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Mutational processes of tobacco smoking and APOBEC
activity generate protein-truncating mutations in
cancer genomes
Nina Adler1, Alexander T. Bahcheli1,2, Kevin C. L. Cheng1,3, Khalid N. Al-Zahrani4,
Mykhaylo Slobodyanyuk1,3, Diogo Pellegrina1, Daniel Schramek2,4, Jüri Reimand1,2,3*

Mutational signatures represent a genomic footprint of endogenous and exogenous mutational processes
through tumor evolution. However, their functional impact on the proteome remains incompletely understood.
We analyzed the protein-coding impact of single-base substitution (SBS) signatures in 12,341 cancer genomes
from 18 cancer types. Stop-gain mutations (SGMs) (i.e., nonsense mutations) were strongly enriched in SBS sig-
natures of tobacco smoking, APOBEC cytidine deaminases, and reactive oxygen species. These mutational pro-
cesses alter specific trinucleotide contexts and thereby substitute serines and glutamic acids with stop codons.
SGMs frequently affect cancer hallmark pathways and tumor suppressors such as TP53, FAT1, and APC. Tobacco-
driven SGMs in lung cancer correlate with smoking history and highlight a preventable determinant of these
harmful mutations. APOBEC-driven SGMs are enriched in YTCAmotifs and associate with APOBEC3A expression.
Our study exposes SGM expansion as a genetic mechanism by which endogenous and carcinogenic mutational
processes directly contribute to protein loss of function, oncogenesis, and tumor heterogeneity.
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INTRODUCTION
Cancer is driven by a few somatic mutations that enable oncogenic
properties of cells; however, most mutations in cancer genomes are
functionally neutral passengers (1, 2). Somatic mutations are caused
by endogenous and exogenous mutational processes with complex
context- and sequence-specific activities that collectively mark
tumor evolution and exposures over time (3). Single-base substitu-
tion (SBS) signatures are the indicators of mutational processes in
cancer genomes that can be inferred through a computational de-
composition of somatic single-nucleotide variants (SNVs) and their
trinucleotide sequence context in large cancer genomics datasets (4,
5). SBS signatures have been linked to clock-like mutational pro-
cesses of aging (6), deficiencies in DNA repair pathways (7), endog-
enousmutational processes such as the activity of APOBEC cytidine
deaminases (8), environmental carcinogens such as ultraviolet (UV)
light (9), lifestyle exposures such as tobacco smoking (10), dietary
components such as aristolochic acid (11), as well as the effects of
cancer therapies (12, 13). The causes of other signatures remain un-
characterized. Mutational signatures are increasingly found in
healthy tissues, indicating that the mutational processes are active
in normal and precancerous cells (14, 15). Specific driver mutations
in cancer genomes have been attributed to certain mutational pro-
cesses (16, 17). While some mutational signatures identified in
cancer genomes can be reproduced in experimental systems (9,
18, 19), their mechanistic and etiological characterization is an
ongoing challenge. As mutational processes are thought to predom-
inantly generate passenger mutations, their broad functional impli-
cations on protein function and cellular pathways remain
incompletely understood.

Here, we hypothesized that the mutational processes of SNVs
specifically affect protein-coding sequence because of their trinucle-
otide sequence preferences encoded in SBS signatures. By character-
izing the co-occurrence of mutational signatures and the sequence
impact of associated SNVs in thousands of cancer genomes, we find
that nonsense SNVs corresponding to stop-gain mutations (SGMs)
are strongly associated with the mutational processes of tobacco
smoking, APOBEC, and reactive oxygen species (ROS). SGMs are
the most impactful class of SNVs that cause premature stop codons
and result in truncated proteins or nonsense-mediated decay. The
consequences of these mutational processes appear as driver muta-
tions in tumor suppressor genes (TSGs) and hallmark cancer path-
ways. These processes represent preventable carcinogenic exposures
as well as endogenous sources of DNA damage, and their associa-
tion with premature stop codons is explained by their sequence-spe-
cific interactions with the genetic code. Our report provides direct
evidence of the functional genetic impact of mutational signatures
in cancer genomes and their interactions with the molecular and
lifestyle drivers of the mutational processes, suggesting a role for
SGM signatures in tumor heterogeneity and progression.

RESULTS
SGMs in tobacco smoking, APOBEC, and ROS signatures in
cancer genomes
To study the protein-coding impact of SBS signatures, we analyzed
12,341 cancer genomes from 18 major tissue sites using data in
three pan-cancer cohorts: The Cancer Genome Atlas (TCGA) Pan-
CanAtlas (20) with 6509 exomes, Pan-Cancer Analysis of Whole
Genomes (4) (PCAWG) with 2360 whole genomes, and the
Hartwig Medical Foundation (21) (HMF) with 3472 whole
genomes (Fig. 1A and fig. S1). Hypermutated and low-confidence
samples were excluded (Materials and Methods). A total of 1.75
million exonic SNVs were classified on the basis of their protein-
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coding function as missense (67.4%), silent (27.7%), stop-gain
(4.6%), stop-loss (0.1%), and start-loss (0.1%) mutations. We used
consensus mutational signature calls from PCAWG (4) and anno-
tated the signatures in the TCGA and HMF datasets using the Sig-
Profiler software (5). Using these three datasets allowed us to
replicate our findings across sequencing platforms, variant calling
pipelines, and signature analysis methods. We then performed a
mutation enrichment analysis by asking which specific mutational
signatures were found in the five functional SNV classes more often
than expected from chance alone. Systematic analysis of the 18
cancer types in the three genomic datasets revealed 332 associations
of mutational signatures and protein-coding variant function
[Fisher’s exact test, false discovery rate (FDR) < 0.01] (fig. S2).

We focused on SGMs (i.e., nonsense SNVs), the most disruptive
class of SNVs that induces protein truncations and loss of function
(LOF). SGMs were consistently enriched in the SBS signatures of
three major mutational processes of tobacco smoking, APOBEC ac-
tivity, and ROS (Fig. 1, B and C). First, the tobacco smoking signa-
ture SBS4 with frequent C>A transversions (22) was enriched in
SGMs in primary lung cancers in TCGA [10,054 versus 8006 ex-
pected SGMs, fold change (FC) = 1.26; FDR = 4.6 × 10−242;
Fisher’s exact test] and metastatic lung cancers in HMF (FC =
1.34; FDR = 1.9 × 10−85). Similarly, SGMs were also enriched in
the SBS4 signature in the three cohorts of liver cancer samples
(FDR < 10−5). The SBS29 signature attributed to tobacco chewing
was also associated with SGMs in lung and liver cancers (FDR
< 0.001).

