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Abstract

Breast cancer is a heterogeneous disease consisting of a diverse set of genomic mutations and 

clinical characteristics. The molecular subtypes of breast cancer are closely tied to prognosis 

and therapeutic treatment options. We investigate using deep graph learning on a collection 

of patient factors from multiple diagnostic disciplines to better represent breast cancer patient 

information and predict molecular subtype. Our method models breast cancer patient data 

into a multi-relational directed graph with extracted feature embeddings to directly represent 

patient information and diagnostic test results. We develop a radiographic image feature 

extraction pipeline to produce vector representation of breast cancer tumors in DCE-MRI and 

an autoencoder-based genomic variant embedding method to map variant assay results to a low-

dimensional latent space. We leverage related-domain transfer learning to train and evaluate a 

Relational Graph Convolutional Network to predict the probabilities of molecular subtypes for 

individual breast cancer patient graphs. Our work found that utilizing information from multiple 

multimodal diagnostic disciplines improved the model’s prediction results and produced more 

distinct learned feature representations for breast cancer patients. This research demonstrates 

the capabilities of graph neural networks and deep learning feature representation to perform 

multimodal data fusion and representation in the breast cancer domain.
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1 INTRODUCTION

Current estimates predict in 2022 there will be 287,850 new cases of breast cancer in women 

and 43,250 deaths caused by breast cancer in the United States [1]. This continues the trend 

of breast cancer being the second most common cancer in women, behind skin cancer, and 
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the second leading cause of cancer death for women. Breast cancer is heterogeneous in its 

molecular composition and clinical characteristics, representing a suitable application for the 

use of precision medicine to develop patient-specific treatment plans [2], [3]. Hierarchical 

clustering utilizing gene expression profiles of genes displaying larger variations in 

expression led to the current molecular subset classification of breast cancer: luminal 

A, luminal B, HER2+, basal-like, claudin-low, and normal-like [4], [5], [6], [7], [8]. 

The molecular subtypes serve as robust prognostic indicators in both guiding long-term 

outcomes and treatments. Identification of the molecular subtypes in patients is frequently 

done utilizing transcriptome analysis or immunohistochemical (IHC) staining to determine 

the presence of biomarker expression such as estrogen receptor (ER), progesterone receptor 

(PR), human epidermal growth receptor (HER) 1 and 2, and cytokeratin 5/6 [4], [9]. The 

expression levels of these biomarkers are closely tied to treatment options. However, a 

single biopsy may not capture the genetic heterogeneity of the entire tumor [10]. Our 

work investigates leveraging a wide breadth of patient information from multiple diagnostic 

disciplines and data modalities to predict molecular subtypes using deep graph learning. 

Graph-structured patient data representation integrates multiple data sources into a single, 

coherent patient representation.

Precision medicine guides long-term treatment strategies specific to individual patient needs 

utilizing personal genomic, phenotypic, and clinical factors [10], [11]. Breast cancer tumors 

exhibit large amounts of heterogeneity both within single lesions and across different lesions 

[12], [13], [14]. Intertumor heterogeneity in breast cancer induced the development of many 

different therapies targeting specific aspects of each patient’s breast cancer [15]. Intratumor 

heterogeneity due to variability in different tumor areas (spatial) and tumor progression 

over time (temporal) complicates the treatment of breast cancer; heterogenous tumors are 

more resistant to therapies, may evolve under selection pressure of therapeutic intervention, 

and are more difficult to treat [12], [16]. Tumor heterogeneity manifests itself in tumor 

morphology, biomarker expression, genetic mutations, and histopathologic characteristics 

[17]. We hypothesize that using a combination of data capturing these characteristics will 

produce a holistic representation of the individual patient’s breast cancer and improve 

predictions of molecular subtypes.

Radiographic imaging in breast cancer has been at the forefront of reducing mortality, 

with early mammographic screening and routine MRI screening for high-risk individuals 

becoming more common [1]. Computer-aided detection and diagnosis (CAD) systems 

are used at 91% of US digital mammography facilities, but several studies have found 

at large scale that CAD systems have shown mixed results in improving diagnostic 

accuracy [18], [19], [20], [21], [22]. Radiogenomics searches for relationships between 

the quantitative imaging features representing phenotypical tumor characteristics and the 

genomic profile of the cancer biopsy. Tumor imaging provides non-invasive measures for 

capturing the phenotypical traits that may be linked to underlying genomic characteristics 

[21]. Knowledge of genomic variants is crucial for the optimal care of cancer patients, 

enabling oncologists to refine prognosis and inform their treatment decisions. The detection 

of ‘actionable’ mutations allows the selection of targeted agents tailored to the patient’s 

particular molecular profile, including the possible use of off-label drugs that target 

specific molecules and pathways crucial for cancer survival [23]. Previous works have 
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utilized multimodal data from singular diagnostic disciplines or from multiple diagnostic 

disciplines, but they have not utilized all the available patient information including clinical, 

radiological, pathological, and genomic sources. Our motivation is to learn an improved 

representation of the patient by fusing information from different diagnostic sources through 

the use of a graph convolutional neural network (GCNN). GCNNs capture the relationships 

between patient feature nodes by applying local filters, thus increasing the interpretability 

of the model by tracing back learning to the graph structure. This can provide an improved 

patient representation that can lead to better predictions for breast cancer subtype. Our work, 

as shown in Fig. 1, investigates the use of patient graph deep learning to predict molecular 

subtypes and the ability of deep embeddings representing individual diagnostic disciplines to 

separate patients by molecular subtype. Our contributions include the following:

• We construct an end-to-end trainable graph deep learning solution for utilizing 

supervised and semi-supervised data to classify breast cancer patient molecular 

subtypes with routinely collected patient data.

