adaptive boosting Fivefold  
cross-validation

AUC = 0.921

Khorrami  
et al, 2021 (52) 

412 (350 + 62) 41 (1356) None QDR External validation AUC = 0.87

Jing et al, 2021 (53) 116 (70 + 46) 10 (788) Age Multivariate LR Internal set aside AUC = 0.845
Liu et al, 2020 (54) 210 (140 + 70) 15 (385) None RF Internal set aside AUC = 0.877, 

sensitivity = 81.8%, 
specificity = 77.4%, 
accuracy = 80.0%

Liu et al, 2020 (55) 875 (612 + 263) 20 (1288) Age Multivariate LR Internal set aside AUC = 0.809
Mao et al, 2019 (56) 294 (196 + 98) 11 (385) None LASSO LR Internal set aside AUC = 0.97, TPR =  

81.0%, TNR = 
92.2%, accuracy = 
89.9%

Uthoff et al, 2019 (57) 463 (363 + 100) 50 (922) None K-medoids, ANN External validation AUC = 0.965, 
sensitivity = 100%, 
specificity = 96%

Xu et al, 2019 (58) 373 6 (869) None RF Fivefold  
cross-validation

AUC = 0.84, 
sensitivity = 0.89%, 
specificity = 0.74%, 
accuracy = 0.77%

Beig et al, 2019 (59) 290 (145 + 145) 12 (1776) None SVM Internal set aside AUC = 0.80, 
sensitivity = 74%, 
specificity = 68%, 
accuracy = 0.71%

Delzell et al, 2019 (60) 200 199 (416) None Elastic net  
plus linear 
combination  
filter

10-fold  
cross-validation

AUC = 0.747, 
sensitivity = 62%, 
specificity = 73%, 
FPR = 0.271%

Digumarthy  
et al, 2019 (61) 

108 52 (92) None Multivariate LR None AUC = 0.708, 
sensitivity = 90%, 
specificity = 61%‡

Note.—ANN = artificial neural network, AUC = area under the receiver operating characteristic curve, FPR = false-positive rate,  
LASSO = least absolute shrinkage and selection operator, LR = logistic regression, QDR = quadratic discriminant analysis, RF = random 
forest, SVM = support vector machine, TNR = true-negative rate, TPR = true-positive rate.
* Numbers in parentheses are numbers of individuals in training and testing sets. Studies with training and testing sets used either external 
test sets or internal set-aside image data. In the remaining studies, cross-validation techniques were used. There was no form of testing after 
training and validation in the study by Digumarthy et al (61).
† Numbers in parentheses are total numbers of features extracted.
‡ Performance characteristics were based on follow-up CT scans and not baseline-only CT scans.



Advanced CT Image Analysis in Pulmonary Nodules and Early Lung Cancer

8	 radiology.rsna.org  ■  Radiology: Volume 309: Number 1—October 2023

Potential of Radiomic Models for Early Detection and 
Characterization
Table 2 summarizes recent studies on the performance of ra-
diomic features in machine learning algorithms to distinguish 
benign and malignant IPNs (51–61). In these models, external 
data sets, which provide the most rigorous test of performance, 
were used in only two studies; in the remainder, test data sets 
were generated using resampling techniques, where different 
subsets of one data set are used to train and test the model. Both 
the feature selection method for dimension reduction and type 
of classifier used will affect model performance. Delzell et al (60) 
compared the performance of combinations of six feature selec-
tion methods and 12 classifiers in classifying 200 indeterminate 
nodules 5–30 mm in diameter. Their best-performing feature 
selection and classifier combination achieved an AUC of 0.747 
(±0.111 [SD]); when the demographic variables age, sex, and 
pack-years (number of packs smoked per day times number of 
years smoked) were added to the model, the AUC increased 
to 0.854, underscoring the potential complementary nature of 
clinical and radiomic features (Table 2). The work by Delzell 
et  al (60) highlighted additional points: (a) feature reduction 
prior to model training improved predictive performance; (b) 
different modeling approaches yielded different levels of perfor-
mance, suggesting that in classification studies, different model 
types should be explored; and (c) the combined use of nodule 
and perinodule lung features improved discrimination. The in-
cremental benefits of perinodule radiomic features have also been 
observed in other studies (57–59,62). Uthoff et al (57) described 
a pipeline in which various combinations of nodule, border, and 
perinodule radiomic features were used to train an ensemble of 
10 artificial neural networks. The top-performing model used 
features of the nodule and perinodule surround. In training on 
363 nodules, this model achieved complete separation of benign 
and malignant nodules. In two external test data sets of 100 cases 
and 73 cases, the AUCs were 0.965 and 0.924, respectively. The 
top five radiomic features included two features from the nodule 
surround and three from the nodule itself. Mao et al (56) tested 
a quantitative radiomic model with logistic regression that clas-
sified small, solid lung nodules (6–15 mm in diameter) on lung 
screening CT scans as malignant or benign, achieving an AUC 
of 0.97, compared with an AUC of 0.77 for Lung-RADS.