Fig. 1. Protein-coding impact of mutational signatures in cancer genomes and associations with SGMs. (A) Overview of the study. Left: The associations of protein-
coding impact of somatic SNVs andmutational signatures of SBSs were studied using enrichment analysis in >12,000 cancer genomes. Middle: SGMs were enriched in the
SBS signatures of tobacco smoking, APOBEC, and ROS. These are explained by the trinucleotide preferences of the mutational processes that affect certain amino acid
codons and convert these to stop codons. Right: Mutational signatures of SGMs were further studied in the context of driver genes and pathways, as well as the clinical
and molecular correlates of the mutational processes. (B) Enrichments of mutational signatures in SGMs in multiple cancer types and in the three cancer genomics
datasets (TCGA, HMF, and PCAWG) (FDR < 0.01). Bar plots show the cumulative significance of enriched SBS signatures in SGMs in various types of cancer. Tobacco
smoking, APOBEC activity, and ROS exposure are the major mutational processes that contribute SGMs in multiple cancer types. (C) Observed and expected counts
of SGMs derived from the most significant mutational processes. Mean expected mutation counts with 95% confidence intervals (CI) from binomial sampling are
shown on the bars.
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Second, the APOBEC signature SBS13 was enriched in SGMs in
multiple cancer types, especially in breast (1653 SGMs observed
versus 931 expected, FDR = 1.1 × 10−138; HMF), head and neck
(FC = 1.58; FDR = 3.3 × 10−53; TCGA), uterine, lung, and esopha-
geal cancers. Notably, SBS13 appeared as the predominant
APOBEC signature of SGMs, while few or no enrichments were
seen for the alternative APOBEC signature SBS2. SBS13 and SBS2
both preferably affect TCN trinucleotides; however, SBS13 is pri-
marily characterized by C>G and C>A mutations, while C>T mu-
tations are common to SBS2. These differences between the two
signatures explain the preferential enrichment of SBS13 to
convert codons with TCN trinucleotides to stop codons (TAG,
TAA, and TGA).

Third, SBS18 and SBS36, the two mutational signatures associ-
ated with ROS, were also enriched in SGMs. These SBS signatures
characterized by C>Amutations were especially enriched in cancers
of the digestive system such as colorectal cancer (HMF: 282 SGMs
observed versus 124 expected; FDR = 5.0 × 10−37), esophageal
cancer and stomach cancer, as well as pancreatic, neuroendocrine,
and breast cancers. As ROS signatures were overall less frequent in
cancer genomes than other signatures, fewer SBS18-associated
SGMs were also found. Less-frequent carcinogenic signatures of af-
latoxin and aristolochic acid exposures were also associated with
SGMs. These observations were consistent in primary andmetastat-
ic cancers, and their detection in independent whole-genome se-
quencing (WGS) and whole-exome sequencing (WES) datasets
also lends confidence to our findings.

We validated the associations of SGMs and SBS signatures with
additional analyses. First, we repeated the enrichment analysis using
a probabilistic approach that accounted for all potential sample-spe-
cific signature exposures in annotating individual SNVs. By sam-
pling these signature annotations repeatedly, we confirmed that
SGMs remained highly enriched in the SBS signatures of tobacco
smoking, APOBEC, and ROS (fig. S3). The probabilistic analysis
also showed an even stronger enrichment of APOBEC signatures
in SGMs in lung cancer compared to the analysis of top signature
annotations, while the pronounced enrichment of SGMs in the
smoking signature was somewhat attenuated in the probabilistic
analysis. Previous studies indicate that both the tobacco smoking
and the APOBEC processes contribute somatic mutations in lung
cancer whereas APOBEC is more involved in later mutagenesis
(23), potentially explaining this observation. Accordingly, a subset
of SGMs were likely attributable to either tobacco smoking or
APOBEC signatures, or the age-associated signature SBS5 (fig.
S4). Second, we performed a pan-cancer analysis by combining
samples of all cancer types and again recovered the tobacco
smoking, APOBEC, and ROS signatures with very strong enrich-
ments of SGMs (fig. S5). Thus, the exogenous mutational process
of tobacco smoking and the endogenous processes of APOBEC ac-
tivity and ROS appear as major drivers of disruptive protein-trun-
cating mutations that may directly affect protein function and
regulation in cancer.

We also reviewed the enriched SBS signatures of missense and
silent SNVs (fig. S2). Silent mutations were consistently enriched
in the mitotic clock-like signature SBS1 in most cancer types and
the three cohorts. SBS1 includes C>T transitions caused by 5-meth-
ylcytosine deamination. In contrast, missense SNVs were often en-
riched in the common clock-like signatures SBS5 and SBS40 that
have relatively featureless (flat) trinucleotide profiles. Silent and

missense SNVs are broad categories of variants that cover various
trinucleotides in the genetic code; therefore, these associations
with common mutational signatures are expected. Functional sub-
classes of missense mutations should be considered in future anal-
yses. Associations with APOBEC signatures were also identified in
multiple cancer types: SBS2 was often enriched in silent SNVs,
while SBS13 was enriched in missense SNVs. Sample sizes and sig-
nature exposures determine the statistical power of detecting asso-
ciations of SBS signatures and SNV annotations in the various
cohorts. Together, these results exemplify the complex landscape
of functional impacts that mutational processes enact on the
protein-coding genome.

SGM signatures and the genetic code
To explore the genetic mechanism underlying the enrichments of
SGMs in the three major mutational processes, we studied the
types of amino acids that were most frequently substituted by stop
codons, focusing on tobacco smoking, APOBEC, and ROS signa-
tures in lung, breast, and colorectal cancers. Several types of
amino acids were unexpectedly frequently replaced by stop
codons. Glutamic acid (Glu) residues showed the strongest enrich-
ment of stop codon substitutions in all three SBS signatures
(Fig. 2A). In lung cancer, Glu>Stop substitutions were enriched
fourfold in the tobacco smoking signature SBS4 compared to
other signatures (43.8% versus 10.6%, FDR < 10−300). Glutamic
acid residues were also significantly affected by the APOBEC signa-
ture in breast cancer and ROS signatures in colorectal cancer (FC >
3.6; FDR < 1.7 × 10−57). As expected, these enrichments are also
supported by the reference SBS signatures of the Catalogue of
Somatic Mutations in Cancer (COSMIC) database (24) (Fig. 2B
and fig. S6). On the basis of cosine similarity (COS) scores, the
SNV trinucleotide profiles corresponding to Glu>Stop substitutions
in our data were considerably more similar to the COSMIC refer-
ence SBS signature profiles of tobacco smoking and ROS (lung:
COSSBS4 = 0.40; colorectal: COSSBS18 = 0.62), compared to the fre-
quent clock-like signatures SBS5 and SBS40 that we used as controls
(lung: COSSBS5 = 0.13; colorectal: COSSBS40 = 0.33). Besides
Glu>Stop substitutions, other types of amino acids were also en-
riched in stop codon substitutions in tobacco smoking and ROS sig-
natures, including glycines (13.7%) and cysteines (6.4%) (FC > 4.8;
FDR < 3.6 × 10−60), while arginine, glutamine, and other residues
were less frequently affected by SGMs than expected.

The APOBEC signature SGMs in breast cancer encoded stop
codon substitutions almost exclusively in serine and glutamic acid
residues (55.9 and 42.4%, respectively). Ser>Stop substitutions were
more frequent in SBS13 compared to other signatures (4.2% expect-
ed; FC = 13, FDR < 10−300). Accordingly, the SNV trinucleotide
profiles encoding Ser>Stop substitutions showed a considerably
higher COS to the COSMIC reference APOBEC signature
(COSSBS13 = 0.65) than the more common SBS40 reference signa-
ture we used as a control (COSSBS40 = 0.15), confirming the muta-
tional signature annotations of SGMs in our data. Last, ROS
signatures were also enriched in Ser>Stop substitutions in colorectal
cancer (FDR = 6.2 × 10−6), while no enrichment of SGMs in serine
residues was seen in tobacco smoking signatures in lung cancer.