• We provide a radiographic feature extraction pipeline to leverage information 

from radiologists’ annotations that produces high quality learned image 

embeddings from dynamic contrast-enhanced magnetic resonance imaging 

(DCE-MRI).

• Our research demonstrates the value of transfer learning from pan-cancer 

genomic assays in training autoencoders to extract feature vectors.

2 RELATED STUDIES

Advances in whole genome sequencing, exome sequencing, and panel specific targeted 

genes has pushed precision medicine research forward by providing large quantities of 

diverse data that require computationally efficient analysis for scalable clinical applicability 

[24]. Machine learning and deep learning-based approaches have already proven successful 

in providing clinical decision support for breast cancer molecular subtyping and predicting 

other clinically relevant features for patients.

Radiogenomic research in breast cancer has used breast MRI to predict breast cancer 

subtype with classic computer vision algorithms [25], [26], [27]. These studies found 

correlations between extracted MRI features and breast cancer heterogenous subtypes, 

specifically Luminal A and B. Wu et al. utilized various subsets of extracted imaging 

features to perform multivariate logistic regression for binary classification of Luminal 

A, Luminal B, and basal-like cancer with a respective area under the receiver operator 

curve (AUC‐ROC) of 0.73, 0.69, and 0.79 on validation cohorts within the TCGA-BRCA 

dataset [28]. Other works focus on classifying breast cancer subtype biomarkers such as 

ER status, PR status, HER2 status, and triple-negative receptor status. Li et al. performed 

binary classification of one-vs-rest on these biomarkers with linear discriminant analysis, 

selecting radiomic features extracted from a subset of their results [29]. This work utilized 

a common subset of 91 TCGA-BRCA patients. Castaldo et al. improved upon this work 

by introducing normalization methods on the radiomic features and experimenting with 

simple machine learning classifiers including support vector machines, random forests, and 
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Naïve Bayesian classifier [30]. Fan et al. performed radiomic analysis using a combination 

of features extracted from DCE-MRI and diffusion-weighted imaging (DWI) to predict the 

prognostic indicators, Ki-67 expression level and tumor grade. This showed the benefits of 

combining analysis from multiple imaging source domains and the ability to provide other 

useful prognostic information beyond molecular subtyping [31].

Early works in using deep learning for computer-aided diagnosis were able to identify 

clustered microcalcifications in mammograms using a convolutional neural network (CNN) 

over two decades ago [32]. CNNs have made significant progress in other fields to achieve 

top results in image classification challenges, image segmentation, and object localization, 

all of which are relevant applications in radiographic image analysis [33], [34], [35]. CNNs 

assist in clinical decision support by detecting and classifying breast lesions, predicting 

breast cancer biomarkers, and performing mass classification. Antropova et al. combined 

traditional radiomic features with features produced using a pretrained CNN to predict 

breast mass malignancy [36]. This study’s generalizable method performed well on full-field 

digital mammography, ultrasound, and DCE-MRI with AUC‐ROC values of 0.86, 0.90, and 

0.89, respectively. Large-scale deep learning model analysis for dismissing breast MRI 

scans without lesions reduced the number of scans by 40% with 100% sensitivity for 

malignant scans [37]. Many of these radiographic analysis methods focus on using only 

the radiographic imaging to make predictions rather than integrating with other patient 

information in the decision-making process.

Other areas for breast cancer clinical decision support rely on using multi-omics data and 

integrating analysis with other patient information for predicting molecular subtypes and 

their biomarkers. Guo et al. used a subset of the TCGA-BRCA dataset and combined 

radiomic features with genomic features to predict stage, lymph node metastasis, ER status, 

PR status, and HER2 status [38]. This study performed feature selection using LASSO 

regularization within a two-tier cross-validation to obtain high AUC‐ROC values of 0.877, 

0.695, 0.916, 0.775, and 0.641, respectively. Their results showed that frequently only a 

few features were selected to make the prediction and that genomic features provided better 

results than radiomic features when predicting molecular biomarkers. This study integrated 

the use of multiple genomic features: copy number, gene expression, and DNA methylation. 

Cristovao et al. compared the use of simpler models versus deep learning approaches to 

integrate the analysis of multi-omic data and predict breast cancer subtypes [39]. Their 

work fused multiple types of data by integrating RNA-seq gene expression, microRNA 

expression, and somatic copy number alteration data. They found that simpler models 

performed equal if not better than deep learning techniques but did suggest that variational 

autoencoders may have the potential to provide deep embeddings for extracting features 

from genomic data given further investigation. However, Byra et al. found the CNN models 

outperformed simpler models in predicting response to neoadjuvant chemotherapy using 

ultrasound images [40]. Other works have found using fully-connected neural networks and 

CNN models were able to integrate gene expression, copy number, and clinical data to 

predict breast cancer survival prognosis [41], [42].

