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ABSTRACT: A key goal of molecular modeling is the accurate
reproduction of the true quantum mechanical potential energy of
arbitrary molecular ensembles with a tractable classical approx-
imation. The challenges are that analytical expressions found in
general purpose force fields struggle to faithfully represent the
intermolecular quantum potential energy surface at close distances
and in strong interaction regimes; that the more accurate neural
network approximations do not capture crucial physics concepts,
e.g., nonadditive inductive contributions and application of electric
fields; and that the ultra-accurate narrowly targeted models have
difficulty generalizing to the entire chemical space. We therefore
designed a hybrid wide-coverage intermolecular interaction model
consisting of an analytically polarizable force field combined with a short-range neural network correction for the total intermolecular
interaction energy. Here, we describe the methodology and apply the model to accurately determine the properties of water, the free
energy of solvation of neutral and charged molecules, and the binding free energy of ligands to proteins. The correction is subtyped
for distinct chemical species to match the underlying force field, to segment and reduce the amount of quantum training data, and to
increase accuracy and computational speed. For the systems considered, the hybrid ab initio parametrized Hamiltonian reproduces
the two-body dimer quantum mechanics (QM) energies to within 0.03 kcal/mol and the nonadditive many-molecule contributions
to within 2%. Simulations of molecular systems using this interaction model run at speeds of several nanoseconds per day.

■ INTRODUCTION
Molecular modeling has been promising to augment, enhance,
or even replace experimentation in a wide range of fields and
applications. Recognition of the increasing importance of these
models led to the award of the 2013 Nobel Prize in Chemistry
to Martin Karplus, Michael Levitt, and Arieh Warshel “for the
development of multiscale models for complex chemical
systems.”1 Over 50 years later, wide-coverage accurate
polarizable force fields, accurate solvation energies, and
accurate predictions of protein−ligand binding energies are
still considered to be unrealized “holy grails” of computational
chemistry that are unreachable for several more decades.2 This
article describes a path toward reaching these goals.
The basic tenet of statistical physics is that given the correct

total energy (the Hamiltonian) of a system, with proper and
sufficient sampling, any desired property can then be derived.
In principle, computational quantum mechanics (QM) can
determine the energy of any collection of atoms and molecules.
However, as ab initio methods scale as the number of atoms

∼N3 (DFT3,4) or ∼N7 (CCSD(T)5,6), in practice, it is not
possible to compute even a single snapshot of systems of
interest (∼400 to 108 atoms), much less a fully thermodynami-
cally averaged ensemble. To overcome the intractable
computational limit of QM, scientists have replaced quantum
energies and forces with much faster and immensely better-
scaling (N log(N)) analytical7−14 or, more recently, neural
network15−18 approximations of QM called force fields (FF),
which are propagated via Newton’s laws of motion.
Another and somewhat underappreciated challenge of

modeling a wide range of molecular systems, aspects of
which we and others have touched on previously,19,20 is the
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necessity of the models to have a high degree of accuracy. As
illustrated in Figure 1a, the overall free energy is a sum of much
larger offsetting subcomponents, and it is their interplay and
shifting partial cancellations that create dynamic behavior (e.g.,
life) at room temperature and pressure.
This demand for accuracy is particularly stringent for

protein−ligand interactions because the energies between
interacting ligand and protein functional groups and water are
very diverse and frequently quite strong. Furthermore, as
shown in Figure 1b, because the system is a liquid crystal and
its phase space is constrained, the errors in potential energy
surface (PES) approximations will not average out as in a
liquid, and the models must therefore be accurate at all
distances and orientations. Consequently, the accuracy of each
component of a useful prediction of the free energy of ligand
binding must be significantly higher than the desired
“chemical” accuracy of the final answer (∼±0.5 kcal/mol).
The components’ agreement with quantum mechanics can be
as narrow as the uncertainty of the underlying ab initio
calculations.21 This is a significant challenge.
Most of the current approaches to Newtonian molecular

models are roughly grouped into three categories. The first
category, one that has a rich history and has been in active
development for over a decade, are ultra-accurate potentials
parametrized from first principles developed for water and/or a
limited set of molecular species.22−24 These models frequently
employ explicit representations25 of each term of the many-
body inductive expansion (see Figure 3), and, in the short
range, reproduce the QM PES for dimers and multimers
exquisitely well.24 However, the methodology used in these
models has not yet been successfully generalized to arbitrary
and wide-ranging descriptions of the full chemical space. One
of the reasons is the combinatorial growth of potential training
sets that will be needed for parametrizing the 3, 4, etc.�body
terms for arbitrary molecules and their combinations. Addi-
tional reasoning can be found in Section SI 6.
There has recently been an explosion of rich and creative

