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Abstract

We present a new, unified approach for the transformation of benzylic and allylic alcohols, 

aldehydes, and ketones into boronic esters under electroreductive conditions. Key to our 

strategy is the use of readily available pinacolborane, which serves both as an activator, first 

generating a redox-active trialkylborate species, and then as an electrophile, delivering the desired 

deoxygenatively borylated product. This strategy is applicable to a variety of substrates and can be 

employed for late-stage functionalization of complex molecules.

Graphical Abstract

Alcohols, ketones, and aldehydes are among the most prevalent functionalities found in 

organic molecules (Scheme 1A).1 New efficient methodologies for the direct activation 

and functionalization of these oxygen-containing groups are therefore highly desirable for 

upgrading chemical feedstocks and late-stage modification of complex natural products and 

pharmaceuticals. However, deconstructive transformations of these motifs are challenging 

due to the strength of C–O single and double bonds.2 In addition, because of the intrinsic 

reactivity differences of alcohols and carbonyl compounds, distinct reaction strategies 

are typically required for their activation, and currently there is no approach for the 
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deoxygenative functionalization of both functional groups under the same mechanistic 

manifold.

Nucleophilic substitution3 and radical-mediated bond cleavage4 represent the most effective 

approaches to date for the activation of alcohols (Scheme 1B, left), converting C–OH into a 

carbocation or alkyl radical equivalent, respectively. These methods predominantly rely on 

the use of an additional stoichiometric reagent, often added in a separate synthetic step, to 

activate the alcohol or sequester the leaving group.4 Indeed, notwithstanding elegant seminal 

contributions in catalytic alcohol functionalization,5,6 literature examples that achieve direct 

or in situ activation of the native hydroxy groups remain limited. Further, methods that 

effectively reverse the polarity of the reactant and provide a carbanion equivalent could 

grant access to complementary reactivities leading to new bond disconnection strategies, but 

there are only two examples of such an approach to date (and only one involving direct 

transformation of alcohols).7 Methods for the direct deoxygenative functionalization of 

aldehydes and ketones are even less common than for alcohols.8 While elegant approaches 

have been advanced to transform carbonyl groups via radical,9 electrophilic,10 and carbene-

mediated pathways11 (Scheme 1B, right), accomplishing umpolung reactivity by means 

of carbanion generation from these substrates remains challenging and currently relies 

on substrate pre-activation to form corresponding hydrazones in a separate synthetic 

operation.12

Reductive electrochemistry has emerged in recent years as a powerful tool for the activation 

of strong bonds.13 In previous work (Scheme 2A, upper), we showed that at a sufficiently 

reducing potential, an alkyl halide (A) can undergo a sequence of electron transfer-chemical 

reaction-electron transfer (ECE) processes that results in cleavage of the C–X bond to 

form a carbanion intermediate (F).14 Reaction of F with another alkyl halide (G) results 

in the formation of a new C–C bond and furnishes cross-electrophile-coupling (XEC) 

product H. We were interested in developing an analogous electrochemical strategy for the 

deoxygenative functionalization of alcohols,15 aldehydes, and ketones, in which substrates 

with their native functional groups can be directly employed in the reaction via in-situ 

activation. Here we present such an approach using pinacolborane (HBpin) as both an 

activator and a reactant (Scheme 1C). This reaction proceeds through a radical-polar 

crossover mechanism that effectively converts the alcohol or carbonyl group into a carbanion 

equivalent, and ultimately gives rise to alkylboronic esters that are versatile intermediates in 

organic synthesis.16

Towards developing the electrochemical deoxygenation of alcohols, we envisioned a strategy 

involving in-situ activation of alcohol B to form a leaving group, which would then be 

reductively cleaved at a relatively mild potential to generate alkyl radical E (Scheme 2A, 

lower). In the presence of an anion-stabilizing substituent (e.g., aryl or vinyl), E would 

undergo further reduction to afford carbanion F, which would be captured by an electrophile 

to provide the desired deoxygenatively functionalized product. Through initial screening, 

we identified the pinacol boronic ester (Bpin) group as a promising candidate for alcohol 

activation. The installation of Bpin can be readily achieved through reaction of the alcohol 

substrate with a XBpin reagent (X = H,17 halide, alkoxy, or other leaving groups), yielding 

intermediate D with a lowered reduction potential (Ered = −2.5 V; see SI Section 5 for cyclic 
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voltammetry data) that is comparable to that of alkyl halides. Thus, the reduction of D is 

expected to occur via an ECE pathway to generate carbanion F, which would then react with 

an additional equivalent of XBpin18 to produce borylated compound I. An attractive feature 

of this approach is that the boron reagent serves as both an activator and a reactant, thus 

allowing the full transformation to take place in a single operation, alleviating the need for a 

pre-activation step using an additional reagent.