Several studies attempted to tackle the problem of integrating more modalities of data into 

clinical decision support. Deepr provides an end-to-end system for utilizing a CNN to 
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predict risk stratification from medical records [43]. MGNN is a framework for cancer 

survival prediction that combines genomic information with clinical information in a 

graph neural network (GNN) [44]. Parisot et al. utilized graph convolutional networks on 

population graphs to combine imaging and phenotype features to classify subjects with 

Autism Spectrum Disorders [45]. These methods combining multimodal data using deep 

learning showed more robust prediction abilities when compared to other works.

3 DATASETS

Our work utilizes The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) 

dataset, which contains clinical, genomic, and pathological data in the Genomic Data 

Commons and radiological data from The Cancer Imaging Archive [46], [47], [48]. The 

TCGA-BRCA dataset contains genomic DNA copy number arrays, DNA methylation, 

exome sequencing, mRNA arrays, microRNA sequencing, and proteomic data from reverse-

phase protein arrays [49]. We use the genomic variant information, radiographic information 

from DCE-MRI, clinical attributes, radiologist reports, and pathological testing results. Our 

combined subset of patients with molecular subtype information results in 1,040 patients, 

of which 108 patients have DCE-MRI and radiologist tumor measurements. Table 1 shows 

the breakdown of each cohort and the distribution of molecular subtypes. It shows the 

significant data imbalance between the different molecular subtypes. The cohort of patients 

with DCE-MRI has a much higher proportion of patients with Luminal A versus the other 

cohorts, 65% compared to approximately 50%. This difference in proportion is evenly 

divided amongst the other subtypes.

For supplementary validation of our framework, we apply it to predict the breast cancer 

molecular subtype of patients participating in the I-SPY2 trial. This ongoing, multi-center 

study aims to establish predictive models for neoadjuvant therapy response through the 

use of imaging, molecular, and clinical biomarkers [48], [50], [51], [52]. The I-SPY2 trial 

dataset encompasses molecular subtypes, DCE-MRI scans at various time points during the 

trial, clinical information, and micro array expression counts. We select a subset of 987 

patients with available PAM50 molecular subtype results. Within this group, 562 patients 

have DCE-MRI scans before treatment and 974 patients have micro array expression data.

The distribution of molecular subtypes in the I-SPY2 dataset differs significantly from that 

of the TCGA-BRCA dataset, with 195 cases of Luminal A, 205 cases of Luminal B, 415 

cases of Basal-like, 145 cases of HER2, and 27 cases of Normal-like. This disparity is 

due to the fact that neoadjuvant therapy is frequently used for patients with triple-negative 

receptor status. Furthermore, we utilize genomic data from the American Association for 

Cancer Research Project GENIE. The AACR Project GENIE is a pan-cancer registry of 

real-world oncology data assembled through data sharing between 19 leading international 

cancer centers (111,222 cases; 12,654 breast cancer cases, 5,381 metastasis) [53]. The 

dataset used for pretraining our genomic feature extraction method consists of genomic 

variant information from 100,099 patients, of which 13,599 have breast cancer.
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4 METHODOLOGY

Patient healthcare data formalized into a graphical model represents the implicit 

relationships between patient diagnostic information and resulting outcomes. The graph 

model generalizes to differing modalities by embedding information in feature vectors that 

can vary by data node type. This modeling provides an inductive bias into the data to 

prioritize learning overall patient representation from the different diagnostic subgraphs as 

shown in Fig. 2. We formally define each patient graph Gp = V, ℰ, ℛ  where vertices of 

the graph V represent nodes each containing a representation of a specific single aspect of 

patient information, such as age or estrogen receptor status. The set of directed edges ℰ
connects these nodes where edges are of different relation types ℛ depending on the type 

of data represented in their respective node endpoints, typed from the set Tn. We define 

the center of each patient graph as a patient node with learnable embeddings connected to 

latent nodes containing learnable embeddings representing each diagnostic discipline. Each 

latent node connects to a varying number of nodes depending on the data available for that 

patient. The typical node in a patient graph includes a feature vector representing a single 

diagnostic test or feature from that patient. Nodes are connected with a directed edge to 

either the central node for their diagnostic discipline or a node responsible for the feature it 

contains, such as linking multiple pathology test results to a single histology sample node. 

Our approach divides patient information into subgraphs based on the different diagnostic 

disciplines involved to represent the relationships these contribute to understanding the 

overall patient representation. Each subgraph feeds into a central node to aggregate the 

information from the different diagnostic fields. Table 2 indicates the average sizes of the 

patient graphs for the two datasets.