Beyond applying radiomics to classifying IPNs, investigators 
have developed radiomics-based machine learning algorithms 
to better distinguish lung adenocarcinoma from squamous cell 
carcinoma. Using preoperative CT scans from 105 patients with 
histologically confirmed adenocarcinoma or squamous cell car-
cinoma, Tang et al (63) trained and tested five common machine 
learning classifiers and an ensemble classifier. The best-perform-
ing ensemble model achieved an AUC of 0.78 in the test cohort 
using both tumoral and peritumoral radiomic features.

Differentiating precursor glandular lesions (atypical adeno-
matous hyperplasia and adenocarcinoma in situ) and adenocar-
cinomas (minimally invasive and invasive) in subsolid lesions has 
been the subject of several studies (64–68). Zhu et al (64) evalu-
ated a cohort of 120 patients (129 lesions) with pathologically 
confirmed pure ground-glass nodules in an effort to distinguish 
precursor lesions from minimally invasive adenocarcinoma. After 

feature selection, 18 of 2107 radiomic features were selected for 
model construction. The classification performance (AUC) of 
a logistic regression model in the test set was 0.872 (95% CI: 
0.756, 0.988). In another study involving 1018 pathologically 
confirmed ground-glass nodules, Zhu et al (65) trained a logis-
tic regression model using tumoral and peritumoral radiomic 
features to derive a “rad-score” to distinguish precursor lesions 
from adenocarcinoma. After feature selection, nine tumoral and 
seven peritumoral radiomic features were selected from a total 
of 2446 total features. In a set-aside test cohort, the AUC of 
the rad-score was 0.828, outperforming a model using clinical 
and semantic features. A nomogram that combined semantic 
lobulation and the radiomic features performed best, with an 
AUC of 0.835 (65). The Computer-Aided Nodule Assessment 
and Risk Yield, or CANARY, classifier has been validated to 
predict survival in patients with lung adenocarcinoma (69,70) 
and epidermal growth factor receptor mutation status (71). Ad-
ditionally, CANARY has been used as a tool to correlate biologic 
behaviors with radiomic features (72). Other investigations have 
also shown the potential of radiomics-based models to identify 
epidermal growth factor receptor and other mutations in lung 
cancer (73–76).

Deep Learning
Unlike radiomic analyses, deep learning algorithms do not nec-
essarily depend on nodule segmentation and can determine 
which features to extract without human intervention through 
a process called representation learning (77). If provided with 
sufficient data, deep learning algorithms can exceed the perfor-
mance of models using handcrafted features, picking up patterns 
that may be too subtle for humans to detect (46).