To consolidate these statistical associations into a mechanistic
model, we examined the genetic code of the most common stop
codon substitutions involving serine and glutamic acid codons
(Fig. 2, B and D). First, APOBEC-associated Ser>Stop substitutions
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in breast cancer were predominantly encoded by T[C>G]A trans-
versions (76.8%) as well as T[C>A]A and T[C>A]G transversions.
The TCA and TCG trinucleotides encode the two serine codons that
require an SBS to become stop codons. The corresponding stop
codons TGA, TAA, and TAG are induced by three of the transver-
sions distinctive of the SBS13 APOBEC signature (Fig. 2C). Second,
the Glu>Stop substitutions apparent in tobacco smoking and ROS
signatures were predominantly caused by T[C>A]N transversions
that overlap two adjacent codons (Fig. 2D). Here, the reverse-com-
plementary trinucleotides NGA include the two first nucleotides of
glutamic acid codons GAA and GAG, which are replaced with the
stop codons TAA and TAG upon N[G>T]A transversions, respec-
tively. Last, glutamine (Gln) and arginine (Arg) codons often seen
in the SGMs of other SBS signatures are incompatible with the sig-
natures SBS4, SBS13, and SBS18 (fig. S7). In summary, the genetic
code explains the genesis of SGMs by the mutational processes of
tobacco smoking, APOBEC, and ROS.

Driver genes and pathways with truncating mutations
To study the functional consequences of SGM signatures, we asked
whether the mutations converge on specific genes. We focused on
the six types of cancer in which consistent evidence of SGM signa-
tures was found in the TCGA, PCAWG, and HMF datasets. We
identified 56 genes with significantly enriched SGMs of tobacco
smoking, APOBEC, and ROS signatures relative to the exome-
wide distributions of these signatures and all SGMs: 14 genes in
lung and liver cancers with the tobacco smoking signature SBS4;
44 genes in breast, head and neck, and uterine cancers with the
APOBEC signature SBS13; and 1 gene (APC) with the ROS signa-
ture SBS18 in colorectal cancers (Fig. 3A and table S1) (Brown FDR
< 0.05, Fisher’s exact tests). The genes included 556 signature-asso-
ciated SGMs in 467 cancer genomes in the combined datasets, rep-
resenting 3.8% of all tumors we studied. A large fraction of these (24
genes or 43%) are known cancer genes from the COSMIC Cancer
Gene Census (CGC) database (25), more than expected from
chance alone (24 found, 2 of 56 genes expected; P = 1.4 × 10−20).

Fig. 2. SBS signatures induce protein-truncating mutations by targeting the genetic code. (A) SGMs of tobacco smoking, APOBEC, and ROS signatures are enriched
in specific amino acids. Bar plots show the proportions of amino acids affected by SGMs. Left: SGMs of the three major signatures: SBS4 in lung cancer, SBS18 in colorectal
cancer, and SBS13 in breast cancer. Right: Control SGMs of all other mutational signatures in these cancer types. Enrichment of signature-associated SGMs relative to
controls are shown as asterisks (Fisher’s exact tests). (B) Trinucleotide profiles of SGMs of glutamic acid and serine residues (Glu>Stop, Ser>Stop) and the reference
COSMIC signatures for SBS4, SBS18, and SBS13. As controls, the profiles of the most frequent SBS signatures are shown (SBS5/40; two plots at the bottom). Cosine
similarity (COS) scores comparing the SGM signatures and the COSMIC reference signatures are shown. The trinucleotide substitutions from (C) and (D) are highlighted
on the x axis. (C andD) SBS signatures interact with the genetic code to induce stop codons. The codons encoding serines and glutamic acids are shown as rectangles. The
trinucleotides inducing stop codons uponmutation are shown in gray. Basemutations are underlined. (C) Serine substitutions to stop codons. C>G and C>A transversions
in SBS13 and SBS18 induce stop codons by substituting the middle nucleotides of serine codons (yellow). (D) Glutamic acid substitutions to stop codons. C>A trans-
versions in SBS4, SBS13, and SBS18 induce stop codons by affecting two consecutive codons. Because SBS signatures are represented with pyrimidines as reference
nucleotides, this schematic shows the reverse complements of the trinucleotides in which glutamic acids are changed to stop codons. Here, the reverse-complementary
trinucleotide transversions characteristic of the tobacco smoking signature SBS4 substitute the first nucleotide in the glutamic acid codon (teal).
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Fig. 3. SGMs of tobacco smoking, APOBEC, and ROS signatures are enriched in TSGs and cancer hallmark pathways. (A) Genes enriched in SGMs of the signatures
SBS4, SBS13, and SBS18. Each cancer type was analyzed separately, and the identified genes were integrated across the three cancer cohorts (Fisher’s exact tests, Brown
FDR < 0.05). Known cancer genes are shown in red. (B) SGMs in the enriched genes often co-occur with genomic CN losses in the same cancer samples, indicative of loss of
heterozygosity. (C) Biological processes and molecular pathways with enriched SGMs of SBS4 and SBS13. Significant pathways were identified by merging evidence
through the SGM signatures and the cancer types (ActivePathways, FDR < 0.05). The enrichment map is a network of enriched pathways shown as nodes in which
edges connect pathways with many shared genes. Nodes are colored by the cancer type in which SGM enrichment was detected. Light blue represents pathways
that reached significance only after combining the evidence from the five cancer types. (D to F) Examples of TSGs enriched in SGMs of the three mutational signatures.
SGMs in TP53 in lung cancer, FAT1 in head and neck cancer, and APC in colorectal cancer are enriched in SBS4, SBS13, and SBS18, respectively. Colored circles show the
signature-associated SGMs, their reference amino acids, and their sequence positions. Pfam protein domains are shown as colored rectangles. The number of SBS-as-
sociated SGMs (NSBS), the enrichment P value of SGMs (PENR, Fisher’s exact test), and the P value of SGMs accumulating toward either protein terminus (PSEQ, one-sample
Wilcoxon rank sum test) are shown. EGF, epidermal growth factor. (G) Genes enriched with SBS4, SBS13, and SBS18 SGMs have a higher amino acid sequence content of
Ser and Glu residues compared to all protein-coding genes (PRANK, Mann-Whitney U test). Colors indicate the mutational signatures enriched in SGMs.
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Several core TSGs such as TP53, FAT1, CDH1, RB1, NF1, and APC
were identified.

To further interpret the mutations functionally, we prioritized
the genes with SGMs across cancer types, excluding colorectal
cancer for which only one gene was found. Integrative pathway en-
richment analysis of SGM-ranked genes across the cancer types
using the ActivePathways method (26) highlighted biological pro-
cesses and pathways such as apoptosis, growth factor signaling, cell
motility, and cell proliferation and development (FDR < 0.05;
Fig. 3C). Most detected pathways were identified in multiple
cancer types, primarily through the tobacco signature in lung
cancer and the APOBEC signature in head and neck cancer.
Thus, the SGMs generated by these mutational processes converge
to TSGs and cancer pathways and thereby contribute to LOF, onco-
genesis, and tumor progression.