Following this working hypothesis, we selected HBpin and MeOBpin as candidate 

electrophilic borylation reagents and benzyl alcohol (BnOH, 1) as the model substrate to 

explore the reaction. Upon optimization, we found that using HBpin (2.5 equiv) with a 

sacrificial Mg anode, a graphite cathode, tetrabutylammonium tetrafluoroborate (TBABF4) 

as electrolyte, and THF as solvent in an undivided cell, the desired borylated product (2) 

was isolated in 88% yield (Scheme 2B, entry 1). The reaction likely produces a borohydride 

intermediate (BnBpinH–),18a which is converted to 2 upon exposure to H+ during workup. 

Using 2.5 equiv of MeOBpin in lieu of HBpin under the same conditions afforded 2 in 

only trace amounts (7%, entry 2), with protonated product (toluene) identified as the major 

product (80%). Here, the reaction with MeOBpin likely generates MeOH and intermediate 

BnOBPin, and the benzyl anion subsequently formed upon electroreduction then reacts with 

MeOH to give the undesired protodeoxygenation product. Interestingly, a reaction using one 

equiv of HBpin and 1.5 equiv of MeOBpin afforded 2 in 80% yield (entry 3). The latter 

two findings indicate that HBpin is required for substrate activation, while the electrophilic 

boron source can be varied.

In the reaction system using HBpin as the sole borylating agent, the trialkylborate 

species (D, Scheme 2A) is generated from a rapid reaction between 1 and Hbpin,17 

as evidenced by visible vigorous evolution of H2 during the beginning of electrolysis. 

Advantageously, the depletion of H+ in the reaction medium prevents competing proton 

reduction that is common for alcohols under cathodic conditions while also precluding 

undesired protodeoxygenation via protonation of intermediate F. Importantly, although 

HBpin is an excellent electrophile,18 it does not show any reduction peak at potentials 

below −3.0 V on the cyclic voltammogram (see SI Section 5), which thus does not compete 

with intermediate D in the electroreduction.

We also performed control experiments to probe the reaction mechanism (Scheme 2B, 

entries 4–9). No product was observed in the absence of an electric current (entry 4), which 

suggests that the observed reactivity is not alone promoted by chemical reduction at the Mg 

electrode. Indeed, running the reaction using magnesium powder (entry 5) or NaH (entry 

6) as the terminal reductant in the absence of an electric current did not yield any product. 

Additionally, electrolysis carried out in the cathodic chamber of a divided cell afforded 2 
in 49% yield (entry 7). Replacing Mg anode with graphite usingiPr2EtN as a homogeneous 

sacrificial reductant also provide 2 in 40% yield (entry 8). These two findings indicated that 

the Mg anode or Mg2+ generated from anodic oxidation do not play crucial roles in the 

reaction mechanism.19 Lastly, a reaction performed using BnOBpin (3) in lieu of BnOH as 

the substrate afforded 2 in 80% yield (entry 9), suggesting that under standard conditions 

(entry 1), the trialkyl borate (D) formed in situ is the key reactive intermediate.
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The use of HBpin as an activating agent allowed us to further expand the reaction strategy 

to the deoxyborylation of aldehydes and ketones (Scheme 2A, lower). Indeed, HBpin readily 

reacts with carbonyl compounds (C) through hydroboration to form common intermediate 

D,20 which can then undergo electrochemical activation. Using similar conditions as 

described above for the reaction with BnOH, benzyl aldehyde 4 was transformed to 2 
in 84% yield (Scheme 2C, entry 1). Control experiments without electricity or using Mg 

powder as a chemical reductant in lieu of electroreduction did not afford any desired 

product (entries 2 and 3). We note that elegant deoxyborylation methods have recently 

been reported by Li and Liu, independently, under non-electrochemical conditions using 

bis(catecholato)diboron or bis(pinacolato)diboron reagents.21 However, our reaction is also 

appliable to alcohol deoxyborylation, which is not currently the case for the other routes.

We next explored the substrate scope of our methodology (Scheme 3). A suite of primary, 

secondary, and tertiary alcohols were efficiently transformed into boronic esters (5–15), 

and various functional groups were tolerated, including aryl fluoride (6), boronic ester (7), 

and thioether (8). Of note, with p-F-benzyl alcohol, defluorination was initially observed 

under standard conditions, likely as a result of direct reduction of the fluoroarene in 

the starting alcohol. This issue was resolved via pre-mixing HBpin with p-F-benzyl 

alcohol in the presence of Et3N or K2CO3 before starting electrolysis, which ensured 

complete conversion of the substrate to ROBpin and suppressed the side reaction. Strained 

cyclobutanol substrates were tolerated, yielding products 15 and 16 without evidence of 

ring-opening. Substrates featuring reductively sensitive functionalities such as secondary 

amides were compatible (12) under modified reaction conditions using a mixture of HBpin/

MeOBpin and LiOTf in DME as the electrolyte medium.22 Importantly, a diverse range of 

heterocyclic substrates such as piperazine (17), pyrazole (18), indazole (19), and pyridine 

(20–22) were also compatible with this reaction.