Current State
Deep learning is an active development area for automated lung 
nodule detection and characterization (78). The dominant type 
of neural network used to process medical imaging is the convo-
lutional neural network (CNN). Common CNN-based archi-
tectures include ResNet (79), DenseNet (80), RetinaNet (81), 
U-Net (82), and Inception (83). More recently, vision trans-
formers (or ViTs) have emerged as an alternative to CNNs where 
images are split into patches, projected into a feature space, and 
then processed using an encoder with a self-attention mechanism 
that permits the transformer model to learn long-range depen-
dencies across different regions of an image. Vision transformers 
have shown promise in outperforming CNNs when trained with 
large data sets (84). A variety of strategies have been developed 
to mitigate challenges with obtaining annotated data, including 
data augmentation (generating new training examples based on 
existing data) (85) and self-supervised learning (pretraining the 
model on a related task where labels are easier to obtain) (86).

In grand challenges such as LUNA16 (87) and the Kaggle 
Data Science Bowl 2017, which provided annotated image data 
sets to enable comparisons between different nodule detection 
and classification algorithms, the algorithms with the best per-
formance used deep learning–based approaches. However, most 
deep learning algorithms have not been shown to generalize to 
different cohorts with nodules of varying sizes and consistency 
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(88). Only two of the algorithms from the Kaggle Data Science 
Bowl 2017 did not perform significantly worse than 11 radiolo-
gists at estimating the probability of lung cancer in an enriched 
set of 300 LDCT scans (89). Moreover, model performance in 
classifying IPNs has only been explicitly examined in a few stud-
ies (90–92).

Estimation of lung cancer risk at the level of individual 
pulmonary nodules or entire volumetric CT examinations has 
emerged as a promising alternative to existing clinical risk mod-
els (Table 3). One emerging application of deep learning is to 

predict the risk of lung cancer in an individual based on scans 
from an entire volumetric LDCT examination. Most existing 
clinical risk models for estimating the likelihood of develop-
ing lung cancer use information on age, sex, exposures, smok-
ing history, and family history. Mikhael et al (93) developed a 
deep learning–based model called Sybil that uses a ResNet-based 
encoder, an attention module, and an additive hazard layer to 
predict the risk of lung cancer 1–6 years after an LDCT screen-
ing examination. Data from 15 000 NLST CT-arm participants 
with 41 283 baseline and incidence LDCT examinations (of 

Table 3: Select Studies from 2019 to 2023 Using Deep Learning–based Approaches to Predict Lung Cancer Risk or Risk of 
Malignancy at Chest CT

Study and  
Year No. of Cases* Model Input

Analytical  
Approach Model Output

Validation 
Technique

Diagnostic 
Performance

Mikhael et al, 
2023 (93) 

Training: 28 162;  
development: 
6839; testing: 
6282

Entire LDCT  
examination

3D ResNet-18  
plus additive 
hazard layer

1–6-y risk of  
lung cancer

Internal  
set aside plus  
two external 
test sets

1 y: AUC = 0.92;  
2 y: AUC = 0.86;  
6 y: AUC = 0.69

Ardila et al, 
2019 (94) 

Training: 47 974; 
tuning: 6034; 
internal testing: 
6716; external 
testing: 1139

Entire LDCT  
examination  
(plus prior  
examination if 
available)

Cancer ROI  
detection: 
RetinaNet; 
full volume: 
3D inflated 
Inception-V1; 
cancer risk: 3D 
Inception

Malignancy  
probability,  
lung malignancy 
score, cancer  
localization

Internal set  
aside plus  
one external 
test set

Internal: AUC = 
0.944; external: 
AUC = 0.955

Lv et al,  
2021 (95) 

Training: 1606;  
validation: 200;  
internal testing:  
300; external  
testing: 341

Nodules at  
geometric center

FGP-Net Nodules classified 
as benign vs 
malignant

Internal  
set aside plus 
three external 
test sets

Internal: AUC = 
0.969; external: 
AUC = 0.890–
0.942; sensitivity = 
93.8%; specificity = 
89.2%

Massion et al, 
2020 (90)

Internal set:  
14 761 benign,  
932 malignant;  
external set  
1: 52 benign, 
64 malignant; 
external set 2: 
400 benign, 63 
malignant