Mutational signatures of tobacco smoking, APOBEC, and ROS
were enriched in truncating mutations in important cancer genes.
First, SGMs associated with tobacco smoking were enriched in 14
genes in lung cancer across the three datasets, including TP53, in
which most SGMs in the TCGA cohort (51 of 95) were driven by
SBS4 (15 SBS4 SGMs expected, FDR = 1.8 × 10−11) (Fig. 3D). Trun-
cations in TP53 preferentially occurred toward the disordered C-
terminal tail involved in protein tetramerization (P = 0.0051, one-
sample Wilcoxon rank sum test) in which SGMs have been associ-
ated with LOF phenotypes of TP53 (27) and where posttranslational
modification sites are often mutated in cancer (28). SGMs of SBS4
and SBS13 showed high levels of functional activity in saturation
mutagenesis screens of TP53 (27), supporting their roles in
cancer phenotypes (fig. S8). In head and neck cancer, TP53 includ-
ed SGMs of SBS4 as well as SBS13, suggesting an interplay of the two
mutational processes (fig. S9). A few SBS4 SGMs in TP53 were also
identified in lung cancers of patients with no smoking history in
TCGA (fig. S9). As another example, the second-ranking gene
STK11 had 20 of 22 SGMs attributable to the tobacco smoking sig-
nature in the TCGA dataset (1 SBS4 SGM expected; FDR = 5.6 ×
10−17) (fig. S9). Inactivating mutations of the bona fide TSG
STK11 (i.e., LKB1; serine/threonine kinase 11) are common in
lung cancer, modulate differentiation and metastasis in vivo, and
have been observed more frequently patients with smoking
history (29–31). Smoking-associated truncations in STK11 accumu-
lated toward the N terminus of the protein (P = 0.002), suggesting
that the mutational process of tobacco smoking directly contributes
to early truncations and LOF of this TSG. Similar enrichments of
SGMs were seen in other core TSGs such as RB1, NF1, and
ARID1A and emerging TSGs such as MGA, a transcription factor
of theMYC network that suppresses growth and invasion in cellular
and mouse models of lung cancer (32).

Second, SGMs of the APOBEC signature SBS13 were enriched in
44 genes in breast, head and neck, and uterine cancers. The most
significant gene, FAT1, was found in head and neck cancer in
TCGA and included 21 APOBEC-associated SGMs (1 SBS13
SGM expected, P = 8.3 × 10−18) (Fig. 3E). FAT1 encodes a proto-
cadherin and master regulator of the Hippo pathway that controls
organ growth, cell polarization, and cell-cell contacts. FAT1 is one of
the most frequently mutated TSGs in cancer whose LOF enhances
tumor invasiveness, metastasis, and drug resistance (33, 34), sug-
gesting a link between APOBEC-induced protein truncations and
disease outcomes. FAT1 was also found in lung cancer where
SGMs were enriched in the tobacco signature SBS4. Besides

FAT1, SGMs of the APOBEC signature were also seen in other hall-
mark cancer genes such CDH1, TP53, CDKN2A, and TGFBR2, and
putative cancer genes such as the receptor tyrosine kinase EPHA2
that regulates glutamine metabolism in cancer through the Hippo
pathway (35).

Third, the ROS signature SBS18 was enriched in SGMs in one
gene, APC, which was identified in metastatic colorectal cancers
of the HMF cohort (27 of 346 SGMs versus 1 expected; P = 2.2 ×
10−31) (Fig. 3F). APC inactivation is an early oncogenic event that
disrupts β-catenin degradation and activatesWnt signaling (36, 37).
This suggests a link of APC loss with the oxidative stress in the
tumor microenvironment or diet or with the therapies of metastatic
cancers (38).

TSGs are often inactivated in cancer through multiple mecha-
nisms. To determine whether TSGs were inactivated in samples
with signature-associated SGMs, we asked whether the 56 SGM-en-
riched genes were also altered by genomic copy number (CN) losses
in the same tumor samples (Fig. 3B). The SGM-enriched genes ap-
peared to carry both SGMs and CN losses in most relevant cancer
samples (58.9% or 275 of 467). This was also apparent in individual
TSGs such as TP53 (67.1% or 55 of 82 samples), STK11 (86.2% or 25
of 29), and FAT1 (73.3% or 33 of 45). Thus, some SGMs contributed
by the mutational processes of tobacco and APOBEC drive biallelic
inactivation of TSGs where one gene copy is inactivated by SGMs
while the other copy is deleted.

We asked whether the SGM-enriched genes complied with our
model of SGM signatures and the genetic code (Fig. 2, C and D). As
expected, the proteins encoded by the 56 SGM-enriched genes con-
tained significantly more glutamic acids relative to the reference
human proteome (Wilcoxon rank sum P = 8.2 × 10−6) (Fig. 3G).
Proteins with APOBEC-associated truncations also associated
with a higher serine content (P < 2.6 × 10−4). The genetic model
was also supported at the level of individual genes. For example,
most SGMs of the tobacco smoking signature in TP53 affected glu-
tamic acids (32 of 51), while the APOBEC-associated SGMs in FAT1
affected either serines (10 of 21) or glutamic acids (11 of 21). Fur-
thermore, the same subset of core TSGs was enriched in both
tobacco smoking– and APOBEC-associated SGMs in different
cancer types (e.g., TP53, CDKN2A, NF1, FAT1, and ARID1A), as
the SGMs introduced through the two mutational processes con-
verge across different cancer types. Thus, certain TSGs may be
more exposed to these SGM-inducing mutational processes
because of their protein sequence content, indicating an interplay
between the mutational processes and positive selection against
tumor-suppressive function.

Clinical and molecular associations of SGM signatures
We quantified the mutational processes of SGMs in individual
cancer genomes. The largest number of SGMs was associated
with the tobacco smoking signature in lung cancers. In TCGA,
lung cancer samples included 10.5 tobacco smoking–associated
SGMs per genome on average, whereas 73% of cancers had at
least 1 and 39% had at least 10 such protein-truncating mutations.
In primary breast cancers in TCGA, APOBEC processes were asso-
ciated with an average of 1.1 SGMs and affected a quarter of
samples. In metastatic breast cancers of the HMF dataset,
APOBEC-driven SGM burden was higher (mean 2.3 SGMs per
sample; 32% of samples), consistent with longer or higher levels
of APOBEC activity in advanced cancers (39). ROS-associated
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SGMs, while less frequent in cancer genomes overall, were most
pronounced in metastatic colorectal cancers in HMF, affecting
23% of samples with an average of 0.5 SGMs per genome
(Fig. 4A). Therefore, a large fraction of cancer genomes has some
SGMs and potential LOF alterations through these mutational
processes.

