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Recent advances in large language models (LLMs), ex-
emplified by the success of models like ChatGPT and 

GPT-4 developed by OpenAI, have had a profound im-
pact on the health care and medical domains (1). In radiol-
ogy, institutions are actively exploring the adoption of this 
technology in clinical settings to streamline and automate 
various clinical text processing tasks aimed at assisting radi-
ologists in image interpretation and report generation (2).

However, the use of ChatGPT in clinical domains re-
quires patient data to be transmitted to OpenAI’s external 
server (the third party) through either a chat window or 
an application programming interface. This situation in-
evitably raises concerns regarding data security and patient 
privacy (3). To address these concerns, privacy-preserving 
LLMs (PP-LLMs) are emerging and have received sub-
stantial attention. PP-LLMs adopt a range of measures to 
ensure the protection of patient privacy and data security 
(4), including (a) encrypting or encoding users’ prompts or 
queries before they are transmitted to a model; (b) main-
taining confidentiality of any information related to the 
private data, prompts, and queries that the model receives 
and processes; and (c) enabling models to be cloned, com-
pressed, and then deployed locally without sending any 
data to third parties. This ensures that patient data and the 
model’s operations remain in full control of the local user, 
with no access possible by external parties.

In this issue of Radiology, Mukherjee et al (5) investi-
gated the feasibility of using a locally deployed Vicuna-
13B, a prototype PP-LLM, for labeling key findings in 
chest radiography reports. In contrast to the closed-source 
proprietary LLM family of GPT, Vicuna is one of the de-
rivatives of LLaMA, an open-source LLM developed by 
Meta. Vicuna was fine-tuned using the training code from 
Alpaca, another member of the LLaMA series, and 70 000 
user-shared ChatGPT conversations. Preliminary evalua-
tion showed that Vicuna achieved over 90% of ChatGPT’s 

response quality in user preference tests (6), despite having 
fewer parameters (13 billion) than either GPT-3.5 (175 
billion) or GPT-4 (approximately 1.7 trillion).

In the study by Mukherjee et al (5), the performance 
of Vicuna-13B in the task of labeling 13 specific findings 
in chest radiography reports was compared with two well-
established labeling tools, CheXpert and CheXbert. Two 
radiograph data sets were used, including 3269 free-text 
radiology reports from the publicly available MIMIC-
CXR data set (7) and 25 596 reports from the National 
Institutes of Health (NIH) ChestX-ray14 data set (which 
are not publicly available) (8). It is worth mentioning that 
CheXpert and CheXbert were extensively trained for label-
ing radiography reports on data sets consisting of 222 750 
reports from MIMIC-CXR and 78 506 reports from the 
NIH data set, respectively. In contrast, Vicuna-13B was 
used without any specific training for the labeling of chest 
radiography reports and without any form of fine-tuning.

Mukherjee et al (5) designed two tasks and two prompts 
to assess the agreement between Vicuna outputs and those 
from CheXpert and CheXbert.

Task 1 involved the direct labeling of 13 possible find-
ings in a radiography report by assigning each finding to 
either a positive (value of 1), negative (0), not mentioned 
(NA), or unsure (−1) category.

Task 2 was a simplified version of task 1; it mapped 
all findings previously categorized as “not mentioned” or 
“unsure” to the “negative” category.

Two different prompts were designed to instruct Vi-
cuna to generate the desired outputs.

Prompt 1 was a single-step prompt that instructed the 
model to generate a structured radiography labeling report 
by directly exporting each of the 13 findings (0, 1, −1, or 
NA for task 1 and 0 or 1 for task 2).

Prompt 2 was a multistep prompt that used a rule-
based interactive prompting strategy to guide the model in 
a label-by-label manner in answering three yes-or-no ques-
tions to determine whether the finding should be classified 
as present, absent, or unsure/not mentioned.

When using prompt 1, Vicuna outputs for the 13 
findings in both data sets showed, on average, poor agree-
ment with outputs from CheXpert and CheXbert for task 
1 (κ median, −0.48 to −0.40) and moderate agreement 
with outputs from the two labelers for task 2 (κ median, 
0.46–0.56). When prompt 2 was used, Vicuna outputs 
in both data sets showed, on average, fair to moderate 
agreement with outputs from CheXpert and CheXbert 
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for task 1 (κ median, 0.31–0.41) and moderate to substantial 
agreement with outputs from the two labelers for task 2 (κ me-
dian, 0.52–0.64). Compared with prompt 1, Vicuna outputs 
with prompt 2 showed better agreement with outputs from 
the two labelers in both data sets for task 1 (P < .001) and in 
the MIMIC-CXR data set for task 2 (P = .02). The authors 
also carried out a human evaluation study in which a random 
subset of 100 reports from the NIH data set were manually 
reviewed and annotated by a senior radiologist. For task 2, 
Vicuna with prompt 2 performed on par with CheXpert or 
CheXbert for nine of the 11 findings with more than a single 
true-positive finding in the subset of examinations.

The impacts of this study by Mukherjee et al (5) lie not only 
in its evaluation of the ability of general-purpose LLMs to label 
radiography reports, but more importantly, in the feasibility of 
locally deploying LLMs to protect patient privacy and data se-
curity. Indeed, to my knowledge, this study is one of the first 
investigations of a PP-LLM in a clinical setting.