Nodules in 3D 
anisotropically 
resampled box

LCP-CNN Nodules classified 
as benign vs 
malignant

Eightfold cross-
validation

Internal: AUC = 
0.921; external 1:  
AUC = 0.835; 
external 2: AUC = 
0.919

Venkadesh 
et al, 2021 
(96)

Internal set:  
16 077 (1249 
malignant) from 
NLST; external 
set: 883 (65 
malignant) from 
DLCST, including 
two cancer-
enriched cohorts†

Annotated  
nodules

Ensemble of 2D 
CNN (ResNet) 
and 3D CNN 
Inception-V1)

Nodule  
malignancy risk

10-fold cross-
validation

External: AUC = 
0.93; cancer-
enriched cohorts: 
AUC = 0.86 and 
0.96

Note.—AUC = area under the receiver operating characteristic curve, CNN = convolutional neural network, DLCST = Danish Lung 
Cancer Screening Trial, FGP-Net = Filter-Guided Pyramid Network, LCP-CNN = Lung Cancer Prediction CNN, LDCT = low-dose CT, 
NLST = National Lung Screening Trial, ROI = region of interest, 3D = three-dimensional, 2D = two-dimensional.
* Number of cases is number of nodules for all studies except Mikhael et al (93) and Ardila et al (94), for which number of cases is number 
of CT scans.
† Cancer-enriched subsets of the DLCST were created with 59 malignant and 116 benign nodules (total 175) in subset A and the same 59 
malignant nodules and 118 size-matched benign nodules (total 177) in subset B.
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which 2080 examinations were positive and associated with can-
cer within 6 years) were used for model training and internal 
validation. The model was externally validated in two large insti-
tutional data sets. Sybil achieved an AUC of 0.92 for predicting 
1-year lung cancer risk and 0.75 for predicting 6-year risk on 
the internal validation set and performed similarly on the exter-
nal test sets. Sybil also achieved a lower false-positive rate than 
Lung-RADS (0.08 vs 0.10, P < .001, across all LDCT scans with 
visible nodules, n = 4201).

Ardila et al (94) developed a cancer detection algorithm that 
identified nodules on prior (when available) and current LDCT 
scans, processed up to two regions within scans containing a 
visible nodule, and predicted 1–2-year risk of lung cancer. Lv 
et  al (95) developed a coupled human-machine classification 
approach for screen-detected and incidentally detected nod-
ules in which most nodules were classified automatically by 
the algorithm and the remaining “ambiguous” nodules were 
classified with physician input. Venkadesh et al (96) developed 
and validated a model to distinguish malignant versus benign 
screen-detected nodules. The algorithm performed better than 
the existing PanCan nodule prediction model and trained ra-
diologists. However, each of these studies used data from the 
NLST, which did not prospectively follow individual nodules 
to cancer outcomes. Also, studies often focus only on the AUC, 
omitting model calibration (the predicted probability of an 
event versus the observed probability), which is also an impor-
tant performance measure. Massion et  al (90) trained and in-
ternally validated a CNN based on the DenseNet architecture 
called the Lung Cancer Prediction CNN, or LCP-CNN, using 
14 761 benign and 932 malignant solid and part-solid nod-
ules that were 6 mm or larger from the NLST, and externally 
validated the algorithm in cohorts with IPNs, achieving higher 
discrimination performance than the Brock and Mayo risk pre-
diction models. The LCP-CNN model was further evaluated 
in a multireader, multicase study that showed that sensitivity 
and specificity improved across all readers with the assistance of  
LCP-CNN (92).

Challenges and Opportunities
As with radiomics, differences in CT scanner manufacturer, ra-
diation dose, convolution kernel, iterative reconstruction, and 
section thickness remain challenges to the diagnostic perfor-
mance of deep learning algorithms. One study (97) compared 
the diagnostic performance of radiomics and deep learning algo-
rithms in subtyping pulmonary adenocarcinoma amid changes 
in convolution kernel and strength of iterative reconstruction 
and found that deep learning was more susceptible to variability 
than radiomics.