work in the second category of representations of the QM
potential energy surfaces: encoding the atomic interactions via

neural networks.15,18,26−29 While these approaches30−33 have
been very good and rapidly improving, NN-based models are
unable to incorporate effects that traditional physics has been
built to represent: e.g., a response to an external electric field,
the ability to extrapolate from 2 or 3 molecules to arbitrarily
many,11,13,14,34−36 and a proper treatment and truncation of
long-range interactions.19,37−39 Furthermore, the accuracy of
the reproduction of intermolecular potentials by NN-based
models has plateaued at ∼1 kcal/mol.40,41
The third, original, and the most widely used category of

molecular interaction models are wide-coverage analytical
force fields whose functional terms try to mimic components of
the QM interactions.7,42−45 Within the polarizable subcate-
gory, most models are (partially) parametrized by fitting to
experimental data,13,36,46 and some, e.g., ARROW FF, are
based purely on ab initio QM calculations.11,14,47 Although the
ARROW FF has successfully predicted solvation and hydration
energies of neutral molecules to within chemical accuracy,14

this group’s application of the ARROW force field to protein−
ligand complexes48 has uncovered major deficiencies in
describing strong interactions in these systems. As we have
previously noted, “The ARROW FF is likely at the limit of
complexity feasible for a wide-coverage analytical force field,”14

and a fresh approach is needed.
Guided by the advantages and the pitfalls of the above three

approaches, we describe the construction of a wide-coverage
accurate molecular interaction hybrid model,49 which is ab
initio parametrized, describes a wide range of chemical
functional groups, and is both computationally tractable and
accurate enough to achieve reliable quantitative predictions. As
realized by us50 and other groups,51,52 combining NNs and
analytical expressions is the obvious next step in reproducing
the QM PES.
The analytical part of the hybrid model is the ARROW14 FF

because it faithfully describes polarization and electrostatics.
This permits an accurate (Figure 3b right) approximation of
the full inductive many-body expansion by performing
monomer and, with appropriate decomposition,53 dimer QM
calculations only, and thus bypassing the explicit many-body

Figure 1. (a) Schematic representation of the scale of the entropic and enthalpic components (yellow, green) of three types of molecular systems
compared with their sum, i.e., the total free energy (blue). The first two represent solvation of neutral atoms and ions, and the last represents the
binding free energy for a ligand in a protein. Neutral ensembles are the least challenging14 as their energy components are the smallest. Ionic
systems are similar to neutral ones, but their energies are an order of magnitude higher. The protein−ligand systems are the most difficult: the
interactions are many, varied, and strong, and the desired final accuracy is very small (∼0.5 kcal/mol for relative binding free energy between two
ligands). (b) Illustration of why models need to be accurate for all possible orientations in protein−ligand systems. In liquids, there is significant
mixing about the minima, and model energy errors, if properly centered, have a chance to average out. In protein−ligand systems functional groups
assume and maintain a priori orientations, and the energy errors in the sampled subspace may not average to zero.
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inductive description that models in the first category need to
create. It also enables the hybrid model to more properly
respond to external electric fields and to inherit appropriate
and advantageous long-range treatment and truncation. At the
same time, we understand and illustrate here that at short
range (Figures 3b and 4), one needs special machinery for
extra accuracy, and we add it to the 2-body intermolecular
term, which is by far the largest and the most inaccurate one.

The mechanism for doing this is inspired by the third category:
the correction is encoded in a perceptron,54 an object which is
quickly trained, well behaved with insufficient data, highly
flexible, and computationally efficient. Finally, to enhance
sensitivity and accuracy, we decouple the description of inter-
and the much stronger intramolecular interactions.
Based on our experience and on the use of ARROW as the