First, the study showed the natural language processing ca-
pabilities of LLMs can be used for clinical tasks in radiology. 
As mentioned before, both CheXpert and CheXbert underwent 
substantial training for the special task of labeling radiography 
reports. This machine learning process requires substantial hu-
man efforts to collect and label large data sets, followed by train-
ing and testing of the model. In contrast, general-purpose LLMs 
such as ChatGPT or Vicuna are pretrained with extensive col-
lections of text sourced from the internet. As such, the model 
itself has no specific knowledge of labeling radiography reports. 
With minimal effort of prompt coding, these pretrained LLMs 
could be readily applied to various tasks in radiology, such as 
the radiology report labeling demonstrated in their study, as well 
as radiology report generation, image annotation interpretation, 
clinical decision support, and even cancer screening and detec-
tion (9). LLMs offer the potential of a streamlined alternative 
to the traditional labor-intensive machine learning processes for 
domain-specific tasks.

Second, Vicuna, being an open-source LLM, supports local 
deployment within an institution. Unlike with ChatGPT, this 
local deployment strategy avoids the transmission of patient 
data to third-party servers. The institution intranet and firewall 
protect patient health information from being disclosed to and 
accessed by unauthorized entities. In addition, Vicuna has a sub-
stantially smaller number of parameters than GPT models do, 
which makes local deployment more feasible when computa-
tional resources are limited. Thus, the main advantages of model 
accessibility (open source), compactness (low number of model 
parameters), and security (local deployment), along with a per-
formance quality similar to that of GPT models, make Vicuna 
one viable option for developing and deploying PP-LLMs in 
clinical settings, where the compliance with patient privacy and 
data security is a top priority.

Third, the study by Mukherjee et al (5) highlights the im-
portance of structuring a specific and meaningful prompt in 
an LLM to capture the semantic differences in the context of a 
task. All it needs is a good prompt that is contextual, succinct, 

and informative to instruct the LLM through a specific 
task. Vicuna instructed by prompt 2, a multistep interactive 
prompt, improved the LLM’s ability to label chest radiography 
reports without the need for any additional training. While 
the performance achieved in their feasibility study might not 
be optimal for immediate clinical implementation, it is ex-
pected that the model could be enhanced further through ad-
vanced prompt engineering techniques. For example, chain-of-
thought prompting enables complex reasoning using few-shot 
exemplars, where the reasoning process is explicitly outlined, 
which could be used to build a well-structured and contextu-
ally rich framework for Vicuna (10).

While local deployment of an open-source LLM offers great 
potential for implementation of a PP-LLM, there are also con-
siderations to bear in mind. For instance, the hardware costs 
for LLMs can be high, and models require ongoing mainte-
nance and development efforts to ensure they continue to per-
form accurately. Additionally, appropriate regulation of access 
control, suitable methods for user authentication, and adher-
ence to any data compliance requirements (such as potential 
data leakage or privacy breaches) when improving a model 
with queries involving patient data must be rigorously exam-
ined before implementation.

Interest in PP-LLMs is growing, and these models are ex-
pected to become one of the hottest research topics of genera-
tive AI in health care. The study by Mukherjee et al (5) contrib-
utes to this emerging field by demonstrating the feasibility of 
implementing a PP-LLM through local deployment in clinical 
settings, which may effectively address concerns about patient 
privacy and data security when using LLMs for clinical tasks.

Disclosures of conflicts of interest: W.C. Support from the National Institutes 
of Health/National Cancer Institute (grant no. R42CA189637) and the Children’s 
Tumor Foundation (grant no. CTF-2021-10-02); stock in IQ Medical Imaging. 

References
	 1.	Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot 

for medicine. N Engl J Med 2023;388(13):1233–1239.
	 2.	Elkassem AA, Smith AD. Potential use cases for ChatGPT in radiology 

reporting. AJR Am J Roentgenol 2023;221(3):373–376.
	 3.	Kanter GP, Packel EA. Health care privacy risks of AI chatbots. JAMA 

2023;330(4):311–312.
	 4.	Raeini M. Privacy-preserving large language models (PPLLMs). http://dx.doi.

org/10.2139/ssrn.4512071. Posted July 24, 2023. Accessed August 25, 2023.
	 5.	Mukherjee P, Hou B, Lanfredi RB, Summers RM. Feasibility of using the 

privacy-preserving large language model Vicuna for labeling radiology reports. 
Radiology 2023;e231147. Published online October 10, 2023.

	 6.	Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT 
Quality. The Large Model Systems Organization. https://lmsys.org/blog/2023-
03-30-vicuna/. Published March 30, 2023. Accessed August 25, 2023.

	 7.	 Johnson AEW, Pollard TJ, Berkowitz SJ, et al. MIMIC-CXR, a de-identified 
publicly available database of chest radiographs with free-text reports. Sci 
Data 2019;6(1):317.

	 8.	Wang X, Peng Y, Lu L, et al. ChestX-Ray8: hospital-scale chest x-ray data-
base and benchmarks on weakly-supervised classification and localization of 
common thorax diseases. 2017 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR): IEEE, 2017.

	 9.	 Shen Y, Heacock L, Elias J, et al. ChatGPT and other large language models 
are double-edged swords. Radiology 2023;307(2):e230163.

	10.	Ott S, Hebenstreit K, Liévin V, et al. ThoughtSource: a central hub for large 
language model reasoning data. Sci Data 2023;10(1):528.