A panel of benzylic aldehydes and ketones with diverse functionalities such as silylether, 

m-chlorine, and aniline proved to be suitable substrates, yielding borylated compounds 

24, 25, and 30, respectively (Scheme 3B). In particular, myriad heterocyclic substituents 

including triazole (31), pyrrole (32), morpholine (33), carbazole (34), N-Boc piperazine 

(35), benzothiophene (36), benzofuran (37), pyrazole (38), and indole (39) were well-

tolerated, indicating that this method may be of interest for the preparation of medicinally 

active compounds.

The above success prompted us to further expand the scope of this methodology to 

allylic alcohols and conjugate enones/enals, which are abundant in natural products and 

feedstock chemicals, and which could also form stabilized carbanion nucleophiles upon 

electroreduction. When our originally optimized conditions (Scheme 2B) were initially 

applied to allylic substrates, the desired borylated products were only detected in small 

amounts, along with products from decomposition of the tetrabutylammonium ion (via the 

Hofmann elimination).23 To circumvent this side reaction, a series of alkali metal-based 

electrolytes were surveyed, and LiOTf proved optimal.24 Using these modified conditions, a 

range of natural products bearing linear and cyclic allylic C–O moieties were converted to 

desired allylic boronic esters in good yields (Scheme 4, 40–47). Linalool, (–)-verbenone, 

and (1R)(−)-myrtenal afforded a mixture of regioisomers as a result of allylic anion 
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delocalization, with moderate selectivity favoring borylation at the sterically more accessible 

site (45–47, respectively).25

Lastly, to further demonstrate the synthetic utility of our methodology, a suite of natural 

products, medicinal agents, and their analogs were examined (Scheme 5A, 48–53). 

Desoxyanisoin and celestolide underwent borylation to afford 48 and 49 in excellent 

yields. Borylation of desoxyanisoin on a gram scale (5 mmol) was also successful, 

affording 49 in 58% yield (1.06 g). The methyl esters of common anti-inflammatory drugs 

zaltoprofen yielded boronate products 50. Further, the alcohol precursor of cholesterol 

medication rosuvastatin, skin medication podophyllotoxin, and Alzheimer’s drug donepezil 

were all found to undergo deoxyborylation in good yields (products 51, 52, and 53, 

respectively). Furthermore, this methodology exhibits excellent chemoselectivity towards the 

functionalization of benzylic or allylic alcohols over unactivated alcohols (Scheme 5B, 54–

57).26 For example, a zaltoprofen derivative and sclareol were selectively functionalized at 

the benzylic and allylic positions, respectively, to give products 56 and 57. Lastly, employing 

a recent method on aerobic oxidation of boronic esters,27 we developed a two-step, one-pot 

procedure to achieve the formal oxygen isotope exchange. Treament of the crude reaction 

mixture containing 48 derived from celestolide with a Cu catalyst in presence of 18O2 

provided 18O-labeled celestolide (58) in 86% yield with 82% 18O incoporation.28

In summary, we have developed an electrochemical methodology that converts alcohols, 

aldehydes, and ketones into value-added boronic esters leveraging the redox activity of 

in-situ generated trialkyl borate intermediates. We anticipate this operationally simple 

protocol will provide a new avenue for the upgrading of feedstock chemicals and late-stage 

derivatization of complex targets containing alcohols and carbonyl compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Background and introduction
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Scheme 2. 
Design principle and control experiments

Yields were determined by 1H NMR spectroscopy. aReaction was set up as usual with 

electrodes but without applying an electric current. bReactions were set up without 

electrodes and without applying an electric current.
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Scheme 3. 
Reaction scope for benzylic alcohols, aldehydes, and ketones

Isolated yields are reported unless otherwise noted. aDetermined by 1H NMR spectroscopy. 
bUsing a mixture of HBpin (1.1 equiv) and MeOBpin (2.0 equiv) and LiOTf as the 

electrolyte in DME. cEt3N (1 equiv) was added and the reaction was pre-stirred for 5 h 

before electrolysis.
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Scheme 4. 
Scope for allylic substrates
aDetermined using gas chromatography.
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Scheme 5. 
Synthetic applications
aIsolated yield for reaction on a 5 mmol scale. bYields were determined using 1H NMR 

spectroscopy. c4 equiv of HBpin was used and 0.5 equiv of K2CO3 was added.
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