4.1 Graph Neural Network

The graph neural network is based on the relational graph convolutional network (RGCN), 

which utilizes the benefits of convolutional graph filters on multi-relational, complex graph 

networks. The RGCN model extends the previous work on graph convolutional networks, 

which implements an approximation of spectral graph convolutions on local neighbors [54], 

[55]. RGCN adapts to multiple types of relations by aggregating the messages passed across 

all relations in the set of neighbors as shown in

ℎi
l + 1 = ReLU ∑

r ∈ R
∑

j ∈ N
W r

l ℎj
l + W 0

l ℎi
l . (1)

The node embedding ℎi for layer l + 1 is updated by aggregating the results across all 

relations in ℛ for each neighboring node j connected to node i. Our method utilizes 

two layers, allowing information from neighbors up to two connections away from node 

i to impact the embedding values. The ReLU function, max 0, x , provides the nonlinear 

activation by taking the element-wise maximum and achieves higher accuracy than other 

activation functions in our experiments. Our method trains the RGCN model for graph 

classification to predict the probability of five molecular subtypes by mean pooling the 

hidden node embeddings and applying the softmax function
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σ(x)i = ex⊤wi

j = 1
K ex⊤wj

, (2)

where K is the number of molecular subtypes. The output x from the final mean pooling 

hidden layer feeds into the softmax layer and the linear combination with weights w. 

Equation (3) shows the computation of the graph embedding ℎg from the final layer of node 

embeddings ℎv. This calculates the average of the node embeddings for each node in Vt and 

pools the embeddings across all the node types in Tn.

ℎg = ∑
t ∈ Tn

1
Vt

∑
v ∈ V t

ℎv (3)

The patient graphs are grouped into batches for training. We calculate the loss for updating 

the graph embeddings in the GNN using the cross-entropy loss function. Equation (4) 

computes the loss difference between the predicted values ŷ and actual molecular subtype 

values y.

ℒ y, y = − ∑
j = 1

K
yj ln yj + 1 − yj ln 1 − yj (4)

The final output of the network both identifies the most probable molecular subtype and 

shows potential heterogeneity in a patient when the difference in probability of the most 

probable molecular subtypes is insignificant. Fig. 3 shows a batch of patient graphs being 

fed into the network for predicting molecular subtypes. The graph convolutional layers 

update the hidden embeddings by passing information from neighboring nodes. The GNN 

pools the last layer embeddings from the entire patient graph to make its prediction.

4.2 Node Features

Each breast cancer patient is linked to several categories of data that further consist of 

sub-attributes. We create a data graph for each patient consisting of a central patient node 

connected to nodes representing information in radiology, pathology, clinical attributes, 

and genomic features. These latent nodes have directed connections from their respective 

diagnostic subgraph nodes, which directly represent patient information. The patient node 

and latent nodes are fed through a trainable embedding layer, which utilizes the individual 

node identification numbers to produce an embedding vector fed through a fully-connected 

layer with ReLU activation. The patient node and latent node embeddings are 8×1 and 16×1 

respectively. These both connect into a 16×1 dense ReLU layer.

Large sparse vectors represent mutations found in gene panels. We combined several gene 

panels from the GENIE Project using the HUGO symbols, which are standardized unique 

symbols for human genes [56]. We used symbols from the DFCI OncoPanels [57], MSK-

IMPACT [58], and VICC-01-T7 [59] and filtered out silent and intron variants. These 

symbols represent genes commonly linked with cancer. This results in 158 potential gene 
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symbols with variants. Fig. 4 shows the six-layer fully-connected autoencoder trained to 

recreate normalized mutation frequency vectors. The embedded low-dimensional vectors 

extracted from the latent space in the autoencoder provide inputs into the graph neural 

network. An autoencoder is an unsupervised neural network that learns to produce a low-

dimensional representation of data while reconstructing the original input data. It consists 

of an encoder section and decoder section. The encoder layers consist of 64, 32, and 16 

neurons, and the decoder section is the same design with the layer sizes in reverse order and 

the last layer being 158 neurons. The autoencoder uses the ReLU activation function and 

softmax for the final prediction layer. We pretrained the autoencoder on the GENIE Project 

cancer patients prior to use with the TCGA-BRCA patient data. The output from the encoder 

section creates a 16×1 embedding representation of the gene variants for use in the patient 

graphs.

The clinical and pathological data for each patient is encoded into one-hot vectors, which are 

binary vectors using values of 1 to represent the true value for a specific feature. Categorical 

information is binned based on the category, and numeric features such as age are grouped 

into ranges of values. These vectors cover relevant patient attributes, immunohistochemistry 

results, and findings from histopathological slides.

4.3 Image Feature Extraction

The TCGA-BRCA dataset consists of many types of MR and mammogram images. We 

utilize the DCE-MRI to provide image phenotype information to the graph neural network. 

Dynamic contrast-enhanced (DCE) imaging uses T1-weighted images at multiple time 

points as contrast agent passes from blood to tissues. Tumor tissues with more permeable 

blood vessels have higher signal intensity in the DCE-MRI. The TCGA Breast Phenotype 