We next studied the activity of SGM signatures at the level of
cancer subtypes. The enrichment of SGMs in the tobacco
smoking signature was detected in primary lung adenocarcinomas
(LUAD) and squamous cell carcinomas (LUSC) in TCGA, as well as
metastatic non–small cell and small cell cancers in the HMF dataset
(Fig. 4B). APOBEC associations with SGMs in breast cancer were
also confirmed in the major histological and molecular cancer sub-
types and were also detected in primary breast cancers and meta-
static cancers originating from the breast. Notably, the Her2-
positive breast cancer subtype in TCGA had threefold more
APOBEC-driven SGMs than all other subtypes combined (2.9
versus 0.95 SGMs per genome) (Fig. 4B), consistent with earlier
studies showing higher APOBEC activity in that subtype (8).
Thus, the mutational processes generating SGMs are active across
lung and breast cancer subtypes and in primary and metastat-
ic cancers.

We assessed SGMs in the context of the smoking history of pa-
tients with lung cancer in TCGA. Compared to patients with a
smoking history, the cancer genomes of lifelong nonsmokers had
fewer tobacco-associated SGMs of SBS4 (FDR < 10−6) and fewer
Glu>Stop substitutions (FDR < 10−9). No significant differences
in SBS4 SGM burden were found between current and recently re-
formed smokers (FDR = 0.93); however, both groups had signifi-
cantly more SBS4 SGMs than lifelong nonsmokers and long-term
reformed smokers (FDR < 10−6). Cancer subtype analysis con-
firmed the association between lifetime smoking and the burden
of SBS4 SGMs in LUAD, while weaker signals were observed in
LUSC (Fig. 4C). This is expected as the LUAD subtype is more
common among nonsmokers than LUSC (40) (13.6 and 3.7% in
TCGA, respectively) and the more varied composition of the
LUAD cohort may contribute to the more pronounced association
with SGMs. Therefore, SGMs in lung cancer genomes can be attrib-
uted to lifetime smoking activity, indicating a preventable cause of
these impactful genetic aberrations.

We analyzed the functional characteristics of APOBEC-related
SGMs of signature SBS13. First, an extended sequence context anal-
ysis of SGMs showed a strong enrichment of mutations in YTCA
motifs compared to non-SGM SBS13 mutations (Fig. 4D). This
was apparent in breast cancer and head and neck cancer and was
confirmed in all three cohorts. Second, we associated SGM
burden in breast cancer with the expression levels of APOBEC3
genes using matched genomic and transcriptomic datasets in
TCGA (Fig. 4E). Breast cancer samples with higher APOBEC3A ex-
pression had significantly more APOBEC-driven SGMs compared
to cancers with lower expression (P = 1.3 × 10−6, Wilcoxon test)
while weaker or subsignificant associations were seen with
APOBEC3B expression. Differential expression of other APOBEC3
genes also associated with SGM burden. These findings were par-
tially replicated in the HMF cohort of metastatic cancers, although
with limited significance and sample size (fig. S10). The mRNA as-
sociations and frequent YTCA motifs suggest that the SGMs of the
SBS13 signature are mostly associated with mutagenesis by
APOBEC3A rather than APOBEC3B, in agreement with previous

studies (41, 42). Last, we studied WGS data from cancer cell lines
with APOBEC3A or APOBEC3B knockout (KO) experiments
(43). We found that the clones of breast cancer cell line BT-474
showed significantly fewer SGMs upon APOBEC3A KO compared
to control clones with wild-type (WT) APOBEC3A, while
APOBEC3B knockdown led to no significant differences in SGM
burden (Fig. 4F). Attenuated signals were seen in two additional
cell lines (fig. S11). These associations of APOBEC mutagenesis
of SGMs with APOBEC3 gene expression and DNA motifs
connect the mutational processes of SGMs in patient cancer
genomes with the expected molecular pathways and functional ev-
idence. Overall, the clinical andmolecular associations of mutation-
al processes and SGMs provide insights to tumor heterogeneity and
patient outcomes and have potential implications for biomarker
and therapy development.

DISCUSSION
Our pan-cancer analysis shows that the mutational processes of
tobacco smoking, APOBEC, and ROS are sources of SGMs in
cancer genomes. The trinucleotide contexts of these mutational
processes are biased toward substitutions of glutamic acid and
serine codons to stop codons, explaining the strong statistical asso-
ciations observed in many cancer types. In support of this mecha-
nism, we present several lines of evidence. First, the tumor
suppressors with the strongest enrichments of SGMs also have a
high protein sequence content of these amino acids. Second, we
can identify the mutational processes of SGMs in large cohorts of
primary and metastatic cancers of various cancer types and inWGS
andWES datasets. Third, the mutational burden of SGMs correlates
with the molecular drivers of the mutational processes, including
lifelong tobacco exposure of patients with lung cancer and the ex-
pression levels of APOBEC3 genes.

Our analysis ties together the functional impact of mutational
processes and positive selection in cancer genomes. The genes
with the most frequent SGMs associated with the three mutational
processes are clearly enriched in core TSGs, including early onco-
genic drivers such as APC, later drivers of tumor progression and
metastasis such as CDH1, as well as less-characterized cancer
genes such as EPHA2 and MGA. In these genes, SGMs likely
promote cancer development and are under positive selection.
The trinucleotide preferences of mutational processes reveal their
proteo-genomic characteristics: For example, the TSGs with en-
riched SGMs also often encode for proteins with many glutamic
acids and serines, suggesting that such protein sequence content
is more vulnerable to truncating mutations and LOF.

The mutational processes that contribute SGMs are the major
processes of somatic mutagenesis in many cancer types. Tobacco
smoking appears as the strongest driver of SGMs in lung, head
and neck, and esophagus cancers, which involve direct exposure
to smoke. We also find SGM enrichments in other carcinogenic
processes of tobacco chewing, and the dietary carcinogens aflatoxin
and aristolochic acids, that are detected less frequently in these
cancer cohorts. Further, increased smoking is associated with a
higher SGM burden, indicating that the more an individual is
exposed to tobacco smoke, the more likely they are to acquire
SGMs and disrupt gene function in tobacco-exposed cells. There-
fore, loss-of-function mutations in cancer genomes appear to be
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Fig. 4. Molecular and clinical associations of SGMs with tobacco smoking and APOBEC activity. (A) Mutational burden of SGMs of SBS4, SBS13, and SBS18 in cancer
genomes. Bar plots show SGM burden for these signatures in primary (TCGA) andmetastatic cancers (HMF). Mean numbers of SGMs per cancer genomewith ±95% CI are
shown above the bars. (B) SBS4 and SBS13 SGMs are enriched in the molecular subtypes of lung and breast cancer. Expected total SGM counts with 95% CI are shown as
points andwhiskers. Sample sizes are shown on the x axis. Lung cancer subtypes include small cell (SC), non–small cell (NSC), adenocarcinoma (LUAD), and squamous cell
carcinoma (LUSC). (C) SBS4 SGMs associate with the smoking history of patients with lung cancer in TCGA. Top: Box plots show the number of SBS4 SGMs (left) and
Glu>Stop substitutions per cancer genome in patients grouped by smoking history (right), with sample sizes for each group shown in the x-axis labels. Bottom: Tile plot
shows the statistical significance of the associations of smoking history and SGM burden (Wilcoxon rank sum test, FDR-adjusted). (D) SBS13 SGMs in breast and head and
neck cancers are enriched in the DNAmotif YTCA compared to other non-SGM SBS13mutations (right). Fisher’s exact P values are shown. (E) APOBEC3 gene expression in
breast cancer associates with more frequent SBS13 SGMs. TCGA breast cancer samples were compared using median dichotomization of each APOBEC3 gene (i.e., high
versus low). FDR-adjusted P values of Wilcoxon rank sum tests are shown. (F) Breast cancer cell line clones with APOBEC3A knockout show a significantly reduced SBS13
SGM burden compared to APOBEC3A-WT clones, while no significant changes are seen in cells with APOBEC3B knockout. WGS datawere retrieved from (43). P values were
computed using negative binomial regression. n.s., not significant.
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influenced by lifestyle and environment factors, such as tobacco
smoking or passive exposure to second-hand smoke.

