
Leveraging 2D Deep Learning ImageNet-trained models for 
Native 3D Medical Image Analysis

Bhakti Baheti1,2,3,†, Sarthak Pati1,2,3,4,†, Bjoern Menze4,5, Spyridon Bakas1,2,3,*

1Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 
Philadelphia, PA, USA

2Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of 
Pennsylvania, Philadelphia, PA, USA

3Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA, USA

4Department of Informatics, Technical University of Munich, Munich, Germany

5Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland

Abstract

Convolutional neural networks (CNNs) have shown promising performance in various 2D 

computer vision tasks due to availability of large amounts of 2D training data. Contrarily, 

medical imaging deals with 3D data and usually lacks the equivalent extent and diversity of 

data, for developing AI models. Transfer learning provides the means to use models trained 

for one application as a starting point to another application. In this work, we leverage 2D 

pre-trained models as a starting point in 3D medical applications by exploring the concept of 

Axial-Coronal-Sagittal (ACS) convolutions. We have incorporated ACS as an alternative of native 

3D convolutions in the Generally Nuanced Deep Learning Framework (GaNDLF), providing 

various well-established and state-of-the-art network architectures with the availability of pre-

trained encoders from 2D data. Results of our experimental evaluation on 3D MRI data of brain 

tumor patients for i) tumor segmentation and ii) radiogenomic classification, show model size 

reduction by ~22% and improvement in validation accuracy by ~33%. Our findings support the 

advantage of ACS convolutions in pre-trained 2D CNNs over 3D CNN without pre-training, for 

3D segmentation and classification tasks, democratizing existing models trained in datasets of 

unprecedented size and showing promise in the field of healthcare.
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1 Introduction

Deep learning (DL) based approaches are continuously being developed for various medical 

imaging tasks, including segmentation, classification, and detection, for a wide range 

of modalities (i.e., MRI, CT, X-Ray), regularly outperforming earlier approaches [1,2]. 

However, DL is computationally expensive and requires large amounts of annotated data 

for model training limiting their applicability in problems where large amounts of annotated 

datasets are unavailable [3]. Transfer learning (TL) is a popular approach to overcome this 

issue by initializing a DL model with pre-trained weights, thereby reducing convergence 

time and concluding at a superior state, while utilizing otherwise insufficient data [4,5]. 

The basic idea of TL involves re-using model weights trained for a problem with a large 

available dataset as the initialization point for a completely different task. The foundation 

behind this idea is that convolutional layers extract general, lower-level features (such as 

edges, patterns, and gradients) that are applicable across a wide variety of images [6]. The 

latter layers of a convolutional neural network (CNN) learn features more specific to the 

image of the particular task by combining the previous lower-level features. Leveraging 

weights of trained models has proven to be a better initialisation point for DL model 

training, when compared to random initialization [4,7–10].

There are numerous pre-trained models available for applications on 2D imaging data, 

such as ImageNet [11], YOLO [12], and MS-COCO [13], however, universally applicable 

pre-trained models are not available for utilization on 3D data like medical images due to 

the lack of associated large and diverse data. Current application of pre-trained CNN for 3D 

medical image segmentation and classification can be divided in three categories depending 

on the dimensionality of the input data:

• 2D Approaches

Here, a 3D input volume is considered as a stack of 2D slices, and a multi-slice 

planar (2D) network is applied on each 2D slice independently [14,15]. Some 

earlier approaches considered 3D medical images as tri-planar representation 

where axial, coronal, and sagittal views are considered as 3 channels of the input 

data. But such 2D representation learning is fundamentally weak in capturing 

3D contexts. Some DL based approaches for classification of brain cancer MRI 

images use representative 2D slices as the input data rather than utilizing full 3D 

volume [16,17].

• 3D Approaches

In this case, a 3D network is trained using native 3D convolution layers that 

are useful in capturing spatial correlations present along the 3rd dimension, in 

order to capture 3D contextual information [18–21]. Significant improvement 

in classification accuracy was observed in [22] with the use of native 3D 

convolutions compared to 2D convolutions. Although data in adjacent slices, 

across each of the three axes, are correlated and can be potentially used to yield a 

better model, this suffers from two weaknesses: a) reduced model stability due to 

random weight initialization (since there are no available pre-trained models) and 

b) unnecessarily high memory consumption.
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• Hybrid Approaches

There are few studies using a hybrid of the two aforementioned approaches, i.e. 