Research Group provides radiologist annotations for 108 patients, with three independent 

radiologists identifying the largest length of the tumor in a single DCE-MRI DICOM slice 

and other Breast Imaging Reporting and Data System (BI-RADS) related characteristics, 

which are commonly included in radiologist reports [48], [46]. Our radiographic image 

pipeline presented in Fig. 5 converts the image into a feature vector to represent the key 

features in the graph. An EfficientNet-B0 CNN pretrained on the ImageNet dataset reduces 

regions-of-interest in patient MRI slices to compact feature vectors [60]. The EfficientNet 

architecture family balances model depth, width, and resolution to provide increased 

performance over similarly sized deep learning models. The smallest model, EfficientNet-B0 

uses input images with 224×224 resolution, has only 5.3 million parameters, which is 

one fifth that of ResNet-50, and provides higher accuracy on ImageNet. The EfficientNet 

models reached state-of-the-art results on several transfer learning problems while utilizing 

significantly less parameters than competing models. The EfficentNet main blocks are 

inverted bottleneck MBConv blocks, which were originally invented for the compact 

MobileNetV2 [61]. These blocks have residual connections between the bottleneck layers 

with two expansion blocks containing the high number of channels in the middle. This 

reduces the memory requirements of the block. The model also uses Squeeze-and-Excitation 

blocks to perform dynamic channel-wise feature recalibration which allows it to use global 

information to selectively emphasize informative features [62]. These blocks aggregate the 

spatial information features to create a channel descriptor. This channel descriptor feeds 
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into a gating mechanism to control the excitation of the channels. We replace the original 

classification head with a 16-neuron dense sigmoid layer to encode the extracted feature 

at the end of the base network and convert the values to the same range of the feature 

vectors within the graph. The CNN is trained to predict molecular subtypes to fine-tune 

these dense layer weights, with the classification layer removed when generating the features 

for the graph. This training requires two-dimensional regions of interest around the tumor in 

a single DICOM slice.

We implement a region-growing algorithm to isolate the three-dimensional volume of 

interest (VOI) around the tumor. The algorithm utilizes a seed point closest to the midpoint 

along the radiologist measurement line with an intensity in the upper quartile of the 

line’s pixel values. This ensures the seed point is in the center of a bright spot of the 

tumor in the image slice. The region grows in all directions from its boundary each 

iteration, with a threshold to expand the region equal to half the pixel intensity standard 

deviation for the radiologist-identified bounding box. This algorithm automatically ends 

when there are no more pixels on the boundary of the region within the range of the 

intensity threshold or when the diagonal length of the center of the region reaches twice 

that of the radiologist annotated length. The second case captures potential failure cases 

arising from the tumor intensity being close in value to the radiologist identified region 

intensity, which can be an issue in images with especially low contrast. This increases 

the robustness of the segmentation algorithm. The region is converted to a bounding cube 

with a fifteen-pixel border on each slice to include local tumor environment and reduced 

in the z-axis to require at least six tumor pixels in a slice to be included in the volume. 

This method prioritizes quick segmentation by simultaneously expanding in all neighboring 

directions rather than a single pixel at a time and ensures regions include tumor pixels 

with surrounding environment. The DICOM VOIs for each patient are separated into the 

individual image slices for training the CNN. These slices are scaled and stacked to three 

channel gray scale, undergo contrast-limited adaptive histogram equalization (CLAHE) 

to increase contrast, and resized to 224×224 with padding for use with EfficientNetB0. 

CLAHE improves the local contrast and enhances edges within the regions of an image by 

transforming pixels in proportion to the cumulative distribution function of pixel intensities 

in the region surrounding the pixel [63]. The contrast-limited adjustment lessens the 

enhancement in homogenous areas by clipping the pixel intensity histogram. We train the 

CNN for a fixed number of epochs with the same cross-validation folds for the graph neural 

network to prevent leakage between train and test groups. The training time, feature vector 

size, batch size, and other hyperparameters for the CNN were determined through tuning 

with a Bayesian Optimization tuner that averaged cross-validation AUC‐ROC metrics as the 

tuning goal. During training the CNN, the images pass through multiple augmentation layers 

to add random intensity shifting, cropping, rotation, translation, and flipping to the images. 

However, the patient graphs only contain image nodes using the image slices identified by 

radiologists to ensure that image features used in the graph prediction contain the most 

accurate representation of the breast cancer tumor.
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4.4 Method Validation

Stratified cross-validation splits the dataset into different folds that maintain the same 

proportion of patient breast cancer molecular subtypes as the original dataset. We 

perform stratified five-fold cross-validation to better demonstrate the generalizability of our 

classification framework and to reduce the variance of the model performance estimates. 

This provides an improved evaluation over splitting the datasets into fixed training, 

validation, and testing groups since we perform held-out testing on all patients in the 

dataset with the primary cost being more time spent training and testing the models. We 

compare the performance of the RGCN model with random forest, logistic regression 

with LASSO regularization, fully-connected multilayer perceptron, and convolutional neural 

network. These methods are not easily adaptable for taking inputs from multiple data 

modalities, so we feed the extracted patient node features from our framework as a flattened 

one-dimensional vector input. We keep the order of the features grouped by diagnostic 

discipline in such a manner to keep related features adjacent in the vector. This results in an 

input size of 149×1 and 71×1 for TCGA and I-SPY2, respectively. Missing patient features 

are set to default values of zero. For the I-SPY2 dataset, we retrain the genomic autoencoder 

model on the normalized micro array expression data to extend our method to the new data 

modality.