base model, we make several additional choices that we think

Figure 2. (a) Diagram of the intermolecular interaction fingerprint. A and B are the interacting atoms, X is located at the midpoint between A and
B, and the atom pair symmetry functions (APSF) are atomic symmetry functions centered at X. The location of X automatically symmetrizes the
construction with respect to the A ↔ B permutation. The APSF summations (blue dashed lines) are over neighborhoods of both A and B. The
fingerprint is fed into an [AB] specific neural network to produce an energy correction to the ARROW interaction energy between A and B (ΔEAB)
EARROW‑NN = EFF + ENN. (b) Diagram of the neural network term for pair interactions between two water molecules. Each pair interaction
fingerprint is fed into its corresponding trained neural network (e.g., HH, HO, and OO in this case). The output is then smoothly truncated by a
TensorFlow λ-layer to zero beyond a cutoff distance. All of the individual pair energy contributions are then summed to a final dimer energy
correction ΔENN, which is then added to the energy EFF output by the analytical force field to produce the total energy.
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are advantageous: (a) the 2-body correction is not separable
with respect to the interacting atoms (i.e., it is the property of
the pair or pair-specific) and (b) the perceptron term is atom
typed in the same way as the underlying force field. This
correction is inherently not separable. It is already unreason-
able to expect a convenient behavior such as Newtonian
separability in the short range. It is more unlikely to be able to
obtain it in a correction where the underlying “physical” model
has already extracted the simplifying combination rules. Our
construction makes the pair-interaction-specific neural net
more economical because it is not tasked with encoding all of
the chemical space. It allows the model to be incrementally
augmented by the NN term in distinct small slices of the
chemical interaction space with a relatively small training set of
structures and energies. Finally, it results in a greater accuracy
of the reproduction of the 2-body QM and therefore total
energies. The main drawback is the amount of bookkeeping
required to keep track of the multitude of neural nets and pair
types. These choices reflect the practical trade-offs required for
generating a wide-coverage molecular model that computes
free energy observables to within chemical accuracy.

■ INTERACTION MODEL
The underlying analytical model�ARROW�has been
described and benchmarked in previous publica-
tions.11,14,20,48,50 It is an ab initio parametrized polarizable
force field containing representations for charge penetration,
multipolar electrostatic and exchange−repulsion interactions,
as well as anisotropic polarization. The atomic parameters are

typed according to the chemical groups and atomic environ-
ments. The treatment of the dispersion interaction in the
intermediate range follows55 with a crossover at 4 Å from the
vacuum form to a screened asymptotic coefficient of 0.5 × C6
of vacuum. The bonded interactions follow the MMFF94,
QMPFF.11,56 Further details on ARROW and its para-
metrization are provided in Section SI 3 and discussed
previously.14

In this work, we construct the neural network term to
augment the intermolecular interactions only.11,14,20,48,50 In
contrast to the prevailing practice of partitioning the potential
energy onto individual atoms,16,26,57,58 we partition the energy
onto interacting pairs of atoms (A−B).59,60 A representative
diagram of the fingerprint of an interacting pair is shown in
Figure 2a.61 To encode the pair interaction A−B, we use atom
pair symmetry functions (APSF) centered at the midpoint X
between A and B (A−X−B). The atoms included into the
fingerprint summations are neighbors of both A and B. We use
either a bond distance (e.g., d = 1 for including nearest bonded
neighbors of A and B only, or d = 2 for select terminal atoms to
break the rotational degeneracy) or a membership cutoff
distance (neighbors of A and B within some distance from
either A or B) criteria for neighborhood membership. The
interaction fingerprint is produced by expanding the atomic
density neighboring X via an orthonormal basis set, consisting
of spherical Bessel functions for the radial basis,58 and the
usual spherical harmonics for the angular triples (atom-X
atom). The midpoint construction geometrically symmetrizes
the interaction fingerprint with respect to the permutation A

Figure 3. (a) Graphical representation of the many-body expansion. (b) Center and left: the 2-body energy error vs intermolecular distance for a
water dimer and as a histogram. (b) Right: the nonadditive many-body error for water multimers vs their total QM intermolecular energy. The
many-body errors are below 0.5 kcal/mol or 1% of total energy, and below 3% of the many-body contributions. The bottom left and center panels
show the accuracy of an analytical 2-body approximation (ARROW, MAE = 0.3 kcal/mol) plotted vs intermolecular distance for a water dimer in
blue, and a neural net augmented interaction model (ARROW-NN) in orange-brown. The representation becomes purely analytical at distances >5
Å. The accuracy of ARROW-NN across the full dimer interaction range (MAE = 0.014 kcal/mol) is on par with the best underlying QM
uncertainty. Water is used as a specific example, and analogous results are seen in all molecular ensembles.
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↔ B. The generated descriptors couple the intermolecular
energy to the relative orientation as well as to the monomer
distortions of the two molecules. The midpoint construction is
also computationally economical as every term in the
summation must contain X (see Figure 2a and Sections SI
1.1 and 1.2).
The fingerprints are then input into a collection of