2D & 3D. An ensemble-based learning framework built upon a group of 2D and 

3D base learners was designed in [23]. Another strategy is to train multiple 2D 

networks on different viewpoints and then generate final segmentation results 

by 3D volumetric fusion net [24]. A similar approach was proposed in [25], 

which consists of a 2D DenseUNet for intra-slice feature extraction and its 3D 

counterpart for aggregating volumetric contexts. Finally, Ni et al. trained a 2D 

deep network for 3D medical image segmentation by introducing the concept of 

elastic boundary projection [26].

Current literature shows inadequate exploration on the application of 2D pre-trained models 

in native 3D applications. As medical datasets are limited when compared with those from 

the computer vision domain, TL of models trained in the latter can be beneficial in medical 

applications.

In this paper, we explore the concept of Axial-Coronal-Sagittal (ACS) convolution to utilize 

pre-trained weights of models trained on 2D datasets to perform natively 3D operations. 

This is achieved by splitting the 2D kernels into 3 parts by channels and convolving 

separately across Axial-Coronal-Sagittal views to enable development of native 3D CNNs 

for both classification and segmentation workloads. This way, we can take advantage of the 

3D spatial context, as well as the available pre-trained 2D models to pave the way towards 

building better models for medical imaging applications. Multiple options of pre-trained 

models for use in 3D datasets have been made publicly available through the Generally 

Nuanced Deep Learning Framework (GaNDLF) [27]6.

2 Methods

In this work, we leverage the concept of Axial-Coronal-Sagittal (ACS) proposed in [28] 

and incorporate it into the Generally Nuanced Deep Learning Framework (GaNDLF) [27]7 

which supports a wide variety of model architectures, loss functions, pre-processing, and 

training strategies.

2.1 ACS Convolutions

Convolution operations in CNNs can be classified as either 2D or 3D. The 2D convolutional 

layers use 2D filter kernels (K × K) and capture 2D spatial correlation, whereas 3D 

convolutional kernels (K × K × K) are used in native 3D convolutional layers capturing 3D 

context (Fig. 1). As mentioned earlier, each of these approaches have their own advantages 

and disadvantages.

Yang et al. [28] introduced the concept of Axial-Coronal-Sagittal (ACS) convolutions to 

learn the spatial representation of three dimensions from the combination of each of the 

three (A-C-S) views (Fig. 1(c)). The basic concept of the ACS convolutions is to split 

6 https://github.com/CBICA/GaNDLF 
7 https://github.com/CBICA/GaNDLF 
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the kernel into three parts (K ×K ×1), (K ×1×K) and (1 × K × K) and run multiple 2D 

convolution filters across the three views (axial, coronal, and sagittal). For any convolution 

layer, let us consider the number of input channels as Ci and number of output channels as 

Co. The number of output channels in ACS convolution are then set as:

Co
Axial ≈ Co

Coronal ≈ Co
Sagittal ≈ Co

3 (1)

Thus 2D convolutions are transformed into 3 dimensions by simultaneously performing 

computations across axial, coronal, and sagittal axes. The final output is then obtained by the 

concatenation of three convolved feature maps without any additional fusion layer.

The concept of ACS convolutions can be used as a generic plug-and-play replacement of 

3D convolution enabling development of native 3D CNNs using 2D pre-trained weights as 

illustrated in Fig. 2.

2.2 Architecture design

We have incorporated the concept of ACS convolutions in GaNDLF, which is a framework 

for training models for segmentation, classification, and regression in a reproducible 

and deployable manner [27]. GaNDLF has several architectures for segmentation and 

classification, as well as a wide range of data pre-processing and augmentation options 

along with the choice of several training hyper parameters and loss functions. We integrated 

several encoders from [29], pre-trained on ImageNet [11] into this framework, including 

variants of VGG [30], ResNet [31], DenseNet [32], and EfficientNet [33]. We have created 

a mechanism to combine the outputs of these encoders with either a segmentation or a 

classification head depending on the task, as shown in Fig. 3. The segmentation head 

consists of a set of upsampling layers similar to the decoder mechanism of the UNet 

network topology/architecture [34], where the user has the flexibility to choose the number 

of upsampling layers and the number of feature maps in each layer. The classification head 

consists of a average pooling layer applied on the top of feature maps obtained from the 

encoder. Dropout can be set between range 0 to 1 to reduce overfitting to the training data 

before the final classification layer.

While the 2D pre-trained weights could be directly loaded for applications on 2D data, 

we have replaced the usual convolution layer with an ACS convolution layer in GaNDLF, 

enabling their use for training on 3D medical data in a native manner, regardless of the 

number of input modalities. In comparison with the 2D models, ACS convolution layers do 

not introduce any additional computation cost, memory footprint, or model size.