APOBEC enzymes are core components of the innate immune
system that are involved in antiviral defense and somatic antibody
diversification (44). Aberrant APOBEC activity is a major cause of
somatic mutations in many cancer types. APOBEC enzymes were
described in virus restriction pathways that disable viruses by induc-
ing missense and SGMs in viral RNA (45). This evolutionarily im-
portant mutational process of defense against pathogens
corroborates our observations in cancer genomes. RNA editing by
APOBEC1 causes a protein truncation in the apolipoprotein APOB
that is required for lipid processing in the intestine (46, 47). Somatic
mutagenesis in normal human small intestine has been associated
with APOBEC1 activity and includes SGMs in TSGs (48). At the
mesoscale of ~30 bps, APOBEC3 affects DNA stem-loop structures
and causes recurrent passenger mutation hotspots, while
APOBEC3-driven mutations in cancer driver genes often lack
these mesoscale features (49). At the regional scale, APOBEC3 mu-
tagenesis is more pronounced in tissue-specific open-chromatin
regions (50, 51), indicating that the SGMs preferentially occur in
actively expressed genes in which LOF mutations are more likely
to have functional consequences. Last, mutational processes that
generate SGMs and cause increased tumor heterogeneity may be
reined in through therapeutic APOBEC3 inhibition (52), especially
as APOBEC3 activity later in tumor evolution has been linked to
subclonal diversification, driver mutations, and resistance to target-
ed therapy (39, 53, 54).

Oxidative stress and ROS are major sources of genomic instabil-
ity that are associated with lifestyle factors common in developed
countries, such as malnutrition, limited dietary antioxidant levels,
obesity, and excessive alcohol consumption (55). Oxidative stress is
also associated with some anticancer therapies such as ionizing ra-
diation and certain chemotherapeutic agents. SGMs of ROS signa-
tures were especially apparent in metastatic colorectal cancers that
are commonly treated with radiation therapy. Rare cancer-predis-
posing germline mutations of the DNA repair enzyme MUTYH
have been associated with the ROS signature SBS18 and more fre-
quent SGMs (56), supporting our findings of SBS18-driven SGMs
in cancer genomes. Thus, lifestyle variables, genetic makeup of pa-
tients, and certain cancer treatments may also contribute to loss-of-
function mutagenesis.

As cancers evolve, they become more heterogeneous and their
paths to progression and metastasis become more varied. This het-
erogeneity is likely acquired through additional mutations that
further deregulate cancer pathways and unlock resistance to
therapy. By inducing SGMs, the mutational processes of tobacco,
APOBEC, and ROS directly contribute to tumor heterogeneity by
causing LOF. While not all these SGMs occur in core TSGs and di-
rectly drive cancer phenotypes, SGMs may involve genetic interac-
tions with the core driver genes. Synergistic interactions may
provide additional context-specific advantages to tumors in cases
where the SGMs disrupt protective mechanisms and thereby
enhance the phenotypes caused by core driver genes. On the
other hand, SGMs may lead to synthetic lethal interactions in
which SGMs disrupt a pathway that the core oncogenic pathway
depends on. These interactions may be exploited for therapy by tar-
geting other components of the SGM-disrupted pathway. Deeper
analyses of the proteogenomic impact of mutational processes
and their etiology and genetic and lifestyle associations may lead

to innovative biomarkers, mechanistic insights to cancer pathways,
and leads for therapy development.

MATERIALS AND METHODS
Somatic mutations in cancer genomes
Previously published genomics datasets were used. We analyzed
somatic SNVs in three cohorts of multiple cancer types: Interna-
tional Cancer Genome Consortium (ICGC)/TCGA PCAWG (2)
with WGS data of primary cancers, HMF (21) with WGS data of
metastatic cancers, and the TCGA PanCanAtlas (20) project with
WES data of primary cancers. DNA sequencing of cancer tissues
of human individuals was performed by ICGC, TCGA, and HMF
consortia members outside of this study under a series of locally ap-
proved Institutional Review Board protocols. Informed consent was
obtained from all human participants as part of previous studies.
Ethical review of the current data analysis project was granted by
the University of Toronto Research Ethics Board under protocol
no. 37521. For TCGA PanCanAtlas data, we used the Multi-
Center Mutation Calling in Multiple Cancers (MC3) dataset of
TCGA variant calls (57). We removed hypermutated tumor
samples defined as those with >90,000 SNVs in WGS data and
with >1800 SNVs in WES data, corresponding to genomes with ap-
proximately >30 SNVs/Mbps (n = 69 for PCAWG; n = 306 for
HMF; n = 806 for TCGA). We excluded SNVs that did not pass
the MC3 quality filter in TCGA. In WES data, we also removed
lower-confidence samples with very few mutations for increased
confidence in signature decomposition (<20 SNVs; 977 samples
in TCGA). In HMF data, we removed 140 duplicate cancer
genomes of tumors of the same patients by selecting the sample
with the highest tumor purity. We also removed 25 samples
lacking HMF patient IDs. To enable analyses across the TCGA,
PCAWG, and HMF cohorts, cancer types were consolidated to 18
meta-types based on organs and/or anatomical sites, with each
cancer type including at least 25 samples in the three cohorts (fig.
S1). In HMF, the organ of the primary tumor was used for cancer
type classification. Cancers of less-frequent primary sites and of
unknown origin (HMF) were excluded. In total, we analyzed
1,751,110 exonic SNVs. The functional effects of SNVs on
protein-coding genes were annotated using the ANNOVAR soft-
ware (58) (version 24 October 2019) by using the canonical
protein isoforms of the genes. The final dataset contained 12,341
cancer genomes (2360 in PCAWG, 3472 in HMF, and 6509 in
TCGA). This included some samples that were present in both
the PCAWG and TCGA cohorts (n = 484). The duplicate samples
between PCAWG and TCGA were retained to provide additional
technical validation across the sequencing platforms, variant
calling pipelines, and signature-mapping strategies used to
produce the datasets.