corresponding pair-typed perceptrons (Figure 2b) and the
outputs are summed. As analytical force field errors are largest
at a close range, and as NN fingerprint computational demands
grow as distance squared, we taper the NN correction beyond
a chosen distance between atoms A and B (4 to 6 Å), beyond
which the interactions are computed by ARROW alone. Rather
than relying on the built-in decay of radial symmetry
functions,26,62 we append a TensorFlow λ-layer to the network
to smoothly force the outputs to zero beyond the cutoff
distance. More details on the neural network interaction model
and its training are in Sections SI 1.2 and 1.3.
Like in most analytical force fields, the NN correction for

the pair of atoms is further subdivided by their atomic types.
For example, instead of encoding a general interaction
correction for chemical elements: NN (Carbon ↔ Nitrogen),
we fine-grain the interaction corrections according to the
chemical environments: NN (Aromatic Carbon ↔ Amide
Nitrogen). As noted above, this typification has several
significant advantages. It breaks up the full chemical interaction
space into much smaller training subgroups so that model
improvement is realized in segments and avoids a precompute
of all possible intermolecular interactions. It permits the
resulting total hybrid accuracy of representation of the
interaction to be exceedingly high (in our experience,
essentially on the order of convergence accuracy of the QM
method chosen for the training set). Furthermore, because the
amount of encoded information is limited, and because the
fingerprint itself does not need to encode the chemical
environment (“type”) but only the relative orientation and
bonded distortion of the interaction, it allows for a smaller and
therefore faster set of neural networks than ones in current
practice.15,63,64 Finally, it is simply convenient and helpful for
triage and prioritization of NN augmentation to have the NN
correction have the same typification as the underlying
analytical FF. Drawbacks of the intermolecular, type-
segmented representation are the lack of a natural extension
to bond-breaking and significant bookkeeping.

■ RESULTS: 2-BODY ENERGIES
In this section, water is used as a convenient illustration only,
and analogous results are seen in all molecular ensembles
(Figure 4 and Section SI 4). The total potential energy of a
collection of molecules may be represented by a many-body
expansion,65 as illustrated in Figure 3a. One of the main goals
of designing ARROW was to obtain excellent agreements for
the many-body inductive nonadditive components (V3, V4, ···)
of the intermolecular energy. As we have shown in previous
work14 and in Figure 3b(right) and Section SI 4, for ARROW,
this is indeed so: the inductive nonadditive components are
accurate to less than 1% of the total energy. The required
degree of accuracy of the 2-body energies (V2), touched on
above and illustrated in Figure 1, was unexpected,48 and
improving them is the main point of this manuscript.
Figure 3b (left, center) shows the distribution of 2-body

errors vs intermolecular distance for 88K water dimers selected
from MD and PIMD trajectories at room temperature and

pressure. The blue dots are produced by the ARROW FF. At
close range, a significant proportion of conformations deviate
from QM energies by almost 1 kcal/mol. For ionic systems, as
shown in Figure 4b−d, the analytical dimer energy error
increases to as much as 10 kcal/mol.

The augmentation of the 2-body term with neural nets
produces a dramatic improvement. The dark orange dots in
Figure 3b (left, center) and Figure 4 show the deviation of the
energies produced by the hybrid model, where the neural net
term is fitted to the residual error of the analytical force field
(EQM − EFF). In each case, the accuracy of the hybrid model is
essentially equal to that of QM methods at the highest level of
theory. For the H2O dimer it is 0.02 kcal/mol, and for the
ion−water systems, it is Li-water 0.035 kcal/mol, Cl-water
0.018 kcal/mol, and Na-water 0.018 kcal/mol.
The flexibility of feed-forward perceptrons that enable such

remarkable combined accuracy imposes a training set size
penalty. While an ARROW pair interaction is training-test-
saturated with 2−3 K dimer calculations (see the SI in ref 14),
the hybrid FF + NN model demands an order of magnitude
more: 10−80 K dimers per interaction in our current systems.
Figure SI 2 shows the training-test convergence for a
representative system.