2.2.1 Design for segmentation—Gliomas are among the most common and 

aggressive brain tumors and accurate delineation of the tumor sub-regions is important in 

clinical diagnosis. We trained two different architectures for segmentation through GaNDLF. 

UNet [34] with residual connections (ResUNet) is one of the famous architectures for 2D 

and 3D medical segmentation. It consists of encoder and decoder modules and feature 

concatenation pathways. The encoder is a stack of convolutional and downsampling layers 
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for feature extraction from the input images, and the decoder consists of a set of upsampling 

layers (applying transpose convolutions) to generate the fine-grained segmentation output.

We trained two different models using the publicly available multi-parametric magnetic 

resonance imaging (mpMRI) data of 369 cases from training set of the International Brain 

Tumor Segmentation [35–37] (BraTS2020) challenge. This dataset consists of four multi-

parametric magnetic resonance imaging (mpMRI) scans per subject/case, with the exact 

modalities being: a) native (T1) and b) post-contrast T1-weighted (T1-Gd), c) T2-weighted 

(T2), and d) T2 fluid attenuated inversion recovery (T2-FLAIR). These models are evaluated 

on 125 unseen cases from the BraTS2020 validation dataset. We first trained a standard 

ResUNet architecture of depth = 4 and base filters = 32 such that weights of all the layers 

were randomly initialized. We then built another architecture by using pre-trained ResNet50 

as an encoder with depth = 4 and the standard UNet decoder. For each of these experiments, 

40 patches of 64×64×64 were extracted from each subject. Various training parameters 

were also kept constant, like the choice of optimizer (we used SGD), scheduler (modified 

triangular) with learning rate of 0.001, and loss function based on the Dice similarity 

coefficient (DSC) [38]. Maximum number of epochs was set to 250 with patience of 30 

for early stopping. The performance is evaluated on clinically-relevant tumor regions, i.e., 

whole tumor (considered for radiotherapy), tumor core (considered for surgical resection) as 

well as enhancing tumor.

2.2.2 Design for classification—Glioblastoma (GBM) is the most aggressive and 

common adult primary malignant brain tumor and epidermal growth factor receptor variant 

III (EGFRvIII) mutation is considered a driver mutation and therapeutic target in GBM 

[39–41]. Usually, the presence of EGFRvIII is determined by the analysis of actual tissue 

specimens and is stated as positive or negative. We focus on non-invasive prediction of 

EGFRvIII status by analysis of these pre-operative and pre-processed MRI data. Residual 

Networks (ResNets) [31] introduced the idea of skip connections which enabled design of 

much deeper CNNs. GaNDLF supports variants of ResNet, including ResNet18, ResNet34, 

ResNet50, ResNet101, and ResNet152, each having different number of layers.

We use an internal private cohort of 146 patients containing four structural mpMRI 

modalities (T1, T2, T1-Gd and T2-FLAIR) such that the positive and negative classes 

were equally distributed. These 146 cases were distributed in Training (80%) and Validation 

(20%) sets for experimentation. We used cross entropy loss function, adam optimiser and 

cosine annealing scheduler with learning rate of 0.0001. As the dataset is smaller, we set the 

maximum number epochs to 100 and patience of 30 epochs for early stopping.

3 Results

In this section we present the quantitative results of the segmentation and classification 

workloads described above, to showcase the feasibility and performance of ACS 

convolutions on 3D medical imaging data. Specifically, we compare the 2D pre-training 

approach with the random initialization to evaluate the superiority of the ACS convolutions 

over usual 3D convolution operations.
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3.1 Brain Tumor Segmentation workload

The segmentation model is trained on the publicly available training data of BraTS2020 

challenge. We then quantitatively evaluate the performance of the final models on the unseen 

BraTS2020 validation data by submitting results to the online evaluation platform (CBICA 

Image Processing Portal). Table 1 lists the number of parameters of each model, as well as 

the comparative performance, in terms of Dice Similarity Coefficient (DSC) and the 95th 

percentile of the Hausdorff distance between the predicted ground truth labels.

3.2 Binary Classification of Brain Tumor Molecular Status

For the performance evaluation of the classification workload, we have used the structural 

mpMRI scans in-tandem as input (i.e., passing all the scans together at once as separate 

channels) similar to the segmentation workload. The classification model performance on 

training and validation data is summarized in Table 2, illustrating the effectiveness of 

pre-trained weights.