SBS signatures
Mutational signatures for SBSs in PCAWG were retrieved from the
consensus PCAWG dataset (4). In HMF and TCGA datasets, we
separately assigned known SBS signatures to SNVs using the SigPro-
filerSingleSample software (version 0.0.0.27) (5) and the COSMIC
SBS signature catalog (version 3) (5, 24). For most analyses, each
SNV was assigned to the most probable SBS signature based on
these signature exposure predictions. We removed a small subset
of samples in WGS data that were potentially contaminated with
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sequencing artifacts as defined by the presence of more than 20% of
SNVs assigned to SBS27, SBS43, and SBS45 to SBS60, comprising
nine samples in PCAWG and four samples in HMF. The TCGA
dataset was not further filtered beyond the MC3 quality filter
(57). To verify the tobacco, APOBEC, and ROS signatures of
SGMs in lung, breast, and colorectal cancers, respectively, we com-
puted COS scores to evaluate the similarity of the SGM trinucleo-
tide profiles with the reference profiles of SBS trinucleotide
frequencies in the COSMIC database. COS scores were computed
separately for all SGMs and for Ser>Stop and Glu>Stop SGMs. As
controls, we also computed the equivalent COS scores comparing
the SGM trinucleotide profiles with the two clock-like featureless
SBS signatures, SBS5 and SBS40, which were the most common
SBS signatures in the respective cancer types.

Enrichment analysis of protein-coding SNV classes and
mutational signatures
We performed a comprehensive enrichment analysis of functional
SNV annotations and mutational SBS signatures by separately com-
paring all consolidated cancer types in the three cancer cohorts. The
analysis evaluated whether the classes of exonic SNVs [i.e., mis-
sense, stop-gain (i.e., nonsense), silent, start-loss, and stop-loss]
were enriched in certain mutational signatures by co-occurring
more often than expected from the independent distributions of
these SNV classes and the SBS signatures in all protein-coding
regions of a given cancer type and cohort. For each cancer type,
we tested the signatures that were reasonably frequently detected,
had at least 100 SNVs per cancer type and cohort, and included
at least 1 SNV of the tested variant annotation class (e.g., SGM), ex-
cluding signatures annotated as sequencing artifacts in the
COSMIC database (see above). Certain signatures associated with
the commonmutational processes were combined: clock-like signa-
tures SBS5 and SBS40 (SBS5/40), UV signatures SBS 7a/b/c/d
(SBS7), hypermutation-associated signatures SBS10a/b (SBS10),
and the signatures SBS17a/b (SBS17). Because this analysis
focused only on protein-coding regions, and to provide comparable
analyses of WGS and WES datasets and reduce the inflation of sig-
nificance in better-powered WGS datasets, we excluded nonexonic
variants from the statistical tests. Statistical analysis was conducted
using one-tailed Fisher’s exact tests that asked whether a set of SNVs
derived from a given SBS signature and another set of SNVs with a
given functional annotation overlapped more often than expected
by chance alone. The resulting P values were adjusted for multiple
testing using the Benjamini-Hochberg FDR method (59). Results
were considered significant if FDR < 0.01. Expected values of mu-
tations sharing SBS signatures and functional annotations were
sampled from the independent binomial distributions over 10,000
iterations, parametrized by the product of the probabilities of signa-
ture mutations and functional annotations, respectively. Using a
similar approach, we also asked whether specific types of amino
acids were more likely to be substituted with stop codons through
the SGMs driven by the identified SBS signatures. This analysis
focused on only three cancer types and three SBS signatures in
the cohorts with the strongest signals (SBS4 in lung cancer in
TCGA, SBS13 in breast cancer in HMF, and SBS18 in colorectal
cancer in HMF). Fisher’s exact tests were performed to assess
whether certain amino acids co-occurred with the signatures
more often than expected from the individual distributions of the

signature-associated variants and the substituted amino acids. The
resulting P values were corrected for multiple testing using FDR.

Confirming the enrichment of SGMs in the major SBS
signatures with probabilistic sampling
All major analyses in our study considered the most probable SBS
signature for each SNV. To confirm our findings by accounting for
the uncertainty in the signature annotations of individual SNVs and
tumor samples, we performed a sampling analysis in which we as-
signed signatures to individual SNVs probabilistically over 100 iter-
ations. Each SNV was assigned an SBS signature based on the
multinomial distribution parametrized by the probabilities of all
the SBS signatures identified in the given cancer genome. This pro-
cedure allowed the less-probable signatures to be included in the
SNV annotation on the basis of their probabilities. The 100 proba-
bilistically sampled SNV-to-signature assignments were then ana-
lyzed using the enrichment analysis approach described above, to
determine which signatures were enriched in SGMs in various
cancer types. Results were adjusted for multiple testing separately
in each iteration and labeled on the basis of significance (FDR <
0.05). The FCs and FDR values of the SGM enrichments in different
iterations were visualized as volcano plots.

Analysis of SBS signatures and SGMs in genes
Genes with significant signature-associated SGMs were identified
using one-tailed Fisher’s exact tests separately for the three major
signatures (SBS4, SBS13, and SBS18). The tests compared the distri-
bution of SGMs of each SBS signature in a gene relative to the dis-
tributions of all SGMs and all mutations of that SBS signature in all
protein-coding genes combined. This analysis only used exonic mu-
tations and excluded mutations in noncoding regions, similarly to
the exome-wide analysis described above. Fisher’s exact tests were
conducted for each gene separately and in all three cohorts sepa-
rately (TCGA, HMF, and PCAWG). Genes were only tested if
they had at least one SGM assigned to the given mutational signa-
ture. The resulting P values for each gene were merged across data-
sets using the Brownmethod (60) and corrected for multiple testing
using FDR. Significant genes were selected on the basis of the Brown
merged FDR values (FDR < 0.05). Known cancer genes from the
COSMIC CGC database (25) (version 17 September 2020, accessed
21 October 2021) were highlighted in the resulting gene list. A
Fisher’s exact test was used to determine whether the CGC genes
were found in the list more often than expected, using all protein-
coding genes as the background set. In an additional analysis, all
protein-coding genes were ranked according to the numbers of glu-
tamic acid (Glu) and serine (Ser) residues in their canonical protein
isoforms. Genes identified in the SGM enrichment analysis from
above were tested for higher-than-expected Glu or Ser content
using one-tailed Mann-Whitney U tests relative to all canonical
human proteins as reference. Also, for each candidate gene, we de-
termined whether the sequence positions of the signature-associat-
ed SGMs were distributed toward either the N or C terminus of the
proteinmore often than expected. One-tailed one-sampleWilcoxon
rank sum tests were used for this analysis. Mutations in protein se-
quence were visualized using the lolliplot method of the track-
Viewer R package (61), using protein domain information
retrieved from the Pfam database (62).
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Functional impact of SGMs in TP53
To analyze the functional impact of signature-associated SGMs in
TP53, we obtained data from saturation mutagenesis screens from
the study by Giacomelli et al. (27) and compared the z scores of
TP53 functional activity among three classes of SNVs: (i) SGMs as-
sociated with SBS4 and/or SBS13 in any cancer sample in our data-
sets (i.e., PCAWG, TCGA, and HMF combined), and as controls (ii)
missense SNVs observed in any cancer sample in our datasets, and
(iii) all other mutations of TP53 studied in the mutagenesis screens
but not found in human cancer genomes. Only unique mutations
were analyzed. Statistical significance between the groups was deter-
mined using Wilcoxon rank sum tests.