■ RESULTS: MOLECULAR ENSEMBLE PREDICTIONS
Molecular simulations were performed with in-house MD
software (Arbalest) as has been described in previous

Figure 4. ARROW and ARROW-NN 2-body energy accuracy for (a)
a water dimer, (b) water−lithium cation Li+: H2O, (c) water−sodium
cation Na+: H2O, and (d) water−chloride anion Cl−: H2O. The
histograms are in log units to amplify the distributions. In the strongly
interacting region of close approach, the analytical model (ARROW)
has significant errors >5 kcal/mol. ARROW-NN has excellent
accuracy for all distances.
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publications14,20,48 as well as in Section SI 5. We have
previously20 highlighted the necessity of including nuclear
quantum effects for precise predictions, and all computations
below are done at the PIMD8 level of NQE.
Because the original ARROW14 water model was already of

high quality both neat and as a solvent, the ARROW-NN water
properties were not a major focus. As expected, they are similar
and slightly better than ARROW.14 The hybrid 2-body
energies are displayed in Figure 3 (left, center) and 4a, and
further details on the properties of ARROW-NN water can be
found in Section SI 5.1. Our requirements for water14 are the
same as for all other molecular species, and while we do not
expect its neat properties to be as perfect as in dedicated
models,25,66 they are still very good.
The hybrid model is most useful in augmenting and

correcting the most challenging, strong and/or limited mobility
intermolecular interactions. Ionic hydration is a suitable and
important showcase, and so we present the simulation results
of the ubiquitous hydration of table salt. The dimer 2-body
energies are shown in Figure 4c,d and are extremely accurate.
The many-body contributions for ion-(H2O)N multimers are
within 2% of the total multimer energy (SI Figure 1), which
shows that ARROW and polarization physics are doing an
excellent job. Although a better description of the many-body
and field-induced dispersion is undoubtedly necessary for some
systems, for the class of systems and molecules considered
here, the inductive and implicit treatment of many-body effects
is sufficient.67−70 Because single ion experiments are difficult
and the results are thought to be inaccurate, we compare our
predictions with the much more reliable data of hydration of
salts (Table SI 5). The free energy results are given in Table 1

and are within 1% of the true experimental values. Considering
that these values have been calculated starting purely from
CCSD(T) quality ab initio data absent any empirical
adjustments and without a host of approximations usually
present in QM or QM-MM studies, this is a remarkable
agreement.
Finally, we apply the hybrid ARROW-NN model to

determine the relative free energies of binding of ligands to
proteins. These are highly complex systems: they contain many
diverse ligand−ligand, ligand−pocket, and pocket−pocket
interactions that demand a more accurate representation, and
the ligand−protein complex and the protein itself are liquid
crystals with limited mobility (Figure 1). Previously,48 we had
extensively analyzed three systems (CDK2, MCL1, and
Thrombin) with the goal of definitively isolating force field
errors from sampling deficiencies. In two of the systems
(MCL1 and Thrombin), ARROW performed well, and in a
third (CDK2) serious force field deficiencies were uncovered
in describing strong interactions involving the charged ASP87.
Here we have described the ligand−protein, ligand−water, and
protein−protein (within 6A of the binding pocket) inter-
actions by ARROW-NN and repeated the benchmark48

calculations. The multiple details of alchemical transformations
and other protocols are discussed at length in ref 48. The
results are shown in Figure 5 and are summarized in Table SI

6. For the thrombin and the MCL1 systems, ARROW-NN
performs slightly better than the original ARROW (Table SI
6), which was already within chemical accuracy. The CDK2
system is worthy of highlighting. It contains a key set of
interactions, namely, ones between ASP87 (PDB 1OI9 residue
numbering) and (phenol/chlorobenzene/benzamide) frag-
ments present in some of the ligands, which are exceedingly
difficult to describe accurately with conventional analytical
functions. Considering the magnitudes of the energies of some
of these contacts (phenol-acetate −31.56 kcal/mol, NMA-
acetate −28.89 kcal/mol, phenol-water −6.8 kcal/mol, NMA-
water −8.09 kcal/mol, acetate-water −21.28 kcal/mol), one
sees that the final relative binding free energy (∼2 kcal/mol) is
arrived at through the cancellations and differences of many
values that are an order of magnitude greater (see Figure 1a).
Of all interactions in all three ligand−protein systems, the ones
present in CDK2 ASP87 ↔ phenol, ASP87 ↔ H2O, and
phenol ↔ H2O had the largest discrepancies between the
ARROW FF and QM, and therefore benefited the most from
being described by ARROW-NN. The arrows in Figure 5 show
the dramatic improvement in free energy predictions for
ligands involved in these interactions. Numerically, the
correlation goes from −0.5 → 0.88 and the MAE from 0.81
→ 0.33 kcal/Mol. Section SI 5.2 as well as48 lay out the
protein−ligand binding calculations, protocols, and the CDK2
system analysis in significantly more detail.