4 Discussion

In this work, we have assessed the functionality of transfer learning for 3D medical 

data based on the available 2D models pre-trained on ImageNet for segmentation and 

classification. The framework that this functionality is evaluated is designed such that deep 

learning network architecture’s first and last layers are flexible to be able to process input 

images of any size with varying number of channels or modalities, and provide the final 

prediction based on the relevant number of classes for the specified task. The rest of the 

layers are initialized with pre-trained weights from the ImageNet models and are further 

fine-tuned.

The results of brain tumor segmentation using i) 3D U-Net with residual connections, ii) 

randomly initialized ResNet50 encoder & UNet decoder, and iii) pre-trained ResNet50 

encoder & UNet decoder are shown in Table 1. In these architectures, the obvious 

difference was in the encoders being randomly initialised in the former i) 3DUNet and ii) 

ResNet50 and pre-trained in the latter ResNet50-UNet (iii). As the pre-trained decoders 

are not available from ImageNet, the decoder was initialised with random weights in 

all the three architectures. We hypothesize that this might be the reason for comparable 

segmentation performance in terms of dice and hausdorff95 scores, while the difference 

in number of parameters is significant. It should be observed that the ResNet50-UNet (ii 

and iii) has only 25.821 Million parameters, which is around 22% less compared to 33.377 

Million parameters of the standard ResUNet (i), with the same encoder-decoder depth. The 

randomly initialised ResNet50-UNet model oscillates around the same performance and did 

not converge in the specified maximum number of epochs (250). On the other hand, the 

same model initialised with pre-trained weights converged within 95 epochs. Thus models 

initialized with pre-trained weights have advantage of better convergence speed as well as 

smaller model size. Importantly, smaller models are more preferable in the clinical setting 

due to their higher feasibility for deployment in low-resource environments.
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Baseline results of binary classification for the determination of the EGFRvIII mutational 

status are reported in Table 2, with ResNet50 architecture. We did not use any additional 

data augmentation techniques. As the data in this task were limited, the effect of pre-trained 

weights are clearly observed resulting in better accuracy. Fig. 4 shows the plots of cross 

entropy loss and accuracy in training with respect to epochs. Similar performance is 

observed for validation set as well. The weights of the model with lowest validation loss 

are stored for reproducibility and the accuracy and loss values reported in Table 2 are for the 

saved model with lowest validation loss.

Our findings support the incorporation of 2D pre-trained models towards improving 

the performance on 3D medical image segmentation and classification workloads, with 

demonstrably smaller model size (Table 1). Large increase in accuracy is specially observed 

in those applications where sufficient labelled data are not available. Incorporating this 

functionality in GaNDLF provides a readily available solution to researchers towards an 

end-to-end solution for several computational tasks, along with support for pre-trained 

encoders, making it a robust application framework for deployment and integration in 

clinical workflows. Future studies can explore this mechanism by applying it to compare 

randomly initialized and pre-trained models for convergence speed (in both centralized 

and federated learning settings [8,9,42,43]), performance gains in applications requiring 

3D datasets, model optimization allowing deployment in low-resource environments, and 

privacy analysis.
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Fig. 1: 
Comparison of various types of convolution for 3D medical data (Figure adopted from [28].
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Fig. 2: 
Idea of integrating ACS convolutions with pre-trained 2D model weights to enable native 3D 

convolutions on 3D medical data (e.g., MRI)
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Fig. 3: 
The architecture that allows using different pre-trained encoders with either a segmentation 

or classifier head for specific workloads.
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Fig. 4: 
Comparison plots of training loss and accuracy for binary classification of EGFRvIII 

mutation status. These plots are for ResNet50 architecture with and without use of 2D 

pre-trained weights from ImageNet
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Table 1:

Results on Brain Tumor Segmentation (BraTS2020) validation dataset

Metric Region Standard ResUNet ResNet50+UNet (Random init.) ResNet50+UNet (Pre-trained)

DSC

Whole Tumor 0.8771 0.8775 0.8736

Tumor Core 0.7735 0.7458 0.7719

Enhancing Tumor 0.7138 0.69508 0.7017

Hausdorff95

Whole Tumor 13.2425 7.6747 9.5384

Tumor Core 14.7492 8.6579 15.4840

Enhancing Tumor 34.8858 41.00332 40.2053

#Parameters - 33.377 Million 25.821 Million 25.821 Million

#Epochs for convergence - 104 epochs 250 epochs 95 epochs
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Table 2:

Results on EGFR Classification

ResNet50(Random initialization) ResNet50(Pre-trained on ImageNet)

Training Accuracy 0.7203 0.9915

Training Loss 0.5736 0.3292

Val Accuracy 0.5357 0.7142

Val Loss 0.6912 0.5758
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