Analysis of copy number alterations and SGMs
We aimed to identify potential biallelic inactivation cases where the
gene was disrupted by both SGMs and CN alterations leading to
genomic losses of the gene in the same tumor. We studied the 56
genes with enriched signature-associated SGMs from our analysis
that included 556 SGMs in 467 tumors in total. Separate strategies
to select copy number alterations (CNAs) were used for the TCGA
dataset and the PCAWG and HMF datasets. For TCGA samples
profiled previously using SNP6 microarrays, we analyzed the rela-
tive digital somatic CN calls of each gene as from previous consen-
sus datasets. Gene losses in TCGAwere defined through gene CN <
0.0. For PCAWG andHMF samples previously profiled usingWGS,
we analyzed the CN values of genomic segments defined in these
projects. To define the CN value for each gene, we considered the
overlapping genomic segment with the lowest CN and of at least
1000 bps in length. To define gene losses in PCAWG and HMF,
we used different criteria for autosomes and the X chromosome
and for samples with and without potential whole-genome duplica-
tion (WGD) events. A cancer genome was predicted to have under-
gone WGD if the genome-wide CN > 2.5. For non-WGD samples,
we defined gene losses in autosomes through gene CN < 1.5. For
WGD samples, we defined gene losses through gene CN < 2.0.
The same thresholds were used to define gene losses in X chromo-
somes in female patients. Gene losses in X chromosomes in males
were defined through gene CN < 1.0 for non-WGD samples and
through gene CN < 1.5 for WGD samples. CNAs were unavailable
for one relevant HMF sample and nine relevant TCGA samples, for
which we assumed that no gene deletion events occurred.

Pathway enrichment analysis
To understand the functional importance of the genes with SGMs of
different mutational signatures, we performed an integrative
pathway enrichment analysis using the ActivePathways method
(26). The analysis was designed to prioritize genes and pathways
that were enriched with signature-associated SGMs in multiple
cancer types. We included the cancer types for which these genes
were found, excluding colorectal cancer for which only one gene
was found. For each cancer type, we selected the cohort with
most cancer samples: lung (SBS4, TCGA), liver (SBS4, TCGA),
breast (SBS13, HMF), head and neck (SBS13, TCGA), and uterine
cancers (SBS13, TCGA). As the input to ActivePathways, we used a
matrix of P values of all protein-coding genes and the selected
cancer types, such that each P value reflected the enrichment of sig-
nature-associated SGMs in the gene and the cancer type. Gene sets
of biological processes of Gene Ontology andmolecular pathways of
Reactome were derived from the Gene Matrix Transposed (GMT)

files in the g:Profiler web server (63) (downloaded 3 January 2022).
Gene sets with 100 to 500 genes were analyzed. Statistically signifi-
cant pathways were selected (ActivePathways, FDR < 0.05). The
results were visualized as an enrichment map (64), and the subnet-
works were labeled interactively to find common functional themes
of similar pathways and processes.

Analysis of SGMs in tumor subtypes and correlation with
patient smoking history
We studied the number of signature-associated SGMs in each
cancer genome in the representative cancer types (SBS4 in lung,
SBS13 in breast, and SBS18 in colorectal), and compared primary
cancers in TCGA and metastatic cancers in HMF. Mean numbers
of signature-associated SGMs per cancer genome were reported
with 95% confidence intervals, by also including the samples
where these SBS signatures were not detected. We also compared
the per-tumor SGM counts separately in various subtypes of lung
and breast cancer. Subtype analysis was not performed in the colo-
rectal cancer cohort as subtype annotations were not available.
Cancer subtype annotations for PCAWG were retrieved from the
ICGC data portal, from patient information tables for HMF, and
for TCGA from the TCGAbiolinks R package (65) (v. 2.18.0).
Samples with unknown and missing subtype annotations were ex-
cluded. To validate the associations of SGMs and SBS signatures in
cancer subtypes, we repeated the signature enrichment analysis of
SGMs on relevant subsets of cancer samples using Fisher’s exact
tests as described above. We also analyzed SGMs of the tobacco sig-
nature SBS4 in the context of smoking history of patients with lung
cancer. We compared the subsets of TCGA cancer samples on the
basis of the four categories of patient smoking history that were
derived from TCGAbiolinks. We compared two categories of
SGMs: SGMs assigned to SBS4 and SGMs causing Glu>Stop substi-
tutions. Nonparametric Wilcoxon rank sum tests were used to
compare mutation counts per patient in the four categories of
smoking history. We performed one analysis by combining all pa-
tients with lung cancer on the basis of their smoking history, and
two additional analyses focused on the two major histological sub-
types (adenocarcinoma and squamous cell carcinoma).

Motif analysis and correlation of APOBEC3 expression with
SBS13 SGMs
We examined the association between quadnucleotide DNA motifs
and SGMs in breast cancer and head and neck cancer, in which the
highest enrichments for SBS13 SGMs were found. We obtained the
quadnucleotide sequence motifs for each variant and labeled them
as YTCA (where Y is either C or T), RTCA (where R is either A or
G), or as other (i.e., all other sequences). Fisher’s exact tests were
then performed to determine whether SBS13 SGMs were more fre-
quent at each motif type compared to non-SGMs of SBS13 as refer-
ence. Next, we associated the frequency of SGMs per cancer genome
with the gene expression levels of APOBEC3 enzymes in breast
cancer samples (APOBEC3A, APOBEC3B, APOBEC3C,
APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H). We ana-
lyzed breast cancer genomics datasets in TCGA and HMF using
matching RNA sequencing (RNA-seq) datasets of the two
cohorts. Cancer samples with no SBS13mutations were also includ-
ed in the analyses. We excluded cancer samples with no matching
RNA-seq data. Each APOBEC3 gene was analyzed separately.
Samples were split (i.e., median-dichotomized) into two subsets
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on the basis of median APOBEC3 gene expression. The resulting
two groups for each APOBEC3 gene were compared using one-
tailed Wilcoxon rank sum tests to compare mutation counts per
cancer genome. Four types of mutations were considered: all
SGMs of the SBS13 signature, SGMs involving glutamic acids and
serines combined (Glu>Stop, Ser>Stop), SBS13 SGMs with a YTCA
motif, and SBS13 SGMs with an RTCA motif.

Analysis of SGMs in cell lines from APOBEC3 KO
experiments
SNVs from five cell lines (breast: BT-474 and MDA-MB-453; B cell
lymphoma: BC-1 and JSC-1; and bladder: HT-1376) in WT and
APOBEC3A or APOBEC3B KO treatment groups were retrieved
from the study by Petljak et al. (43). Clones considered nonunique
by the authors were removed, and only daughter clones were used in
this analysis. The functional effects of SNVs on protein-coding
genes were annotated using ANNOVAR (version 24 October
2019), and SBS signatures were assigned to SNVs using SigProfiler
as described above. APOBEC3A and APOBEC3B KO data were an-
alyzed separately. Within each cell line and treatment group (KO or
WT), SGMs in the following categories were counted: total SGMs,
SBS13 SGMs, SBS2 SGMs, SGMs with a YTCA motif, and SGMs
with an RTCA motif. Negative binomial regression models were
fit on these counts using the treatment group as a covariate in the
alternative model, and a two-model analysis of variance (ANOVA)
with a chi-square test was used to determine statistical significance.

Supplementary Materials
This PDF file includes:
Figs S1 to S11
Legend for table S1
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