4.5 Hyperparameter Settings

The hyperparameters for the feature embedding modules were optimized using cross-

validation to find the optimal design. The image feature extraction involved predicting 

patient characteristics using only the radiographic imaging to optimize the final layer 

embedding size. The optimal final layer embedding size was determined to be 16×1 prior 

to the classification head after testing sizes of 8, 16, 32, or zero trained embedding nodes. 

The layer size and depth of the genomic autoencoder model were selected from 2 to 3 layers 

of sizes 16, 32, and 64, and the model with the best performance in predicting molecular 

subtype using only the genomic embeddings was selected. The optimal results were obtained 

when the autoencoder was trained at a low learning rate of 0.00001 for 4,000 epochs, as 

experiments with different learning rates between 0.00001 and 0.01 and epochs between 16 

and 4,000 showed. We searched for the best RGCN model depth between 2 and 3 layers 

of sizes 16 to 128 at step size intervals of 16. We trained the TCGA RGCN model for 35 

epochs with a learning rate of 0.01 and a batch size of 50 and trained the I-SPY2 RGCN 

model for 20 epochs with the same learning rate and batch size. Our selection was based on 

evaluating a range of epoch values from 16 to 100 and learning rates from 0.00001 to 0.01.

The random forest and logistic regression are evaluated using a two-tier cross-validation to 

optimize the internal hyperparameters, replicating previous state-of-the-art methods using 

logistic regression to predict breast cancer features [38]. A Bayesian optimization tuner 

found the optimal layer sizes and depth and training hyperparameters of the MLP and CNN 

for each dataset. We utilized dropout layers and batch normalization in both the MLP and 

CNN. Dropout layers increase the robustness of the weight learning by dropping 50% of the 

neurons in the layer so the model does not rely too heavily on specific neurons [64]. Batch 

normalization layers normalize the intermediate layer inputs to reduce the internal covariate 

shift, which has shown benefits in reducing training time and increasing accuracy [65]. We 
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found that two-layer MLP outperformed one-layer MLP, with the optimal models consisting 

of 64 neurons in the first layer and 256 neurons in the hidden layer for both I-SPY2 and 

TCGA data. The CNN model search consisted of a first layer one dimensional convolution 

followed by a fully-connected hidden layer before the classification output layer. The TCGA 

CNN has a convolutional layer with 4 filters, kernel size of 16, and stride of 2 followed 

by 16 fully-connected neurons. The I-SPY2 CNN has a convolutional layer with 4 filters, 

kernel size of 64, and stride of 16 followed by 512 fully-connected neurons. All baseline 

neural networks have a dropout and batch normalization layer prior to the final softmax 

classification output layer.

5 RESULTS

We performed stratified five-fold cross-validation using the TCGA-BRCA dataset which 

consists of 1,040 patients with clinical, pathological, and genomic information. A subset of 

108 patients with DCE-MRI and radiologist annotations makes up the MRI Patients cohort. 

We stratify these subsets to provide equal proportions of patients with each molecular 

subtype in each fold. These proportions are approximately equal to the dataset proportions in 

Table 1. The results in Table 3 show the mean values from the cross-validation averaged over 

five repeated cross-validation experiments, meaning we retrained the graph neural network 

twenty-five times when collecting our results. The standard deviations represent the average 

standard deviation within a cross-validation experiment. We report both the micro-averaged 

and macro-averaged AUC‐ROC utilizing the equations below. The micro-averaged AUC‐ROC
weights the AUC‐ROC of each class based on the number of samples in the class. This 

allows each patient to contribute equally to the AUC‐ROC calculations by summing the 

class variable y across all the patients N in the dataset and dividing by the total number 

of patients. The macro-averaged AUC‐ROC equally weights each class AUC‐ROC, which 

causes minority classes to have larger impacts on the metric. We compute the AUC of the 

precision recall curve (AUCPR) since it is an especially useful metric when the proportion 

of positive and negative cases is imbalanced during classification [66]. The precision or 

positive predictive value (PPV) is the proportion of true positive predictions among all the 

positive predictions; the recall is equivalent to the true positive rate. Table 4 includes the 

AUCPR for each method.

Micro AUC‐ROC = 1
N ∑

j = 1

K ∫ TPRjd FPRj ∑
n = 1

N
yjn (5)

Macro AUC‐ROC = ∑j = 1
K ∫ TPRjd FPRj

K (6)

Micro AUCPR = 1
N ∑

j = 1

K ∫ PPVjd TPRj ∑
n = 1

N
yjn (7)
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Macro AUCPR = ∑j = 1
K ∫ PPVjd TPRj

K (8)

Our results found our framework achieves the highest AUC‐ROC value of 0.912 when 

patient graphs included radiographic features extracted from DCE-MRI scans. This cohort of 

patients results in the highest standard deviations and lowest macro averaged AUC‐ROC. 

The cohort has a very small number of patients with more rare molecular subtypes, 

which significantly affects the macro averaged AUC‐ROC. When comparing the cohorts 

of patients with missing radiographic features versus the entire dataset of TCGA-BRCA, the 

classification results and standard deviations are approximately equivalent between the two 

groups. It is difficult to directly compare these results with other related studies, since many 

studies used a reduced subset of 91 TCGA-BRCA patients to report metrics, did not perform 

cross validation, or utilized different multi-omic data such as RNA data.