■ DISCUSSION
In this paper, we describe the design of, and predictions made
by a hybrid analytical-perceptron model of intermolecular
interactions. In previous work we14 concluded that although an
analytical approximation is able to accurately predict free
energies of solvation of neutral organic molecules, such a
model is at or close to the limit of reasonable complexity. We
have now shown that an addition of a perceptron-based, pair-
specific energy component to a polarizable wide-coverage force
field is a natural and acceptable compromise between obtaining
a very good agreement between the model and the reference
QM energies and providing a general framework that describes
the vast variety of chemical interaction space.
Encoding the intermolecular interactions separately from

intramolecular ones enables us to decouple from the much
stronger intramolecular energy range of chemistry, which can
overwhelm an accurate description of the physics and
energetics of interacting molecules. The Parinello-like
encoding26 naturally and accurately describes the relative
orientations of the interacting atom pairs, as well as the
coupling of the intermolecular interaction to the intra-
molecular monomer perturbations. Splitting the interaction
pairs into FF-like chemical types allows us to employ much
smaller neural networks and atomic neighborhoods, as the
network does not need to recognize types. It also permits us to
encode and correct the intermolecular interaction space piece
by piece instead of needing to precompute the whole vast
universe of everything vs everything for convergence.
In a departure from current efforts to encode the full

interaction via neural nets,18,40,41 we chose to preserve as much
analytical physics as possible. Although in principle, one can
correct any analytical model, the inherited physics of ARROW,
specifically polarization, enables parametrization of the model
on QM-computable sets of molecules (e.g., dimers) and
ensures adequate transferability to large numbers of molecules
(bulk). The traditional “physics” terms naturally and properly

Table 1. Hydration of Salts as Predicted by ARROW-NN

salt expt. hydration (kcal/mol) ARROW-NN (kcal/mol)

LiCl −198.9 ± 2.9 −201.23 ± 0.79
NaCl −173.4 ± 3.3 −176.74 ± 0.64
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respond to external perturbations such as an applied electric
field, and they also permit the full model to be properly
truncated at long range, which is necessary for efficient and
accurate simulation.37,39 But in the regime of close molecular
approach, where simplifying assumptions used to represent
quantum mechanics with Newtonian analytical formulas
(separability of interactions, manageable functional forms)
begin to break down, neural nets are a natural choice to encode
the difficult 2-body remainder. The proposed combination of
an analytical polarizable force field with an intermolecular 2-
body neural net short-range correction is a fast and accurate
representation of the intermolecular potential energy surface
for the majority of molecular ensembles.71 Admittedly, a full
NN augmentation of the chemical interaction space in the
manner we propose will require an intimidating amount of QM
calculations. Nonetheless, because the model parameters are
extracted from dimer computations only, with only occasional
multimer energies as a check, this effort is far more scalable
than other similar efforts that employ multimers.29,52,72

The model described here is able to achieve chemical
accuracy for a range of previously intractable challenges�
protein−ligand and ionic solvation�without any empirical
adjustments to experimental values and based purely on first-
principles computations. It must be noted that an important
class of nanosystems containing extended conjugated com-
plexes,67 as well as full protein conformations,73 will need a
much better description of the dispersion interaction.
Furthermore, the effect of strong electric fields on the
dispersion interaction may also need to be probed further68

and potentially be included into the functional form(s).
Here, we showcase not only a proof of concept but a fully

enabled computational suite able to handle proteins, free
energy perturbation calculations, and enhanced sampling. By
combining sufficient accuracy and wide chemical coverage, the
hybrid analytical-perceptron model achieves the long-awaited
goal of running accurate molecular simulations for many

molecular systems of arbitrary size and varied chemical
composition at speeds equivalent to those of polarizable
models: several nanoseconds per day or more. This approach
will finally allow in silico experiments to tackle and
quantitatively solve important real-world problems and
challenges.
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