The development of robust nodule detection and classifica-
tion algorithms is facilitated by access to large data sets represen-
tative of the target population and with high-quality annotations. 
Many existing studies use large data sets such as those of the 
Lung Imaging Database Consortium or the NLST, but these 
data sets have limitations. The Lung Imaging Database Consor-
tium data set contains a mixture of diagnostic CT and LDCT 
scans from patients who are not representative of a screening co-
hort. Only a small subset of nodules identified within the Lung 

Imaging Database Consortium cohort have pathologically con-
firmed diagnoses. On the other hand, the NLST represents a 
screening cohort with up to three annual screens and 7 years 
of clinical follow-up. However, suspicious nodules were neither 
uniquely tracked across scans nor explicitly tied to lung cancer 
diagnoses (ie, it is not always clear which nodule resulted in a 
given lung cancer diagnosis). The imaging community would 
greatly benefit from the availability of more data sets like the 
NELSON data set, where nodules were uniquely tracked and 
volumetric information was obtained, and from the sharing of 
expert-derived annotations (both region of interest and nodule 
boundary) from studies that have leveraged the NLST data set. 
Contributions of data from institutions with active lung cancer 
screening programs will also be critical to further train and vali-
date models that can generalize across populations, given prac-
tice variability in the real world and the limitations of existing 
trials in representing the individuals who may benefit the most 
from screening.

Beyond Diagnosis
The role of medical imaging in lung cancer does not end with 
diagnosis. During the process of nodule characterization and 
management, data including clinical information, radiologic im-
ages, histopathologic characteristics, blood biomarker tests, and 
outcomes (eg, overall survival, recurrence-free survival) are gen-
erated. Imaging, either alone or combined with molecular and 
tissue-based biomarkers, can inform the appropriate next steps 
in treatment, help monitor recurrence, and inform outcomes. 
For example, Lian et al (98) showed that a vision transformer 
combined with a graph neural network could predict overall 
survival and recurrence-free survival in patients with early-stage 
lung cancer. With the increasing complexity of available data sets 
and computational capabilities, researchers are now investigating 
ways to effectively integrate different data types that span bio-
logic scales (Fig 5). Various approaches, including late, early, and 
intermediate fusion, have been proposed for fusing different data 
types, resulting in a powerful approach to creating a more holis-
tic model for prognostication in patients with lung cancer (99).

Conclusion
Human semantic annotation currently dominates our approach 
to nodule classification and lung cancer characterization but is 
ultimately unsuited to analyses of large-scale image data sets. 
Analytical machine learning approaches are quantitative and 
objective and have the potential to help inform which nodules 
are malignant, personalize therapies based on characterization 
of cancer histologic characteristics and molecular signature, and 
inform prognosis. In hand with the promise of radiomics-based 
machine learning and deep learning approaches are complexi-
ties that we are only beginning to address. The heterogeneity 
of imaging acquisition and reconstruction substantially affects 
radiomic and deep learning features. Short of the convergence 
of the imaging community on standardized protocols in clini-
cal practice, the challenge is to normalize images prior to fea-
ture extraction or to reduce the variations of extracted features, 
which may sometimes obscure discriminatory features. Given 
the sheer magnitude of extractable features, feature selection and 
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dimension reduction techniques are critical for machine learning 
models to be confidently applied to new data sets; we do not yet 
have ways to determine the optimal feature selection approach 
or classification algorithm for a given decision task or data set. 
Ultimately, the imaging community can adopt these features 
and machine learning models only by showing their resilience to 
variation in acquisition protocols, their contributions to knowl-
edge in specific clinical contexts, and their reproducibility across 
different patient populations. As well, among the imperatives 
for the imaging community is the provision of publicly avail-
able, high-quality, annotated clinical and image data sets that 
can be used for training and validation. Ultimately, as the bio-
logic underpinnings of these classification algorithms become 

comprehensible and plausible to humans, computational algo-
rithms can pave the way for more personalized approaches to 
diagnosis and treatment.
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