The comparison of the results of various machine learning methods, namely multilayer 

perceptron (MLP), convolutional neural network (CNN), logistic regression (LR) and 

random forest (RF), is presented on two datasets, TCGA-BRCA and I-SPY2, using features 

extracted from our embedding modules. Our findings indicate that the MLP and CNN 

methods perform similarly to the RGCN model on the TCGA-BRCA dataset with the 

extracted features, however, the RGCN outperforms the other methods significantly in all 

metrics on the I-SPY2 patients. The results of the ablation study, presented in Table 5, 

demonstrate the impact of removing different components from patient graphs. The removal 

of these components is equivalent to removing framework components, and the results 

indicate that performance decreases in general when diagnostic patient data is removed, 

except for a slight improvement in two cases in the TCGA AUC‐ROC results and I-SPY2 

macro-averaged results. The degree of performance impact varies depending on the metric 

used and the dataset. On the TCGA-BRCA dataset, removal of the Pathology subgraph leads 

to a substantial decrease in performance, whereas the patients in the I-SPY2 dataset show 

much less impact.

The outputs from the different diagnostic subgraphs demonstrated varying contributions in 

separating the molecular subtype information. Fig. 6 shows the visualization of the patient 

node outputs after the second RGCN layer in the graph neural network. The plot is the 

two-dimensional t-distributed stochastic neighbor embedding (t-SNE) representation for 

each patient. The t-SNE algorithm is a nonlinear dimensionality reduction method developed 

to visualize high dimensional data [67]. The t-SNE figures lack axis markings because 

the nonlinear mapping results in the real values having no attached meanings. This figure 

demonstrates separation of clusters with notable Luminal A, Basal, HER2, and Luminal 

B groupings. The t-SNE visualization for the outputs from each diagnostic latent node is 

shown in Fig. 7. Each subgraph node representation provides less defined groupings. The 

pathology latent node exhibits the most defined groups correlated to subtypes and most 

closely resembles the overall patient representation. The radiology latent node did provide 

separation between Luminal A and Luminal B patient groups.
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6 DISCUSSION

Our work explores the use of modeling patient information into directed, fully connected 

graphs to perform molecular subtype classification for breast cancer patients. Our 

framework achieves the best results when including image features extracted from DCE-

MRI compared to subsets lacking radiographic imaging. The RGCN model also performs 

best on the I-SPY2 dataset, which contains a significantly larger proportion of patients 

with DCE-MRI. We found during hyperparameter searches that the baseline deep learning 

models had plateaued performance across several configurations for the TCGA dataset, 

which may indicate performance is limited by patient features and data proportions rather 

than model capacity. We note that our ablation results indicate the framework still performs 

well when missing entire subgraphs of diagnostic data. The most impactful diagnostic 

subgraph differs between datasets, implicating that future patient data may rely on different 

diagnostic subgraphs and none can be eliminated from the framework. The performance 

measured by the AUCPR metric shows the most potential for improvement, indicating 

the models predict with lower positive predict value. The small number of patients with 

Normal-like breast cancer resulted in a low number of patients with positive predictions for 

this category, reducing the precision. The macro-averaged results are consistently inferior to 

the micro-averaged results; this is likely related to the large imbalance in molecular subtype 

patients contained in both datasets. We trained the graph model both using individual patient 

graphs and using batches of patient graphs. The batch training method achieves equivalent 

results with smoother loss curves but no significant increase in AUC‐ROC.

The TCGA-BRCA dataset presents an extremely imbalanced proportion of molecular 

subtypes, with a majority being Luminal A. The normal-like patients make up less than 

5% of all the patients, and we did not have enough with DCE-MRI to provide adequate 

training on the final weights of the CNN during image feature extraction. We attempted 

to train the CNN on only the radiologist annotated DCE-MRI slices to ensure that all 

pretraining images had high quality views of the tumor but found reduced AUC‐ROC from 

the graph neural network predictions. Increasing the number of available DCE-MRI slices 

to train the CNN despite having slices with smaller amounts of tumor present improved 

the overall performance of the framework. As shown in Fig. 6 and 7, the RGCN layers 

extracted embeddings that produced separatable groupings in the patient data, but not all of 

the groupings separated the molecular subtype information. The Luminal A patients tend to 

form the most consistent groups among the radiology and genomic subgraphs. The radiology 

subgraph does appear to separate Luminal A and B subtypes, which reflects the success of 

the related radiomic research in also separating these subtypes in TCGA-BRCA. The clinical 

subgraph did lead to specific groupings for most HER2 patients. The pathology subgraph 

outputs clearly perform the best in separating the molecular subtypes and are supported by 

their impact on the ablation results, likely due to the biomarker information included in these 

graphs and its known correlation to molecular subtypes. The patient node output exhibits 

the most separation between molecular subtypes, supporting our hypothesis that utilizing the 

information from multiple diagnostic disciplines would outperform using a single discipline. 

The HER2 patients and Luminal B patients have notably more distinct clustering in the 

patient-wise representation than the pathology subgraph representations. The Normal-like 
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patients do not exhibit clear clustering in any of the t-SNE plots. Although this may indicate 

it is simply more difficult to distinguish from other molecular subtypes, the group having 

the smallest number of patients would contribute to the difficulty in learning to represent the 

patient information for this category.

We utilized a modified version of the update-aggregate formula in the RGCN without degree 

normalization as shown in (1) rather than the degree normalized versions. The normalized 

aggregation provided worse performance on the small patient graphs, but normalization may 

be necessary if patient graphs have more variation in the magnitude of the node degrees.

7 CONCLUSION

We investigated using graph neural networks to predict molecular subtypes of breast cancer 

patients by embedding their information in feature vectors within graph models. Our 

approach used a CNN to extract features from DCE-MRI scans and an autoencoder to 

represent genomic variant results or micro array expression features in a condensed latent 

space. We found that the combination of radiographic data and genomic data improved 

the graph neural networks prediction abilities. Further ablation testing demonstrated 

that different diagnostic disciplines had varying impacts across datasets in predicting 

breast cancer molecular subtype, with all disciplines increasing the value of at least one 

performance metric, if not all metrics.

Pretraining the feature extraction models with related domain data improved the AUC‐ROC
of the graph neural network predictions. We found that prediction abilities significantly 

decreased when TCGA patient graphs did not include information regarding IHC 

biomarkers. Therefore, the graph neural network is significantly relying on the information 

previously known to correlate with molecular subtypes. The genomic variants are utilized in 

the final graph predictions but not as the primary contributors. The micro array expression 

data in I-SPY2 significantly boosted prediction results. Our work may prove more beneficial 

in predicting metrics less correlated with specific patient features to take full advantage of 

the heterogeneous, multimodal data source.

This graph-based method can be further extended with more patients from other datasets 

because it utilizes commonly collected breast cancer patient information. We used MRI 

scans from multiple manufacturers and clinical providers as well as genomic variant assays 

with differing protocols to demonstrate the generalization potential of the method. We 

note that the method’s performance suffered most on less common molecular subtypes due 

to the small number of patients provided in the dataset, especially in the patient cohort 

with MRI. This issue is most simply resolved by including more patients from the less 

common molecular groups to create a balanced dataset for training and evaluation. Our 

framework demonstrates the potential benefits of modeling patient information into graphs 

using extracted deep learning features and performing multimodal fusion of breast cancer 

patient data with graph convolutional neural networks.
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Fig. 1. 
System architecture overview. The data from each patient diagnostic discipline is processed 

and embedded into feature vectors within graph nodes. Edges connect the nodes within 

diagnostic subgraphs to latent nodes and the central patient node prior to prediction by the 

relational graph convolution network module.
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Fig. 2. 
Patient graph representation.
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Fig. 3. 
Patient graph neural network predicting subtype on a batch of patient graphs.
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Fig. 4. 
Genomic variant embeddings extracted from the latent space of the pretrained autoencoder.

Furtney et al. Page 23

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Radiographic image feature extraction.
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Fig. 6. 
Plot of the patient RGCN output vector using t-SNE.
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Fig. 7. 
Plots of the latent node RGCN output vectors using t-SNE.
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TABLE 1

TCGA-BRCA Data Cohorts

Patients with MRI Patients w/o MRI All Patients

Luminal A 70 466 536

Luminal B 17 184 201

Basal-like 14 170 184

HER2 5 77 82

Normal-like 2 35 37

Total 108 932 1040
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TABLE 2

Patient Graph Metrics

TCGA I-SPY2

Mean # Nodes 19.15 11.03

Mean # Edges 37.30 21.06
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TABLE 3

Molecular Subtype Classification Results

Validation Cohort Micro Avg AUC-ROC Macro Avg AUC-ROC

μ σ μ σ

Patients with MRI 0.912 0.028 0.710 0.046

Patients w/o MRI 0.867 0.019 0.778 0.028

All Patients 0.871 0.018 0.772 0.026
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TABLE 4

Model Performance Comparison

Dataset Model Micro AUC-ROC Macro AUC-ROC Micro AUCPR Macro AUCPR

TCGA

RGCN 0.871 0.772 0.646 0.500

CNN 0.871 0.751 0.665 0.498

MLP 0.892 0.766 0.693 0.493

LR 0.790 0.725 0.444 0.386

RF 0.773 0.631 0.571 0.359

I-SPY2

RGCN 0.895 0.838 0.724 0.531

CNN 0.841 0.740 0.611 0.427

MLP 0.848 0.739 0.631 0.424

LR 0.713 0.669 0.355 0.328

RF 0.643 0.570 0.461 0.290
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TABLE 5

Model Graph Ablation Results

Dataset Missing Component Micro AUC-ROC Macro AUC-ROC Micro AUCPR Macro AUCPR

TCGA

None 0.871 0.772 0.646 0.500

Pathology 0.787 0.613 0.507 0.287

Genomic 0.859 0.761 0.599 0.434

Radiology 0.873 0.766 0.623 0.464

Clinical 0.880 0.779 0.631 0.492

I-SPY2

None 0.895 0.838 0.724 0.531

Pathology 0.886 0.813 0.709 0.491

Genomic 0.829 0.772 0.567 0.418

Radiology 0.886 0.844 0.679 0.542

Clinical 0.879 0.830 0.664 0.523
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